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ABSTRACT
Background: Parkinson’s disease (PD) and Essential tremor (ET) are the two most common 
tremor diseases with recognized genetic pathogenesis. The overlapping clinical features 
suggest they may share genetic predispositions. Our previous study systematically 
investigated the association between rare coding variants in ET-associated genes and early-
onset PD (EOPD), and found the suggestive association between teneurin transmembrane 
protein 4 (TENM4) and EOPD. In the current research, we explored the potential genetic 
interplay between ET-associated genetic loci/genes and sporadic late-onset PD (LOPD).

Methods: We performed whole-genome sequencing in the 1962 sporadic LOPD cases 
and 1279 controls from mainland China. We first used logistic regression analysis to test 
the top 16 SNPs identified by the ET genome-wide association study for the association 
between ET and LOPD. Then we applied the optimized sequence kernel association testing 
to explore the rare variant burden of 33 ET-associated genes in this cohort.

Results: We did not observe a significant association between the included SNPs with 
LOPD. We also did not discover a significant burden of rare deleterious variants of ET-
associated genes in association with LOPD risk.

Conclusion: Our results do not support the role of ET-associated genetic loci and variants 
in LOPD.

Highlights

1. 1962 cases and 1279 controls were recruited to study the potential genetic interplay 
between ET-associated genetic loci/variants and sporadic LOPD.

2. No significant association between the ET-associated SNPs and LOPD were observed.
3. No significant burden of rare deleterious variants of ET-associated gene in LOPD risk 

were found.
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INTRODUCTION

PD is a complex movement disorder in which genetics plays 
a remarkable role in its etiology [1]. With the emergence 
and popularity of sequencing technology, the genetic study 
of PD has achieved more rapid development and progress 
than ever before. Although our understanding of the genetic 
architecture of PD has expanded considerably, much remains 
to be done. Generally, genetic risk variants resulting in PD 
are often divided into two categories: rare variants with 
high effect sizes are more found in familial PD, the common 
variants with more minor effects are usually associated with 
apparently sporadic PD [2, 3]. Additionally, genetic factors are 
important in both early-onset (EOPD, age at onset (AAO) ≦ 50 
years) and late-onset (LOPD, AAO > 50 years) PD, but specific 
genes and mode of inheritance may differ between the two 
groups [4].

There has been a longstanding controversy surrounding 
the possible link between PD and another movement 
disorder, ET [5–7]. The two clinical entities have countless 
ties regarding their clinical, epidemiologic, imaging, 
pathologic, and genetic features [8–12]. Evidence from 
genetic research suggested that LINGO1, LINGO2, HS1BP3, 
DNAJC13, HTRA2, NAACP-Rep1, and CACNA1G were 
overlapping genetic risks between them [13]. A recent 
published genome-wide association study (GWAS) of 
ET revealed significant common variant overlap with PD 
[14]. Our previous study systematically investigated the 
association between rare coding variants in ET-associated 
genes and EOPD, and found the suggestive association 
between teneurin transmembrane protein 4 (TENM4) and 
EOPD, which provided evidence for a genetic link between 
ET and PD [15]. In the current research, we explored the 
potential genetic interplay between ET-associated genetic 
loci/genes and LOPD from mainland China.

MATERIALS AND METHODS

PATIENTS AND CONTROLS
1962 sporadic late-onset (AAO > 50 years) PD patients 
(mean AAO, 61.88 ± 6.93 years; mean age, 66.76 ± 7.08 
years; 50.15% male) and 1279 race-matched healthy 
controls (mean age, 62.32 ± 7.11 years; 47.93% male) were 
included in this case-control study (Supplementary Table 
1). Patients were recruited from the outpatient neurology 
clinics of Xiangya Hospital of Central South University from 
October 2006 to January 2019 and other cooperating 
centers of Parkinson’s Disease & Movement Disorders 
Multicenter Database and Collaborative Network in China 
(PD-MDCNC, http://pd-mdcnc.com/). All the patients were 
subjected to the standard clinical evaluation by at least two 
neurologists and diagnosed with PD according to the criteria 

from UK PD Brain Bank [16] or Movement Disorders Society 
(MDS) [17]. Patients with a positive family history of PD and 
other neurological diseases were excluded. The clinical 
subtypes of PD were classified as tremor-dominant (TD), 
postural instability and gait difficulty-dominant (PIGD), and 
intermediate types based on the ratio of the mean tremor 
score of the unified Parkinson's disease rating scale (UPDRS) 
to the mean PIGD score [18], of which 453 cases (23.1%) 
were classified as tremor-dominant. Controls collected from 
the community did not have any neurological or psychiatric 
system diseases. Informed consent was obtained from all 
subjects, as approved by the Ethical Committee of Xiangya 
Hospital of the Central South University in China (equivalent 
to an Institutional Review Board). After obtaining informed 
consent, blood samples were obtained from the subjects 
described above. Genomic DNA was extracted from 
peripheral blood using standard extraction methods.

