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Abstract 

Drawing on research in mathematics and science education that has 

supported student higher-level thinking in K-12 classrooms, we sought to 

classify the ways of thinking and reasoning supported by robotics coding tasks. 

As part of a larger project, we examined coding tasks implemented in 

elementary school classrooms and analyzed ways of thinking and reasoning 

about coding supported by these tasks. From this analysis, we developed a 

framework for analyzing the cognitive demand of coding tasks that can be used 

to support researchers, curriculum developers, and teachers in supporting 

students’ higher levels of thinking as they learn coding. 
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Introduction 

One of the features of Technology and Engineering Education that makes it 

so desirable within the school curriculum is the way it “promotes 

interdisciplinary connections with other school subjects” (International 

Technology and Engineering Educators Association [ITEEA], 2020, p. 9). In a 

similar manner, research involving faculty from multiple STEM content areas 

can provide insight into learning that can greatly enhance understanding of 

disciplinary content and practices. Thinking about enhancing such 

understanding in the context of coding, we bring together expertise from all four 

STEM education research areas to present a framework developed from a larger 

research project that examined what happens when we introduce coding through 

robotics activities in school settings.   

Robotics is one of many technologies that technology and engineering 

educators have embraced over recent decades. It is part of the first context 

described in the Standards for Technological and Engineering Literacy (ITEEA, 

2020) and has been introduced in classrooms from pre-Kindergarten through 

high school. The Standards for Technological and Engineering Literacy (STEL) 

link robotics with computation and computational thinking, so it is appropriate 

that this study was guided and influenced by partners in mathematics education.  
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In addition to being crucial in technology and engineering education, coding 

can be found more broadly in integrated STEM settings. Coding allows students 

to control the actions of robots to meet the challenges that might be presented 

within a Technology and Engineering Education Collegiate Association 

competition (International Technology and Engineering Educators Association, 

n.d.) or to accomplish goals set out in an Engineering byDesign (ITEEA, 2021) 

unit of instruction. Coding is also an activity that can be found in elementary 

technology and engineering education activities involving robotics. The usual 

form it takes there is block-based coding with tools like Scratch or variants1 of 

that programming environment. Proponents of teaching computer science 

concepts, including coding, in K-12 schooling stress the importance of 

intentionally planned learning and have provided significant resources for 

elementary teacher professional development as well as elementary curriculum 

and instructional materials.  

Coding activities help nurture creativity and problem-solving skills to 

prepare students for future careers (Chevalier et al., 2020; Yadav et al., 2016). 

Computing occupations make up 67% of all projected new jobs in STEM fields 

(U.S. Bureau of Labor Statistics, 2022); early access to coding can help prepare 

students for these kinds of careers. Innovation, consisting of creativity, problem-

solving, higher-order thinking, entrepreneurship, and technological literacy, is 

one of three essential elements in preparing persons for successful work in 

twenty-first century occupations (Rojewski & Hill, 2014); coding and robotics 

activities provide an excellent platform for stimulating learning in this area. 

Programming, synonymous with coding, is mentioned several times in the STEL 

and is clearly a component that technology and engineering education 

professionals address within their instructional programs. 

High-quality instruction can be characterized by high levels of engagement, 

alignment, rigor, and the degree to which the instruction is centered around what 

we, as educators, want students to know and be able to do (Bransford et al., 

2002; Early et al., 2014; Weiss & Pasley, 2004). Relative to instruction 

involving robotics and coding, students should have opportunities to grapple 

with complex robotics coding activities in ways that encourage student 

engagement in a rigorous way that is aligned to academic standards. Building on 

work examining mental processes in technology education learning activities in 

the 1990’s (Hill, 1997), Hill (2006) identified some key elements that would 

characterize the move to identify with engineering and engineering design as a 

focus for technology education. Analysis and optimization were being embraced 

at that time as technology educators moved away from trial-and-error 

approaches for hands-on laboratory activities. In the same way that 

incorporating engineering design brought new rigor to the field, giving attention 

to the cognitive demand, or intensity of intellectual work required, in coding 

                                                           
1 Scratch (https://scratch.mit.edu), Ozblockly (https://ozobot.com/create/ozoblockly/), 

Rogic (https://eng.roborobo.com.kr/main) 
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activities elevates the potential for robotics activities to generate significant 

learning opportunities. 

