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ABSTRACT
Background: Tremor is one of the most prevalent symptoms in Parkinson’s Disease (PD). 
The progression and management of tremor in PD can be challenging, as response to 
dopaminergic agents might be relatively poor, particularly in patients with tremor-
dominant PD compared to the akinetic/rigid subtype. In this review, we aim to highlight 
recent advances in the underlying pathogenesis and treatment modalities for tremor 
in PD.

Methods: A structured literature search through Embase was conducted using the terms 
“Parkinson’s Disease” AND “tremor” OR “etiology” OR “management” OR “drug resistance” 
OR “therapy” OR “rehabilitation” OR “surgery.” After initial screening, eligible articles were 
selected with a focus on published literature in the last 10 years.

Discussion: The underlying pathophysiology of tremor in PD remains complex and 
incompletely understood. Neurodegeneration of dopaminergic neurons in the retrorubral 
area, in addition to high-power neural oscillations in the cerebello-thalamo-cortical circuit 
and the basal ganglia, play a major role. Levodopa is the first-line therapeutic option for all 
motor symptoms, including tremor. The addition of dopamine agonists or anticholinergics 
can lead to further tremor reduction. Botulinum toxin injection is an effective alternative for 
patients with pharmacological-resistant tremor who are not seeking advanced therapies. 
Deep brain stimulation is the most well-established advanced therapy owing to its long-
term efficacy, reversibility, and effectiveness in other motor symptoms and fluctuations. 
Magnetic resonance-guided focused ultrasound is a promising modality, which has the 
advantage of being incisionless. Cortical and peripheral electrical stimulation are non-
invasive innovatory techniques that have demonstrated good efficacy in suppressing 
intractable tremor.
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1 INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder defined by a constellation of cardinal features 
that include tremor, bradykinesia, rigidity, and postural 
instability [1, 2]. The spectrum of motor and non-motor 
manifestations of the disease is further expanding [3]. 
Tremor is one of the most common motor symptoms in PD 
and is reported to affect up to 75% of patients during their 
disease course. Moreover, tremor can be the predominant 
and most troublesome motor symptom [4–7]. While several 
forms of tremor can develop in patients with PD, the typical 
pill-rolling tremor at rest is the most common [6]. Both 
kinetic and re-emergent postural forms can also coexist,  
which may result in substantial functional impairment  
[6–8].

PD is recognised to be heterogeneous, and growing 
evidence of clinical subgroups has emerged based on the 
predominant symptom associated with each subtype 
[9–12]. In comparison to other PD subtypes, tremor-
dominant PD tends to have a slower disease progression, 
less debilitating non-motor symptoms, decreased 
probability of developing levodopa-induced dyskinesia 
(LID), and potential resistance to dopaminergic agents [6, 
12]. In addition, the response to dopaminergic agents, if 
any, tends to be higher in resting and re-emergent tremor, 

whereas the response for kinetic tremor is relatively poor [7, 
13–15]. This phenotype constitutes up to 8% of PD cases as 
examined in postmortem clinicopathologic studies [16, 17].

The purpose of this review is to highlight the underlying 
pathophysiological mechanisms of tremor in PD and 
recent advances in therapeutic options.

2 METHODS

A structured search of Embase database was conducted, 
using the following keywords: “Parkinson’s Disease” AND 
“tremor” OR “etiology” OR “management” OR “drug 
resistance” OR “therapy” OR “rehabilitation” OR “surgery.” 
Articles were included if the format was a guideline, 
original article, review, letter to the editor, or case series. 
Results from the last 10 years (2012–2022) were prioritized 
to highlight the most recent advances in pathophysiology 
and management of tremor in PD. The search included 
English-language articles only. Articles were excluded if: 
the subjects were animals, the format was a case report, 
or the topic was not relevant. Articles were also excluded if 
there was an overlap between essential tremor (ET) and PD. 
This resulted in a total of 785 articles. In the final screening 
process, a total of 169 relevant articles were selected for 
review (Figure 1).

Figure 1 Flow diagram summarizing the steps involved in the literature search.
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3 DISCUSSION

3.1 PATHOPHYSIOLOGY
The pathophysiology of tremor in PD is complex and 
remains incompletely understood. The onset, severity, and 
progression of tremor are hypothesized to be multifactorial. 
It is thought to have a distinct pathophysiologic mechanism 
from classic nigrostriatal dopamine depletion [18–21].