WHOLE-GENOME SEQUENCING (WGS) AND 
BIOINFORMATICS PIPELINE
According to the manufacturer’s instructions, genomic 
DNA samples of subjects were used for library construction 
and followed by sequencing with Illumina NovaSeq 
platform (Illumina, San Diego, CA). Methods for the further 
bioinformatic pipeline were described previously [19, 20]. 
Raw data obtained became clean data through quality 
control by FastQC (version 0.11.2, Andrews.2010) and 
was then aligned to the human genome 19 reference 
by Burrows-Wheeler Alignment Maximal Exact Matches 
algorithm (BWA-MEM) (version 0.7.12-r1044, Li.2010). 
SNVs and InDels were called from aligned BAM files using 
the Genome Analysis Toolkit-GATK v2.3–9. Variants were 
further annotated with ANNOVAR [21] and VarCards 
[22] based on RefSeq (UCSC hg19). Exclusion criteria for 
individuals and variants was conducted through PLINK1.90. 
Individuals were removed for gender discrepancy, deviating 
heterozygosity/genotype calls (> 3 standard deviations 
[SDs]) and cryptic relatedness measured using identity-
by-descent (IBD > 0.15). Genotypes with a Phred-scaled 
genotype quality score (GQ) below 15 (for SNVs) or 30 
(for InDels), allele depth below two, or reads depth below 
five were removed in our analysis. Variants were filtered 
for missing genotype rate (< 0.1) and Hardy-Weinberg 
equilibrium in controls (P > 0.0001) for the targeted 
regions. Principal component (PC) analysis on population 
stratification was performed in independent high-quality 
variants, and main PC variables for each sample were 
obtained for subsequent association analysis.

RARE VARIANT SELECTION FROM TARGETED 
GENE
A set of ET-associated genes/loci included in our analysis 
(Supplementary Table 2). [15]. The East Asian population 

http://pd-mdcnc.com/
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evaluated the minor allele frequencies (MAF) from the 
public database (ExAC and gnomAD database) [23] to 
determine rare variants (MAF < 1%). The exon-coding rare 
variants extracted from the targeted gene were included 
in our analysis. Our study defined damaging missense 
variants based on variant prediction by ReVe (> 0.7) [24]. 
Loss-of-function (LoF) variants were annotated as stop-
gain/loss, frameshift, or splicing variants.

COMMON VARIANTS SELECTION FROM 
IDENTIFIED ET-GWAS STUDY
ET genome-wide association study (ET-GWAS) has identified 
many putative ET loci, however, most of them had conflicting 
replication results. Five ET-GWAS papers were published and 
a total of 16 SNPs were found most significantly associated 
with ET until now (Table 1) [14, 25–28]. All of the 16 SNPs were 
included in our analysis. Specifically, four of the 16 variants 
were newly identified loci from a large European case-control 
study [14]. Variants were excluded for departure from Hardy-
Weinberg equilibrium among controls (P < 0.0001).

STATISTICAL ANALYSES
The aggregate burden of rare deleterious variants of 
ET-associated genes between LOPD and controls was 
calculated using the optimized sequence kernel association 

test (SKAT-O) [29]. Covariates including the gender, age, 
and first five principal components (PCs) of ancestry were 
used to adjust the analyses. We first performed SKAT-O 
analysis on the variants of complete ET gene sets and then 
on the variants for each gene. Individual logistic regression 
analyses (PLINK v1.90) were run for each of the selected ET-
GWAS related SNPs, with PD status modeled as a function 
of SNP allele count (0,1, or 2), gender, age, and first five PCs 
of ancestry, and their corresponding odds ratios (OR) and 
95% confidence intervals (CI) were calculated. Significant P 
values (< 0.05) generated were further adjusted following 
the Bonferroni procedure. The corresponding Bonferroni-
corrected significance threshold of P was 0.0015 for gene-
based burden tests and 0.0038 for single variant tests. The 
data were presented as mean ± standard deviation for 
continuous variables and counts for categorical variables.

To estimate statistical power of the burden of 
rare deleterious variants of ET-associated genes, we 
performed SKAT simulations for the included gene set or 
a single gene in our cohort [30]. Related parameters were 
set as follows: sample size (1962 vs. 1279), PD prevalence 
(0.0043), sum of gene-set coding region lengths (146kb), 
average gene-coding length (4.4kb), MAF cut-off for causal 
variants (0.03), and penetrance (100%). To estimate the 
statistical power for selected ET-GWAS-related SNPs, we 

Table 1 Summary of SNPs associated with ET selected in our study.

/: no related data.