It is important for teachers to be aware that experienced programmers likely 

use previous experiences to outline the general structure of a coding task while 

novice programmers tend to attack coding tasks without an outline or plan 

(Robins et al., 2003). Novice programmers will write an opening first line of the 

code, proceed to write more lines of code until a coding structure appears, and 

then test the code to see if the structure works. If a programmer is using 

educational robots, the ability to see immediately if the code works can be both 

positive and negative. If the code fails, the experienced programmer tends to 

examine chunks of coding lines to find the cause of the failure; however, the 

prompt feedback provided by the robot leads novice programmers to engage in 

unstructured tinkering strategies (e.g., trial and error) as they attempt to fix the 

code line by line. This trial-and-error approach is not optimal if the goal is to 

predict outcomes before moving to physical artifacts, just as engineers predict 

outcomes through mathematical and scientific modeling (Chevalier et al., 2020; 

Merisio et al., 2021). Although some research studies on the impact of tinkering, 

a form of trial and error, on student learning report mixed findings (Bevan, 

2017; Poce et al., 2019; Vossoughi & Bevan, 2014; Vossoughi et al., 2013), 

there are studies that have found structured tinkering to have a positive impact 

on learning, when teacher support keeps the student from becoming frustrated or 

getting the feeling of being unable to complete the tinkering task (Bevan et al., 

2015; Pagano et al., 2020; Simpson et al., 2020). To remain consistent with the 

principles of engineering design, coding activities should be designed around 

conceptual learning and not characterized by unsystematic trial and error or 

memorization of how to build a coding structure. Designing such coding 

activities is a nontrivial endeavor. Educators in other disciplines (e.g., 

mathematics education and science education) have developed cognitive 

demand frameworks to attend to the kinds of thinking students use as they work 

with disciplinary tasks; this study describes such a framework for examining and 

developing coding activities associated with robotics. 

As early as the 1970’s, Halfin (1973) identified the mental processes used 

by technologists in their work. Wicklein (1993) extended this work for the field 

of technology education, and Hill (1997) provided a tool and methodology for 

determining what mental processes were being used by participants in 

technology education learning activities. Examining these mental processes was 

not the same as the work mathematics educators were doing with cognitive 

demand, and yet it was giving attention to what was happening in the minds of 

learners during instructional activities. Giving attention to what is happening 

during learning and how learners are engaging with disciplinary concepts and 

processes is important. Just as metacognition is a process by which we can think 

about our own thinking, examining mental processes and cognitive demand can 

allow teachers to think about their teaching in ways that guide its impact and 
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effectiveness. Teachers who examine what is happening in the minds of learners 

during classroom activities are guided by a much more effective schema than 

those who simply follow a curriculum guide or ask students to work a set of 

problems from a textbook or worksheet. 

Instruction in STEM content areas has often relied on memorization of facts 

and procedures to solve problems or to conduct experiments (Chin et al., 2000; 

Grove & Bretz, 2012; Hartman & Nelson, 2021). Unless the learning activities 

provide students with opportunities to engage in reasoning associated with 

predicting outcomes, the learning activities can be superficial and may not 

promote long-term retention (Chin et al., 2000; DeDecker et al., 2022). 

Considering the cognitive demand of classroom tasks redirects attention to the 

opportunities available for students to learn concepts rather than memorizing 

procedures. 

Related Literature 

Tasks and Cognitive Demand 

Learning activities, or tasks, structure student thinking around a particular 

idea within a lesson. Doyle and colleagues began using classroom tasks as a unit 

of analysis in the 1980s in order to make sense of how students’ thinking is 

structured by classroom events (Doyle, 1988; Doyle & Carter, 1984; Doyle & 

Sanford, 1985). In the 1990s, mathematics education researchers developed the 

task analysis guide (Smith & Stein, 1998), using classroom tasks as a unit of 

analysis, and then science education researchers adapted the task-based 

framework in the 2010s (Tekkumru-Kisa et al., 2015). Our research team, 

comprised of experts in mathematics education, science education, engineering, 

and technology and engineering education, is extending this work to coding 

tasks. We share the general definition of task presented by Tekkumru-Kisa et al. 