The dimmer-switch model
The dimmer-switch model proposes a synchronous 
oscillatory activity in two separate, but partially overlapping, 
central pathways [22–24]. Cerebello-thalamo-cortical and 
basal ganglion-cortical loops cause an alteration in normal 
central neural oscillations and eventually trigger tremor 
episodes (Figure 2) [22]. This proposed model is based 
on neurophysiologic, neuroimaging, and intraoperative 
monitoring studies during functional stereotactic 
neurosurgical procedures [19, 25–27]. In addition, 
stereotactic interventions in anatomic structures related 
to both pathways (the subthalamic nucleus (STN), ventral 
intermediate nucleus (Vim), and the internal globus pallidus 
(GPi)) can suppress tremor, further supporting the role of 
these structures in the underlying pathogenesis [28]. This 
model suggests that the basal ganglia is the key structure 
where a transient activation generates tremor, thus acting 

the “switch” role [23, 24]. First, an oscillatory activity in 
the striatum causes an increased inhibitory output to 
the thalamus, which in addition to GPi bursting activity, 
would generate rhythmic bursting in the thalamic anterior 
ventrolateral nucleus (VLa) [29]. This eventually projects 
into the motor cortex where both circuits converge [21, 23, 
26]. The primary motor and premotor cortices are the main 
areas where this convergence, as well as tremor-related 
activity, occurs [30, 31]. Convergence at this level drives the 
cerebello-thalamo-cortical circuit, which modulates tremor 
amplitude, thus acting as the “dimmer” on the switch 
[31, 32]. The role of both circuits was examined through 
combing functional MRI studies with electromyography 
(EMG), in which cerebral responses and co-fluctuation can 
be identified according to any spontaneous variations in 
tremor amplitude, as peripherally measured with EMG [25, 
29]. Cerebral activity was found to be time-locked to the 
onset of high-amplitude tremor episodes and was localized 
to both the basal ganglia and the cerebello-thalamo-
cortical circuit [23]. Furthermore, maximal activity of the 
basal ganglia structures was detected at the onset of 
tremor episodes, thus supporting the specific role of the 
basal ganglia as a driving force for tremor generation, while 
subsequent tremor amplitude-related activity was localized 
only to structures related to the cerebello-thalamo-cortical 
circuit (VLp, cerebellum, and the motor cortex) [23, 24]. 

Figure 2 Cerebral neuronal and neurochemical basis of tremor in Parkinson’s Disease. The figure shows the main circuits of the 
dimmer-switch model (A), which includes the cerebello-thalamo-cortical circuit (in red) and the basal ganglia-cortical circuit (in green). 
The basal ganglia (B) is the key structure that triggers the initiation of tremor. The striatum increases inhibitory output to the globus 
pallidus internus (Gpi), which in turn stimulates the anterior ventrolateral (VLa) nucleus of the thalamus. This trigger further propagates to 
the cerebral cortex, where convergence of both circuits occurs. This convergence stimulates the cerebello-thalamo-cortical circuit, which 
alters tremor amplitude. The figure also shows the main nuclei proposed to have major neurochemical role in tremor pathogenesis:  
1. Degeneration in the retrorubral area (RRA) leads to reduced dopaminergic projections to the subthalamic region, the basal ganglia, and 
the ventrolateral thalamus 2. Reduced serotonergic projections result from degenerative raphe nuclei (RN). 3. Increased noradrenergic 
projection from the locus coeruleus (LC).
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Patients with tremor-dominant PD were also found to have 
an increased functional connectivity between the two 
circuits when compared to non-tremor PD patients, which 
additionally supports the role of this integrated network 
model in PD tremor pathogenesis [24].

While the pathophysiologic basis for tremor subtypes 
in PD remains elusive, insights into the origin of resting 
and postural components was investigated through non-
invasive transcranial magnetic stimulation (TMS) of the 
primary motor cortex (M1) and the cerebellum. Resetting 
resting and postural PD tremor can be achieved with M1 
stimulation, whereas cerebellar stimulation can reset 
the postural component only [33, 34]. These findings 
suggest that this cortical area controls the amplitude 
and the rhythm of resting and postural tremor in PD, 
while postural tremor modulation is more related to the 
cerebellum.

Role of Dopamine and other neurotransmitters
Degeneration of dopaminergic neurons in the retrorubral 
area (RRA) of the midbrain, more so than in the substantia 
nigra pars compacta, may correlate with the generation 
of tremor in PD [35]. Loss of dopaminergic projections 
from the RRA to the subthalamic region, the basal ganglia, 
and the ventrolateral thalamus result in dopamine 
depletion in these regions and represents one of the main 
neurochemical bases of tremor generation in PD [30, 36–
38]. Tremor severity was found to correlate with dopamine 
transporter (DAT) density in the pallidum, while other 
motor symptoms correlate with DAT density in the striatum 
[30]. This suggests a more selective pallidal dopamine 
depletion that leads to basal ganglia dysfunction, which 
subsequently drives tremor episodes in PD.