SNP GENE/LOCUS POSITION (hg19) MINOR ALLELE MAJOR ALLELE

rs1127215 PTGFRN 1:117532790 T C

rs703174 / 3:157493146 T C

rs10937625 STK32B 4:5128159 C T

rs17590046 PPARGC1A 4:24362541 C T

rs28562175 LOC105379011 5:67827456 T C

rs10812774 LINGO2 9:28294231 C T

rs1412229 LINGO2 9:28478305 T A

rs7033345 LINGO2 9:28717573 G T

rs12764057 CTNNA3 10:68845715 G T

rs10822974 CTNNA3 10:68850419 G A

rs7903491 CTNNA3 10:68917164 A G

rs3794087 SLC1A2 11:35329615 T G

rs9652490 LINGO1 15:77963887 G A

rs11856808 LINGO1 15:77972770 T C

rs1945016 MIR924HG 18:37207175 G T

rs9980363 LINC00323 21:42520134 C T
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used GAS power calculator to assess the statistical power 
of our cohort [31]. Related parameters were set for each 
SNP: sample size (1962 vs. 1279), PD prevalence (0.0043), 
significance level (0.05), disease allele frequency, and 
genotype relative risk.

RESULTS

1962 sporadic LOPD patients and 1279 race-matched 
healthy controls were included in our case-control study 
and sequenced using WGS technology. The average 
sequencing depth of 12-fold and 95.5% of genome regions 
of at least a 5-fold coverage met our analysis. A standard 
bioinformatic pipeline was performed for detecting 
variants in the WGS sequencing data. The results of the 
SKAT simulations showed that our sample size could 
guarantee a statistical power of 100% for the gene set. We 
estimated an average power of nearly 47% to discover an 
association for single loci. Assessment of statistical power 
showed that our sample size could reach reliable power 
(>70%) for most of the selected SNPs (9/13). Four SNPs 
(rs1127215, rs10812774, rs7903491, and rs9980363) were 
insufficiently powered (32.8%~64.1%) mainly because 
of the relatively low value of genotype relative risk. The 
evaluation of statistical power indicated that our cohort 
was suitable for further analysis.

Further analysis for the selected set of ET-associated 
genes/loci, which included 33 genes and loci, identified 
1453 variants in the exons and exon-intron boundaries 
with the minor allele frequencies (MAF) < 1% in our cohort. 
Logistic regression analysis, adjusted for age and sex, was 
used to test for association between genotype and PD. 
Based on our analysis strategy, variants of complete ET 
gene sets and the variants for each gene were analyzed 
by SKAT-O separately. However, there was no association 
between the ET gene set and the LOPD cohort within 
different combined categories (Table 2). In gene-based 

burden analysis of the ET single gene, we also observed no 
significant association between any gene and PD (Table 3).

For SNPs identified in previous ET-GWAS, three variants 
(rs28562175, rs1412229, and rs1945016) were excluded 
for further analysis because of deviated Hardy-Weinberg 
equilibrium in our cohort. Nevertheless, no significant 
association was detected between the remaining 13 SNPs 
and LOPD (Table 4).

Table 2 Analysis of ET associated genes rare variant burden in 
Parkinson’s disease.

MAF = minor allele frequency; LoF = Loss of function; Dmis = 
Damaging missense (ReVe > 0.7); P value was calculated by 
SKAT-O (Sequence Kernel Association Test-Optimal).

CASE 
(n)

CONTROL 
(n)