(2020): “a segment of a classroom activity devoted to the development and 

assessment of a disciplinary idea and/or practice” (p. 607). 

Drawing from the work on cognitive demand in mathematics education 

(e.g., Stein et al., 1996) and science education (e.g., Tekkumru-Kisa et al., 

2015), we define cognitive demand as the intensity of the intellectual work 

required to complete a disciplinary task. Higher cognitive demand tasks require 

greater amounts of critical thinking and problem-solving, and lower cognitive 

demand tasks are often more straightforward and require less mental effort. The 

level of cognitive demand is an important factor in determining the effectiveness 

and efficiency of learning, as well as the development of higher-order thinking 

skills. Cognitive demand is somewhat related to but is distinct from the concept 

of cognitive load, which has been used within the fields of psychology (see e.g., 

Plass et al., 2010; Sweller, 1988, 2011) and engineering education (see e.g., 

Peters, 2015). Cognitive load refers to the amount of mental effort and working 

memory required by the student to perform the task (Sweller et al., 1998). 

Cognitive demand shifts the unit of analysis from the individual student to the 
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task, which can be studied at several phases of a lesson rather than only during 

task implementation.  

This focus on tasks as the unit of analysis is useful because it allows for the 

study of a wide variety of influences on the cognitive demand of the task 

throughout all the phases of the lesson. In particular, it can account for the 

decisions of the teacher before and during the implementation of the task, which 

may raise, maintain, or lower the cognitive demand. It also provides a 

mechanism for reflection after implementation.  

 

Cognitive Demand in Mathematics and Science Education 

Mathematics education researchers began to examine cognitive demand of 

mathematics tasks during the 1990s (Stein et al., 1996; Stein & Lane, 1996), and 

Smith and Stein (1998) developed the Task Analysis Guide (TAG), a framework 

for analyzing the cognitive demand of mathematics tasks. Their framework 

described four levels of cognitive demand of tasks: memorization, procedures 

without connections, procedures with connections, and doing mathematics. The 

authors identified memorization tasks and procedures without connections tasks 

as lower cognitive demand. Tasks that fall within these categories often require 

only the use of memorized facts or procedures without connections to 

mathematical concepts. Tasks that were categorized as either procedures with 

connections or doing mathematics were identified as higher cognitive demand. 

These tasks require attention to mathematical concepts, justifications, multiple 

representations, and sometimes considerable cognitive effort and self-

monitoring. 

This framework has been useful for analyzing tasks throughout the 

instructional process, from the curricular resources that the teachers choose to 

how the teacher sets up and implements the tasks with students (Arbaugh & 

Brown, 2005; Boston & Smith, 2009; Henningsen & Stein, 1997; Stein et al., 

1996; Stein & Kaufman, 2010). Even when the curricular material provides 

high-level resources, teachers may lower the cognitive demand during the 

implementation of the lesson by taking over student thinking (Stein et al., 1996) 

or by focusing on the accuracy of the procedures rather than on student thinking 

and reasoning (Henningsen & Stein, 1997). Much work has been done to help 

teachers select high cognitive demand tasks and support teachers to maintain the 

cognitive demand during implementation (Arbaugh & Brown, 2005; Boston, 

2013; Boston & Smith, 2009; Estrella et al., 2020). Student outcomes based on 

measures of higher levels of thinking and reasoning have shown greater success 

when the cognitive demand of the task is maintained throughout the lesson 

(Boaler & Staples, 2008; Boston & Smith, 2009; Stein & Lane, 1996; Tarr et al., 

2008). Several researchers (e.g., Cai et al., 2011; Grouws et al., 2013; 