In addition to dopamine, other neurotransmitters have 
been proposed to play a critical role in the pathogenesis of 
tremor in PD. In patients with tremor-dominant PD, locus 
coeruleus interneurons have relatively less degeneration, 
and noradrenaline (NA) receptor binding is increased 
compared to other PD phenotypes and healthy controls 
[37, 39]. Noradrenaline contribution in parkinsonian tremor 
is reflected by the effect of cognitive stress, which activates 
the noradrenergic system, release NA, and result in tremor 
amplitude aggravation tremor amplitude aggravation [40]. 
This potential role has also been examined through the 
administration of intravenous adrenaline in PD patients, 
which has resulted in an increase in tremor amplitude [24].

The magnitude and severity of tremor are more 
attributed to serotonin deficiency. Loss of serotonin 
transporters in the raphe nuclei in the midbrain has been 
shown to be correlated with more severe tremor [7, 19]. 
Furthermore, 123I-FP-CIT measurement of the median 

raphe serotonin transporter availability, compared to 
the putamen dopamine transporter uptake, has shown 
that more severe tremor scores are correlated with lower 
raphe/putamen uptake ratio values [41]. In addition, this 
group of patients tend to have relatively small clinical 
benefit when receiving acute dopaminergic therapy. Both 
findings are indicative that more severe, and dopaminergic 
resistant, tremor are suggestive of more severe raphe 
nucleus dysfunction [7, 41, 42].

Due to the impact produced by anticholinergic drugs 
in PD tremor reduction, acetylcholine has been proposed 
to contribute to the development of tremor in PD [21, 24]. 
Dopamine deficiency is thought to result in hyperactive 
striatal cholinergic interneurons, which in turn reduces 
the release of dopamine and exacerbates PD symptoms, 
including tremor [19, 43].

3.2 PHENOMENOLOGY
The classical tremor in PD is usually asymmetric, 
predominantly “pill-rolling,” resting tremor of 4–6 Hz 
frequency that is often suppressed with voluntary 
movements [8, 9, 10, 44]. It is not uncommon, however, 
to have the resting component combined with either 
kinetic and/or postural tremor [44–46]. Kinetic tremor 
is apparent during hand movements such as writing 
or during finger-to-nose examination. Postural tremor 
presents while stretching out arms against gravity [45]. 
Re-emergent tremor is a form of postural tremor, in which 
a “re-emergence” of tremor appears after a short latency 
(seconds) when hands are kept in an anti-gravity posture 
[46]. In the literature, action tremor is usually referred 
to as either kinetic or postural tremor. Tremor in PD was 
recently subclassified into four categories based on its 
phenomenology: Type I, in which tremor is of a pure resting 
component of 4–6 Hz; Type II, where resting tremor is 
associated with an action component of similar frequency; 
Type III, in which patients have an isolated action tremor; 
and Type IV, where a mixed resting and action tremor 
coexist, each with variable frequency, and the patient may 
have features of ET in addition to PD [8].

3.3 MANAGEMENT
3.3.1 Pharmacotherapy
Levodopa and other dopaminergic agents remain the 
first-line therapeutic option for all motor symptoms in PD, 
including tremor [47–52]. However, the choice of the optimal 
agent might be driven or limited by individualized factors. 
Disease-related characteristics, like tremor severity and 
sensitivity to levodopa, in addition to patient-related factors 
such as age, functional and cognitive status, can guide the 
choice of pharmacotherapy (Table 1; Figure 3) [47, 51].
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Levodopa
The effect of levodopa is known to be greatest for 
bradykinesia, while the effect on tremor control is relatively 
variable [50, 52–54]. Favorable effects are more pronounced 
for resting and re-emergent components compared to 
kinetic or pure postural tremor [46, 55]. Overall, it ranges 
widely from no objective clinical response to 80% tremor 
reduction [56, 57]. This inconsistent response has led to 
the proposed classification of tremor into three subtypes: 

dopamine-responsive, dopamine-resistant, and a partially 
overlapping intermediate group [58–60]. The dose and 
duration required to consider tremor as dopamine-
resistant have not yet been determined. Based on this 
classification, dopamine-resistant was defined according 
to its response during a levodopa challenge test (LCT), in 
which higher doses of levodopa are tested in an OFF state. 
Patients with dopamine-resistant PD tremor demonstrate 
a lack of clinical and electrophysiologic response despite 

Figure 3 Algorithm for the treatment of Parkinson Disease with predominant symptomatic tremor. † No strong evidence to support 
long term, sustained efficacy, and safety. Currently, the modality is mostly applied within the scope of clinical trials and registries.

 

 

Parkinson’s Disease with symptomatic tremor 

Initiate Levodopa as required47 

Optimal symptomatic control Continue Levodopa No Increase Levodopa to optimal dose51  

≥65 years ≤65 years 

Reconsider advanced modalities if eligible 

Yes 

Benefit? 
Yes 

No 

Rule out pseudoresistance53 

Benefit? 