VARIANTS 
GROUP

(a) MAF < 1% (b) MAF < 3%

N P N P

1962 1279 All 1466 0.476 1494 0.262

LoF 30 0.415 30 0.415

Missense 898 0.317 911 0.295

Dmis 288 0.472 294 0.383

LoF + Dmis 318 0.442 324 0.359

GENES LoF + DMIS LoF Dmis

n P n P n P

DRD3 1 0.467 – – 1 0.467

HS1BP3 5 0.246 – – 5 0.246

FUS 8 1.000 2 0.384 6 1.000

HTRA2 4 0.319 2 0.327 2 0.313

TENM4 56 0.075 1 0.412 55 0.075

SCN4A 36 0.111 – – 36 0.111

SORT1 5 0.659 1 0.477 4 0.614

NOS3 11 0.063 2 0.522 9 0.055

KCNS2 4 0.240 1 0.173 3 0.053

HAPLN4 1 0.184 1 0.184 – –

USP46 1 0.318 – – 1 0.318

SCN11A 14 0.703 3 0.738 11 0.353

CACNA1G 16 0.007 1 0.137 15 0.025

SLIT3 29 0.494 – – 29 0.494

KARS 8 1.000 – – 8 1.000

KIF5A 6 0.217 – – 6 0.217

NTRK1 21 0.575 3 0.153 18 0.624

MTHFR 17 0.183 2 0.545 15 0.177

LINGO1 2 0.458 – – 2 0.458

LINGO2 7 0.655 – – 7 0.655

MAPT 3 0.556 3 0.556 – –

SLC1A2 2 0.519 – – 2 0.519

HMOX1 3 0.603 – – 3 0.603

HMOX2 2 0.168 – – 2 0.168

TREM2 3 0.214 2 0.330 1 0.365

STK32B 7 0.418 2 0.379 5 0.427

PPARGC1A 6 0.275 – – 6 0.275

CTNNA3 25 0.444 4 0.617 21 0.499

ALAD 5 0.042 – – 5 0.042

RIT2 1 0.500 – – 1 0.500

Table 3 Analysis of ET associated genes rare (MAF < 0.01) 
damaging variant burden in cohort WGS.

P value was calculated by SKAT-O (SNP-set (Sequence) Kernel 
Association Test–Optimal.
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DISCUSSION

The etiology of Parkinson’s disease remains unclear, with 
one of the consensuses that both environment and genetics 
contribute to its pathogenesis, especially for the most 
common late-onset sporadic form of PD. Accumulating 
evidence demonstrated genetic factors were involved in 
the pathogenesis of this disorder [32–34]. Some research 
also suggested the possible genetic link between ET and 
PD [26, 35, 36]. However, there was hardly a genomics-
based large-scale study exploring this topic. In our recently 
published paper, we have systematically investigated the 
association between rare coding variants in ET-associated 
genes and EOPD using WES data and found a suggestive 
association between TENM4 and EOPD from mainland China 
[15]. However, EOPD represents only a small proportion of 
all PD cases. In the current research, we performed WGS 
in the 1962 sporadic LOPD cases and 1279 controls from 
mainland China and explored the potential genetic interplay 
between ET-associated genetic loci/variants and LOPD using 
logistic regression analysis and SKAT-O. As a result, we did 
not observe a significant association between the included 
SNPs with LOPD. Also, we did not discover a significant 
burden of rare deleterious variants tested of ET-associated 
gene in association with LOPD risk. Notably, most ET has a 
positive family history which indicates it is a familial disorder. 
A number of causative genes were reported in study of ET 
pedigrees. Function change of coding protein was considered 
to contribute to its pathogenesis [37]. However, significance 
of non-coding variants of these genes was unclear. 
Evaluation of non-coding variants contribution might be 
needed in our future study. Our results do not support the 
role of ET-associated genetic variants in LOPD.

Progress in genetic research has been made as to genetic 
loci and genes that confer susceptibility to ET in the past 
decade [38, 39]. Many putative ET loci have been reported; 
however, most have conflicting replication results. Meta-
analyses revealed only a marginal association for STK32B 
rs10937625 and LINGO1 rs9652490 with ET [38]. Several 
variants have also been examined for their possible 
association with ET in the Chinese population. STK32B 
(rs10937625) and CTNNA3 (rs7903491) were associated 
with ET in China in two studies [40, 41]. Most association 
studies were reported negative results [42–47]. Meantime, 
some studies focusing on the genetic association between 
ET and PD have also emerged. Although evidence 
indicates that ET and PD may share genetic risk factors 
[26, 35, 36], some results did not support the link [48–50]. 
Rare deleterious variants in ET-associated genes were 
seldom found in Mendelian inherited PD. As to the SNPs 
identified in ET-GWAS, similar results were obtained in a 
recent association study [51], which concluded that the 

22 variants identified by the ET-GWAS study were not 
significantly associated with PD in European population.

Conflicting results from the association between ET 
and PD perhaps were related to the fact that currently, we 
have limited knowledge regarding the cause of these two 
disorders. Although a number of genes were reported as 
the potential causative genes in ET, the conflicting results 
and the lack of replication for many candidate genes may 
suggest the listed loci or genes here were not literally the 
ET-associated genetic factor. Although the present study 
does not support a role for genetic variants of ET in LOPD, 
further study is required to understand the potential link 
between PD and ET.

LIMITATIONS
This study has several limitations. First, estimated 
average statistical power for single-gene loci was only 
47%. The rare variant number was mainly responsible for 
the poor power of the discovery of risk alleles at single 
loci. However, our sample size guaranteed a statistical 
power of 100% for the gene set, which may serve as a 
reliable supplement. Second, detailed information about 
tremor symptoms and the proportion of ET-converted PD 
were unavailable in our LOPD cohort, which prevented 
us from evaluating the underlying impact on the results. 
Moreover, some cases may not be PD along with a longer 
length of follow-up despite the fact that only 35 patients 
(~1.8%) who changed the diagnosis in our two-year follow 
up study were excluded from our cohort before initiating 
the analysis. However, we believe that the amount was 
very small and the impact was limited.
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•	 Supplementary Table 1. Summary of loci and genes 
associated with ET selected in our study. OR and 
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