Schoenfeld, 2002; Sztajn et al., 2012) have investigated the effects of 

mathematics curricula intentionally designed with higher-level tasks and found 

an increase in student achievement, reasoning, and problem-solving. 
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Tekkumru-Kisa et al. (2015) adapted the mathematics education framework 

to analyze the cognitive demand of science tasks. Their framework was two-

dimensional in that it analyzed (a) the integration of scientific practices and 

content and (b) the cognitive demand of science tasks. Tekkumru-Kisa et al.’s 

(2015) framework described the following levels of cognitive demand: 

memorization, tasks involving scripts, tasks involving guidance for 

understanding, and doing science. Memorization tasks and tasks involving 

scripts are considered low cognitive demand. These kinds of tasks focus on the 

recollection of facts about science content separately from the science practices 

or on a given step-by-step, recipe-like process. Tasks involving guidance for 

understanding and doing science tasks are considered high cognitive demand. 

Tasks involving guidance require students to reason with scientific practices or 

content with guidance from the task or teacher, whereas doing science tasks 

require engagement in science practices to make sense of the content. Consistent 

with work in mathematics education, task analysis during lesson implementation 

in science classrooms has shown that cognitive demand often decreases during 

implementation (Kang et al., 2016; Tekkumru-Kisa et al., 2019). Because higher 

cognitive demand tasks often have some level of ambiguity or uncertainty in the 

solution or solution process, students unused to these types of problems may 

become uncomfortable, and teachers may find it difficult to support students, 

often removing some of the complexity and thereby decreasing the cognitive 

demand (Henningsen & Stein, 1997; Kang et al., 2016; Tekkumru-Kisa et al., 

2019).The work in science education has extended to tracking changes in 

student thinking throughout the different phases of a task and identifying 

instructional factors that support maintaining the cognitive demand of tasks 

(Tekkumru-Kisa et al., 2019; Tekkumru-Kisa et al., 2018). 

Research on the cognitive demand of classroom tasks has been beneficial in 

mathematics and science education. The goal of this paper is to extend the 

frameworks from these disciplines to offer a new framework for analyzing the 

cognitive demand of coding tasks. 

 

Method 

Researcher Background 

This author team consists of individuals from a variety of STEM disciplines 

who are working together to support and investigate the integration of learning 

coding and robotics in elementary classrooms. Authors 1, 2, 3, and 4 are 

mathematics education researchers who worked on the larger project using 

methods and existing frameworks from mathematics education to investigate 

classroom discourse and cognitive demand of mathematical tasks. Author 5 is an 

engineering educator and researcher who seeks to support coding from a young 

age in hopes of increasing enjoyment of engineering and coding and promote 

equitable opportunities to pursue STEM disciplines and careers. Author 6 is a 

technology and workforce education researcher who has deep knowledge of 
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technology education and research directions and seeks to continue to grow the 

field using the groundwork laid out by other STEM education disciplines. 

Although no science educators worked on the writing team, there were science 

educators within the larger research project who supported and gave direction to 

the work. 

 

Background 

The data for this study came from a larger NSF-funded project called 

Collective Argumentation and Learning Coding (CALC). The larger study 

included 32 elementary school teachers enrolled in a graduate-level technology 

and engineering education course focused on robotics for teachers. In this 

semester-long professional development course, teachers were introduced to 

various block-based coding platforms and strategies to integrate coding and 

robotics across multiple disciplines. Following the professional development 

course, ten teachers were recruited to participate in the implementation phase of 

the project, which included classroom observations and collaborative coaching 

sessions. These ten participating third through fifth grade teachers designed and 

implemented lessons that incorporated coding and educational robots into 

regular classroom instruction. The tasks these teachers implemented are the 

primary source of data from which this framework was developed. 

 

Analysis 

From our analysis of these classroom observations, we identified 54 tasks 

across multiple disciplines including mathematics, science, social studies, and 

language arts. For this study, we focused on all planned tasks centered on coding 

content. That is, across all available tasks, we included any task that had a 

coding focus, and disregarded all tasks that did not include a coding aspect. 