No 

Consider adding DA63, anticholinergics57, or MAOB-I80 Consider adding DA63 or MAOB-I80 

Continue treatment 
Yes 

No 

Consider adding clozapine82 or β-blocker85 

Benefit? 
Yes 

Continue treatment 

Poor surgical candidate or not desiring advanced modalities  Eligible for advanced modalities 

DBS or MRgFUS142� Consider botulinum toxin injections 

No benefit? 
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receiving up to double their usual dose of levodopa during 
the test [59].

Poor response in some patients might be attributed, 
in part, to pseudoresistance, a phenomenon in which 
levodopa sensitive symptoms falsely appear to be 
resistant [15, 52, 60]. This occurs in the context of multiple 
underlying mechanisms that contribute to a suboptimal 
response [60]. Factors leading to pseudoresistance include 
gastrointestinal dysfunction causing poor absorption or 
high protein diets interfering with levodopa. Moreover, 
cognitive stress is a known factor that attenuates the 
therapeutic effect of dopamine [24, 52, 60].

As the effect of levodopa is expected to be dose-
dependent for tremor control, a dose increase might 
eventually be required, even if other symptoms show a 
robust response to lower doses [61]. However, the main 
challenge remains related to the maximum dose, which 
may be limited because of the potential dose-related side 
effects like nausea, vomiting, dyskinesias, or hallucinations. 
Furthermore, some studies have suggested that tremor 
might be worsen with a higher levodopa dosage [62].

Dopamine Agonists (DAs)
Pramipexole, apomorphine, and other DAs can augment the 
effect of levodopa, hence, providing greater tremor control 
[63, 64]. They can be used as an initial monotherapy, or as 
adjuvant addition to levodopa [50, 65]. Both pramipexole 
and pergolide produce a similar degree of resting tremor 
suppression when used as monotherapy [66]. The addition 
of pramipexole to levodopa results in an estimated 45% 
reduction in the Unified Parkinson’s Disease Rating Scale 
(UPDRS) tremor scores and significantly lower tremor 
occurrence during waking hours as recorded by long-
term electromyography (EMG) [63]. Apomorphine is a 
potent, relatively short-acting DA that can be administered 
with a continuous subcutaneous infusion pump, or an 
intermittent sublingual, and subcutaneous injection [67, 
68]. Apomorphine can provide a comparable effect on 
tremor produced by levodopa, but with a considerably 
lower mean duration of effect [69, 70].

Levodopa and DAs have comparable dopaminergic side 
effect profiles [49, 69]. An additional dose-dependent side 
effect linked to DAs is the development of impulse control 
disorder (ICD), which is estimated to have up to a 50% five-
year cumulative incidence risk [71]. Treatment of early PD 
with DAs can be associated with a reduced risk of motor 
fluctuations in the first five years after initiation, especially 
with younger patients [72, 73].

Anticholinergics
Anticholinergic medications, including trihexyphenidyl 
and benztropine, can be considered if tremor control 

is inadequate with dopaminergic agents [15, 74]. 
Anticholinergics are effective in improving PD tremor 
and other motor symptoms, but with a high risk of 
neuropsychiatric and cognitive adverse events [75]. 
These factors have limited the use of anticholinergics 
as they were a common reason for non-compliance. In 
addition, outcome measures of these agents vary widely. 
A significant improvement in tremor was found in some 
studies, while others have shown poor tremor response, 
but with improvement in bradykinesia and rigidity [75]. 
Due to the potential adverse effects, anticholinergics 
should only be used for tremor-dominant PD patients who 
are young and have failed to improve with dopaminergic 
agents [15, 74]. It is important to utilize a slow taper, if 
required, as rapid discontinuation may manifest with acute 
exacerbation of parkinsonism [76].

Monoamine Oxidase B (MAO-B) Inhibitors
MAO-B inhibitors act by increasing the bioavailability 
of central monoamines, including dopamine. They can 
be very effective at improving motor and non-motor 
symptoms in the early stages of PD, which might delay the 
need for levodopa [77]. The ameliorating beneficial effects 
of MAO-B inhibitors on motor symptoms are notably 
greater in akinetic/rigid PD compared to tremor-dominant 
PD [78]. However, rasagiline was selectively studied as a 
monotherapy, or as an adjuvant therapy to levodopa in 
patients with tremor-dominant PD, and found to have a 
significant effect on tremor reduction as early as 10 weeks 
from treatment initiation [79, 80].