Forty-one out of the 54 tasks included coding and robotics. We conducted 

qualitative analysis (Patton, 2015) to develop our framework through iteratively 

sorting and classifying the tasks according to the cognitive demand of the 

activities required, using cognitive demand constructs from mathematics and 

science education to help guide the structure of emerging framework, and then 

seeking ways of challenging and broadening our developing characteristics and 

classification by seeking out tasks from outside of the research project. 

We began by using an inductive coding process to sort the tasks and 

identify characteristics of the cognitive activities required to complete the tasks 

(Schwandt, 2015). The five researchers divided into two groups and sorted the 

tasks according to how the tasks supported students’ thinking about coding, 

based on intention of the task, as opposed to implementation in the lesson. Each 

group wrote down characteristics of the tasks based on their groupings and 

compared ways of distinguishing between tasks. This process allowed for an 

initial conception of the ways of thinking about coding promoted by these tasks. 
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After this initial sorting process, we began a deductive coding process by 

reviewing the mathematics and science cognitive demand frameworks (Smith & 

Stein, 1998; Tekkumru-Kisa et al., 2015) to structure our thinking about 

different levels of cognitive demand. We considered the overall structure of 

these frameworks to consider ways of organizing the characteristics we 

identified from our initial sorting process. We aimed to create a characterization 

that differentiated lower cognitive demand coding tasks from those that are 

higher cognitive demand and to provide descriptive categories within each level. 

We iteratively sorted the tasks into descriptive categories until our 

characterizations were robust enough to differentiate between individual tasks. 

We then examined similarities and differences in the cognitive aspects of the 

tasks to develop sets of criteria for each category. Our initial categories were 

low, medium, and high cognitive demand.  

To ensure that our criteria for each category were sufficiently broad enough 

to generalize to coding tasks beyond the tasks generated from our project, we 

searched for coding tasks on websites2 containing activities designed for 

educational robots. We collaboratively examined the tasks from other sources 

and discussed the level of cognitive demand for these tasks, refining our criteria 

and expanding to four hypothesized levels. 

We used our refined criteria to re-sort the original coding tasks. Three 

members did this resorting individually, and then checked for consistency with 

the entire group that resolved any discrepancies together through close 

examination of the tasks and the criteria. At the end of the resorting process, we 

examined the tasks and categorizations a final time to check for consistency 

within and across the four categories. Our refining process led us to generate 

four categories of cognitive demand for coding tasks: low, medium-low, 

medium-high, and high (see Table 1). We discuss these categories and their 

criteria in more detail in the next section. 

 

  

                                                           
2 Each of the websites we surveyed corresponded to a particular educational robot: 

Ozobot (https://ozobot.com/educate/lessons-and-activities/), Edison 

(https://meetedison.com/robotics-lesson-plans/), Sphero 

(https://edu.sphero.com/cwists/category) 
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Table 1  

Task Analysis Guide for Coding (TAG-C) 

Level of  

cognitive demand 
Key descriptors 

Low Explicit directions are given to do one (or more) lines of 

code 

Task is so open that writing any code would accomplish 

the task (for example, code your robot to do a dance) 

Any decisions made by the student are arbitrary (not 

goal-oriented decisions) 

Medium-low Students have to make some decisions or put some lines 

of code together to accomplish a task, but the 

decisions or lines can be accomplished relatively 

independently, and there is a clear script for 

accomplishing each part  

There is little to no consideration of efficiency 

There is little to no incentive or expectation for creating 

the entire code before testing each part  

Some aspects of debugging may be present (for 

example, in a medium-low coding task, if the teacher 

asks students to debug their own code, this likely 

does not raise the cognitive demand of the task) 

Medium-high There is some aspect of metacognition (for instance, by 

having to think through the situation or problem 

before writing the code)  

There are some built-in constraints that require students 

to engage in some thinking or reflection to put the 

code together  

There is consideration of efficiency  

Some use of control structures (i.e., sequential, 

selection, repetition) is expected 

Some expectation for reflecting on their own code  

Task involves analyzing and comparing or modifying 

given code 
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Level of  

cognitive demand 
Key descriptors 

High Meets all or most of the medium-high descriptors and 

includes some of the following descriptors: 

Creating a program to solve some problem  

The number of decisions needed is high  

There are not known clear-cut procedures or scripts to 

accomplish the task 

There are potentially sub-routines or coordination of 

actions  

The tasks require some complexity in coordinating 

actions, structures, or routines  

Students may reflect on previously written code and put 

it together to create something new 

Note. To classify a task, examine its characteristics. Choose the level that 

includes a majority of its characteristics. A task may fit more than one category; 

choose the category that includes the preponderance of evidence. 