Clozapine
Clozapine is an antipsychotic agent that is commonly 
used in the treatment of schizophrenia and drug-induced 
psychosis [81]. The exact mechanism by which it exerts 
its anti-tremor effect is not fully understood but may 
be attributed to its anticholinergic and antiserotonergic 
properties [82]. Resting and postural tremor can be 
reduced in up to 72% of PD patients, and tremor scores 
can be reduced by 64% [83]. In addition to its anti-tremor 
effect, the advantage of its anti-psychotic action might 
be of significance in patients experiencing psychosis [82]. 
One major limitation of clozapine is the risk of developing 
agranulocytosis, which mandates frequent blood 
monitoring [84].

Beta-blockers
Propranolol is a non-selective beta-blocker that has been 
widely used in the treatment of ET. In PD tremor, the use 
of propranolol and other beta-blockers lacks evidence 
to determine efficacy and safety [85]. Propranolol can 
improve the postural component of PD tremor, and it is 
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clinically useful in the context of associated anxiety and 
stress that aggravate tremor [86]. However, the efficacy is 
usually not sustained, and a large proportion of patients 
eventually discontinue the medication because of rapid 
tolerance, loss of initial response and the increased risk of 
orthostatic hypotension [85]. Like anticholinergics, beta-
blockers should be tapered gradually to prevent withdrawal 
symptoms [87].

Other agents
Zuranolone is a novel gamma-aminobutyric acid (GABA) 
receptor positive allosteric modulator that improves tremor 
scores by 40% when used as an adjuvant agent with 
dopaminergic therapies [88]. Other therapeutic options 
include clonazepam, budipine, zonisamide, amantadine, 
and mirtazapine, all of which have shown variable degrees 
of nonsustained tremor control [65].

3.3.2 Botulinum toxin injections
Botulinum neurotoxins (BoNT) are proteins derived from 
the bacterium Clostridium botulinum. They act at the 
cholinergic presynaptic nerve terminals by cleaving and 
inactivating SNARE proteins and subsequently inhibiting 
the release of acetylcholine. This, in turn, prevents muscle 
contraction and results in paralysis of injected skeletal 
muscles. In addition, BoNT blocks gamma motoneurons 
and reduces muscle spindle afferent input to the central 
nervous system [89–92]. BoNT type A (BoNT-A) has 
been widely used to treat tremor and other movement 
disorders, and it can be a rescue option for patients who for 

patient who have pharmacologically-refractory tremor and 
considered poor candidates for advanced therapies [90, 
91]. The reported success rate is variable and is influenced 
by factors such as dose, muscles selected, technique, 
and provider experience [92–94]. The Yale Technique and 
Sensor-Based Kinematics have been proposed as safe and 
supportive methods that can enhance efficacy [95]. The 
Sensor-Based Kinematics method uses motion sensors to 
analyze angular tremor amplitude, which provides better 
individualized muscle selection [94, 95]. The Yale Technique 
uses EMG guidance of determined muscles to further 
enhance accurate muscle selection and success rate [95].

Forearm flexors and extensors are traditionally targeted 
muscles. A fixed, initially low, BoNT dose is suggested to 
avoid dose-dependent weakness [91, 92, 95]. Forearm 
flexors are prioritized over extensors because of the relatively 
higher rate of extensor finger weakness [96, 97]. The long-
term effect of BoNT injections was demonstrated with a 
mean follow-up duration of 29 months, with over 80% of 
patients reporting moderate or marked improvement at 
their first and last visits [92, 98]. The mean UPDRS scores 
for resting and kinetic tremor were significantly reduced 
when compared to baseline when BoNT injections were 
coupled with kinematic guidance [98].

3.3.3 Advanced therapies (Table 2)
Deep Brain Stimulation (DBS)
In the last three decades, deep brain stimulation (DBS) has 
risen as the most common advanced surgical modality in 
PD [99]. This is due to its long-term efficacy in improving 

MODALITY SELECTION CRITERIA TARGETS ADVERSE EVENTS

A. DBS - Diagnosis of IPD with ≥ five-years disease duration
- Age ≤ 75*
- Medication-refractory symptoms or fluctuations
- Dopaminergic responsiveness confirmed by LCT**
- Intact cognitive status
- No intracranial pathology on neuroimaging

STN, GPi, Vim, PSA Cognitive decline, cerebral hemorrhage, 
infection, hardware failure, delayed 
lead migration, and death 

B. Lesioning therapies

MRgFUS - Diagnosis of IPD
- Medication-refractory symptoms or fluctuations
- Intact cognitive status
- No intracranial pathology on neuroimaging
- No history of DBS or prior stereotactic ablation
- No bleeding liability
- Skull density ratio ≥0.45

Thalamotomy, 
Subthalamotomy, 
Pallidotomy 

Headache, dizziness and vertigo, 
transient ataxia, paresthesia, and 
weakness

GK Thalamotomy, 
Subthalamotomy

Transient paresthesia and hemiparesis, 
dysphagia, and death 

RF Thalamotomy Transient paresthesia, hemiparesis, 
dysarthria, ataxia, confusion, cognitive 
decline, and intracerebral hemorrhage

Table 2 Advanced surgical modalities for Parkinson’s Disease tremor.