 

Categories of Cognitive Demand 

From our iterative analysis of tasks, we developed a framework for 

assessing the cognitive demand of coding tasks. In our framework, the Task 

Analysis Guide for Coding (TAG-C) we identify four descriptive levels (Table 

1), similar to Smith and Stein’s (1998) Task Analysis Guide (TAG) for 

mathematics and Tekkumru-Kisa et al.’s (2015) Task Analysis Guide for 

Science (TAGS). We view these levels as descriptions (Table 2) of the potential 

cognitive demand of coding and robotics tasks, without intending to place a 

value judgment on tasks that are “higher” or “lower” cognitive demand. Instead, 

we intend these levels to be helpful for teachers and curriculum developers in 

describing the kinds of thinking and reasoning required by tasks, in choosing 

tasks for specific purposes, and for ensuring that students have access to a range 

of tasks with different levels of cognitive demand across instructional activities. 

In the following sections, we describe each level of cognitive demand and 

exemplify each level with tasks from our project. 
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Table 2 

Classification and Analysis of Example Tasks 

Task Description Level of 

cognitive demand 

A Code the Ozobot to perform a dance. Low 

B Code the Ozobot to travel in a straight line of any distance, turn around, and come back. Low 

C Draw a polygon and code the Ozobot to travel around the perimeter of your drawn polygon. Medium-low 

D Code the Edison to travel in a straight line of a particular distance marked by a length of tape 

on the floor. Reflect on your code: Did it work? If not, how should you change your code? 

Medium-low 

E Code the Roborobo to travel around the outline of a capital letter R, drawn on a gridded mat 

with only line segments and no curves. Write the entire code before implementing it with 

your robot. 

Medium-high 

F Code the Roborobo to travel the path of a square using the loop block. Your code should 

contain at most six blocks. 

Medium-high 

G Measure the side lengths of a given rectangle. Then code the Ozobot to travel around the 

outline of the rectangle or square on the first try. 

Medium-high 

H  Code an Ozobot and give it to a partner. The partner must guess the code and recreate the 

code so their own Ozobot mimics the actions of their partner’s robot. 

High  

I 

 

Code a scene in Scratch that animates all phases of the rain cycle. Explain how you coded 

your scene. 

High  
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Tasks with Lower Levels of Cognitive Demand 
Lower levels of cognitive demand are characterized by fewer opportunities 

for decision-making, more guidance provided in the task for specific actions, 

and less consideration of efficiency, control structures, and reflection. There are 

many reasons one might use a lower cognitive demand task, as described in 

subsequent sections, but these tasks generally do not provide as much 

opportunity to develop conceptual understanding of coding or to engage in 

realistic and problem-centered coding.  

 

Low Cognitive Demand Tasks  
A low cognitive demand task has either so many explicit directions that 

there are no decisions available for students to make or so few directions or 

expectations that writing almost any code would accomplish the task. These 

tasks are often used at the very beginning of learning to code to assist students in 

becoming familiar with the coding interface and language. For instance, when 

coding Ozobots, some teachers asked their students to code their robots to 

perform a dance (see Task A in Table 2). This allowed students to use 

whichever blocks of code they wished to make their robots move, spin, or turn 

in any direction. While useful, the cognitive demand is classified as low because 

there is only a loosely defined goal, and it is not necessary for a student to revisit 

or improve their code, to think about efficiency, or to think through a complex 

situation prior to writing the code. Similarly, a task that provides explicit 

directions for coding is also identified as low cognitive demand. For example, in 

Task B (see Table 2), a teacher asked students to code their Ozobot to travel in a 

straight line of any distance, turn around, and come back. Each aspect of the task 

was defined for the students; they did not need to strategize or think through the 

situation to figure out how to program it. The blocks to be used in Ozoblockly 

are relatively straightforward to identify; students were learning how to initially 

put blocks of code together and load it into their Ozobots. Thus, the low 

cognitive demand of this task allowed for students’ attention to be focused on 

the more logistical tasks of putting the blocks together, loading the program into 

the robot, and figuring out how to double-click to make the code run. 