IPD: Idiopathic Parkinson’s Disease; * No consensus agreement; ** May not be reliable indicator in the case of tremor-dominant PD.
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refractory and poorly-controlled motor symptoms and 
fluctuations [100–104]. Candidacy for DBS is based on a 
detailed evaluation, which incorporates cognitive status, 
responsiveness to levodopa in the LCT, and the nature of 
associated symptoms and motor fluctuations [105, 106]. A 
cutoff of 30% improvement in the UPDRS III during the LCT 
was established as a threshold for levodopa and potential 
DBS responsiveness. However, patients with dopamine-
resistant tremor might show a poor response in the LCT [59, 
107–109]. Hence, the LCT may not be a reliable indicator 
for candidacy and repressiveness to DBS in the case of 
refractory PD tremor [110, 111]. DBS electrodes replace 
and mimic the therapeutic effect produced by lesioning 
therapies but without inducing significant brain lesions, 
which provides the advantage of reversibility. Furthermore, 
DBS can be applied to both cerebral hemispheres, an option 
currently limited to one side only in lesioning therapies 
[119, 120].

The therapeutic mechanism of DBS is not well 
understood [112–114]. Electrode placements in structures 
with neural oscillatory activity (i.e., the basal ganglia 
and cerebello-thalamo-cortical loops) could disrupt this 
oscillatory activity and, hence, alter tremor generation 
and/or amplitude [115, 116]. Several imaging studies 
have investigated patterns of metabolic changes before 
and after DBS electrode placement. Patients with tremor-
dominant PD display a distinct pattern, a tremor-related 
metabolic pattern (PDTP), which correlates with tremor 
severity and is characterized by an increased activity in the 
cerebellar dentate nucleus and primary motor cortex. In 
non-tremor dominant PD, a pattern with hypermetabolism 
in the pons, globus pallidus, and the thalamus can be seen 
(PD-related metabolic pattern: PDRP), and it correlates with 
the severity of other motor symptoms [115]. Interestingly, 
Vim DBS can only reduce PDTP activity, while STN and GPi 
DBS can reduce both PDTP and PDRP activities [117, 118]. 
These findings explain why such targets would improve all 
motor symptoms, including tremor, while Vim selectively 
improves tremor only.

DBS target selection for patients with tremor-dominant 
PD is individualized. Placement of electrodes in the STN, 
Vim, GPi, and the posterior subthalamic area (PSA) are 
reportedly effective in alleviating PD tremor [121–124]. 
However, STN and GPi have an apparent benefit compared 
to other targets as they improve all motor symptoms 
[121]. Both targets have comparable efficacy and can 
reduce resting and kinetic tremor components [124]. 
Interestingly, STN-DBS can achieve better outcomes for 
arm tremor compared to chin and lower extremity tremor 
[125]. STN-DBS may be superior to GPi-DBS for controlling 
dopamine-resistant tremor [126]. Compared to other 

targets, Vim-DBS is associated with better improvement 
in UPDRS tremor scores in the off state, which would 
allow for greater medication reduction [121]. This factor 
would arguably favor Vim over other targets for PD tremor. 
However, the evolution of other PD symptoms and motor 
fluctuations can pose a challenge, as Vim is not the 
preferred target [127, 128]. Therefore, selecting Vim should 
be reserved for patients with a long-standing, mostly 
unilaterally-dominant tremor as the main symptom in 
the absence of other motor features or fluctuations. Dual 
implantation of the GPi and Vim can be applied for patients 
with dopamine-resistant tremor, who have other motor 
symptoms or fluctuations that would benefit from GPi 
stimulation [129].

The long-term efficacy of DBS is well-documented 
for treating motor complications of PD and maintaining 
improvement in quality of life (QoL) [130–132]. Both 
STN and GPi targets can provide a relatively comparable, 
persistent benefit in the first few years after electrode 
implantation [133–135]. For GPi-DBS, fewer patients 
exhibited cognitive decline, gait disorders, or speech 
difficulties compared to STN-targeting DBS [134]. However, 
additional, long-term benefits in core motor symptoms are 
more consistent with STN-targeting DBS [132]. Bilateral 
Vim-DBS is potentially associated with dysarthria, loss of 
balance, and incoordination over the long term [136, 137].

Lesioning Therapies (LTs)
LTs can successfully be utilized for the treatment of PD motor 
symptoms and are considered one of the most effective 
therapies for the management of refractory tremor in PD 
[138]. MRI-guided focused ultrasound (MRgFUS), Gamma 
Knife (GK), and radiofrequency (RF) thermoablation are the 
main and available LT modalities in practice [138–141].

Although LTs originally fell out of favor with the 
advancement of DBS, there is a growing interest in LTs in 
recent years with the introduction of incisionless therapies 
like MRgFUS or GK [139]. Both therapies have the advantage 
of not requiring general anesthesia, and compared to DBS, 
have fewer side effects related to surgical interventions 
[140]. In addition, LTs might offer alternative surgical 
options to DBS for underserved and remote areas where 
resources and distance can limit ongoing treatment 
and monitoring. Both MRgFUS and RF thermoablation 
have the advantage of providing a real-time assessment 
of the benefit during the procedure before reaching a 
final, clinically-based lesioning [139]. Compared to the 
immediate results of other modalities, the benefits and 
adverse effects related to GK lesioning are expected to 
develop several months after the procedure [141]. Unlike 
DBS, lesioning therapies produce permanent lesioning, 
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which is considered a major drawback. Furthermore, 
evidence of the long-term efficacy of DBS in PD is 
immense compared to the relatively small and short-term 
investigational data addressing the efficacy and safety of 
LTs [100, 130, 131, 142].

MRI-guided focused ultrasound (MRgFUS)
MRgFUS has recently emerged as a very promising 
therapeutic option for refractory tremor in PD. Safety 
and efficacy were first demonstrated in the treatment 
of ET, leading to its Food and Drug Administration 
(FDA) approval as a rescue management modality for 
medication-refractory tremor [126]. While available data is 
encouraging and has confirmed an overall improvement in 
tremor scores and QoL in PD, there is a lack of sufficient/
high quality evidence to suggest the regular use of MRgFUS 
in PD with refractory tremor [142].

MRgFUS lesioning is conducted through minimally 
invasive thermal ablation with phased-array transducers, 
which enable precise, incisionless transcranial delivery 
of acoustic energy [123]. Like ET, the most common 
examined anatomic target in PD tremor is the Vim nucleus 
of the thalamus [139, 143, 144]. In one RCT, STN was the 
main target, while other small case series have studied 
the pallido-thalamic tract (PTT) and GPi [145]. MRgFUS 
thalamotomy can achieve an estimated improvement in 
the clinical rating scale for tremor sub-scores by a median 
of seven points, as well as in on-medication median UPDRS 
motor scores by eight points when compared to pre-
intervention [146, 147]. As with thalamotomy, MRgFUS 
subthalamotomy was also found to achieve improvement 
in the UPDRS-III (including tremor scores), QoL, and ADLs 
as measured in the UPDRS-II [146]. MRgFUS of the PTT has 
been found to be as safe and effective, and up to 88% of 
mean tremor reduction has been achieved with this target 
[148].

Currently, the modality is applied mostly for unilateral 
lesioning to control the most affected side [139]. Staged 
bilateral lesioning remains controversial, with a growing 
number of reports, only in ET, showing good overall efficacy 
and a similar safety profile to unilateral lesioning [149].

Most side effects are transient, usually subsiding by 
three to 12 months after the procedure [150]. The most 
common procedural side effects are headache, dizziness, 
and vertigo. Ablation-related side effects include transient 
ataxia, paresthesias, and weakness [143–150]. Additionally, 
MRgFUS subthalamotomy can result in dyskinesia in the 
off-medication state in up to 22% of patients, which can 
persistent up to three months [145]. Compared to DBS, 
cognitive decline appears to be minimal and tends to be 
limited to verbal fluency and inhibition [144].

GK Thalamotomy
GK radiosurgery is an incisionless lesioning procedure in 
which high-dose radiation is applied to pre-specified brain 
targets [139, 151, 152]. The modality is dependent on pre-
procedural, imaging-based planning [154]. The absence 
of real-time targeting may result in an unpredictable 
effect. Most reports on GK radiosurgery have a small 
sample size, and no randomized trials have addressed its 
efficacy compared to other modalities [153]. GK lesioning 
is reported to achieve improvements of UPDRS tremor 
items by 71% and 60% at 12 and 52 months, respectively 
[154]. Patients report 88% complete or near-complete 
alleviation of PD tremor [151, 153]. GK thalamotomy could 
be a preferred option for patients with advanced age or 
associated comorbidities who are not candidates for DBS. 
Adverse events are generally rare and usually transient 
[140]. However, serious events like thalamic hemorrhage 
have been reported [155].

RF Thermoablation
Unlike MRgFUS and GK treatments, RF ablation is 
performed through a frontal burr hole of the skull and 
requires brain penetration with a special electrode [156, 
157]. The electrode can be heated to sub-ablative thermal 
temperatures to produce a “test lesion.” Subsequently, a 
higher temperature is applied to produce a permanent 
lesion at the desired target [139]. RF ablation was the 
modality of choice for tremor in PD before the introduction 
of DBS in the late 1980s. Cost is relatively lower than other 
modalities [139]. Lesioning through RF thermoablation 
in PD is usually implemented through targeting the GPi, 
the thalamus, or the STN. The modality seems to achieve 
the highest tremor control in PD when targeting the 
thalamus, with improvements reaching up to 74%. In 
most cases, the use is limited to one side, as bilateral 
RF thalamotomy is typically associated with a high rate 
of adverse effects [156, 157]. Complications are usually 
transient and result from local edema produced after 
ablation, which ultimately recover as the edema resolves 
[139]. One of the main concerns regarding the procedure 
is the potential risk of intracerebral hemorrhage and 
subsequent neurological deficits. These could occur at the 
entry point, in the electrode path, or at the final ablation 
site [157].

Levodopa/Carbidopa Intestinal Gel (LCIG)
LCIG is administered continuously by a portable pump via a 
percutaneous endoscopic gastrojejunostomy (PEG-J) tube 
[158]. LCIG provides a more stable plasma concentration 
in patients with poorly controlled motor symptoms 
or fluctuations in advanced PD [159]. The modality is 
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considered an optimal option for those excluded from 
surgical interventions who require sustained dopaminergic 
therapy for refractory motor symptoms. The improvement 
is reflected in the UPDRS part III, including tremor sub-
scores. A complete resolution in resting tremor after 12 
months of LCIG treatment was reported in up to 78% of 
patients who had baseline resting tremor pre-treatment 
[160]. No current evidence to support the role of LCIG in 
patients with tremor-dominant PD.

3.3.4 Physical therapy and rehabilitation
Physical therapy and intense rehabilitation can improve 
various motor and non-motor aspects of PD, in addition 
to their potential long-term effect in slowing disease 
progression [166–168]. Specialized rehabilitation 
techniques, like aerobic and resistance exercises, have 
demonstrated improvement in global motor functions. 
Among resistance exercises, eccentric-based exercises 
have specifically shown a favorable effect in improving 
tremor [168]. The efficacy is noted on tremor amplitude 
at rest, with no clear benefit on postural or kinetic tremor. 
Resting tremor amplitude decreased by 56% in participants 
who went through eccentric-based exercise sessions [167, 
168]. In addition, hand movement and cycling exercises 
are additional and effective methods for reducing tremor 
amplitude and frequency [168].

Portable assistive devices have been found to enhance 
Activities of Daily Living (ADL) and QoL [169]. Liftware 
Steady and Gyenno Spoon can significantly improve 
handling utensils. Other limb weights and handheld devices 
might be optimal for handwriting.

3.3.5 Non-invasive cortical and peripheral electrical 
stimulation
Non-invasive stimulation techniques are emerging new 
modalities for tremor reduction. It is regarded as com-
plementary methods for treating tremor in PD via tailored 
central or peripheral stimulation [161]. In practise, neither 
modality is frequently used or readily available.

The therapeutic effect of cortical stimulation has 
been observed through the application of high-frequency 
repetitive transcranial magnetic stimulation (rTMS) and 
anodal transcranial direct current stimulation (tDCS) [161]. 
Both techniques act by identifying the timing of cortical 
oscillations, followed by stimulating the motor cortex 
to induce phase cancellation of the rest-tremor rhythm 
[162]. Slow alternating periods of phase cancellation, with 
stimulation delivered at these specified phase alignments, 
demonstrate controlled suppression of the ongoing tremor. 
Improvement of the UPDRS-III baseline motor scores, 
along with tremor reduction, has been achieved in 50% of 
patients [163].

Peripheral electrical stimulation can suppress 
tremor through three modalities: functional electrical 
stimulation (FES), sensory electrical stimulation (SES), and 
transcutaneous electrical nerve stimulation (TENS) [164]. 
The FES method performs the best in tremor attenuation. 
FES induces muscle contraction to modulate its intrinsic 
property for suppressing tremor [165]. Surface EMG can 
be used to assess tremor reduction, and further adjust 
FES if required, without affecting voluntary movements 
[166]. Outcomes vary widely from 7% to 90% reductions in 
tremor amplitude [164].

4 CONCLUSION

Tremor is one of the most common symptoms associated 
with PD. The complexity of PD tremor and the wide and 
unpredictable response to therapeutic modalities remain 
challenging. Poor response to dopaminergic agents 
is common, reflecting the role of multiple underlying 
pathophysiologic processes. Evidence for advanced 
modalities is heterogeneous, with no sufficient comparative 
studies to address their efficacy in this specific group of 
PD patients. Despite promising results, long term data of 
newer advanced modalities, like MRgFUS, shall be sought 
to ensure safety and sustained efficacy.
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