 

Medium-low Cognitive Demand Tasks  
Medium-low tasks require students to make some decisions in creating their 

code, and there is a clear script for accomplishing each line of code. When a 

medium-low task requires multiple lines of code, students can test each line of 

code independently without having to consider larger chunks of code and why 

they fit together to accomplish the task. Medium-low tasks do not include 

considerations of efficiency, creation of larger sections of code without testing, 

or analysis and modification of code, which are common features that may 

require students to consider how multiple lines of code fit together. For tasks at 
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this level, students are expected to write code that correctly accomplishes the 

given task; there may be some expectation that students debug their own code. 

In these tasks, because students are not expected to consider larger coding 

sections at once, this debugging is likely to happen as students try each line of 

code independently, and thus students may modify their code without 

considering how the lines of code operate together. 
Tasks C and D (see Table 2) are typical examples of medium-low cognitive 

demand tasks. Task C asks students to first draw a polygon, then code their 

Ozobots to travel around the outline of the polygon. In this task, students have to 

make some decisions about their code in terms of programming the Ozobot to 

go certain lengths and rotate certain angles. However, the lines of code 

necessary to complete this task can be considered independently, and there are 

clear scripts for traveling straight lengths and rotating given angles. If students 

choose a difficult polygon, there may be difficulty in determining lengths and 

angles, but the code itself is straightforward. For example, there is a block 

available to code the Ozobot to turn a specific angle, and so they have the line of 

code as soon as they measure the angle. This task does not require students to 

write the code for the Ozobot to travel around the outline of the entire polygon 

before testing it with their robot, and there is not a requirement for them to make 

their code as efficient as possible. Any debugging that students do will likely be 

tied to independent lines of code, and so students are unlikely to have to analyze 

multiple lines of code to make the needed modifications. It is possible that some 

students may push themselves to write the code more efficiently by using a loop 

block, for example, if they have several of the same type of movements, or 

students may try to create the entire code before testing in order to complete the 

task quickly. However, because there is not an expectation for students to 

engage in one or more of these ways, the task, as written, is categorized as 

medium-low. 
Task D (see Table 2) requires students to code their Edison to travel a 

straight distance marked by a length of tape on the floor and to reflect on their 

code. This task was given to novice coders who were just learning to code the 

Edison for the first time, and students did not have a memorized routine for 

approaching this task. When given to novice coders, this task requires that 

students make some decisions that relate the time delay to the length of tape 

rather than being directly told what time delay they should write into their code. 

This feature means that the task contains characteristics of higher cognitive 

demand tasks. However, there is little opportunity for deep reflection because 

there is only one line of code to be written, and the decision of the longer or 

shorter time delay is informed by whether the robot traveled too long or too 

short of a distance on an initial run. This reflection is not enough for this task to 

be considered a medium-high cognitive demand task, but the task does an 

important job of setting up expectations of reflecting and modifying when 

coding. 
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Low and medium-low tasks are appropriate as students become familiar 

with coding robots for the first time or are becoming familiar with a new robot 

or platform. Lower cognitive demand tasks give students an opportunity to 

explore and make sense of different features in a platform and experience the 

outcome of certain codes with the robots. Similarly, medium-low tasks are 

helpful when students need experience with some basic movements before 

moving on to more complex tasks or consideration of different control 

structures. Medium-low cognitive demand coding tasks may also be appropriate 

when the learning goals of the lesson are not centered around coding. For 

example, if the learning goal of the lesson is for students to learn the definition 

of polygon and begin making sense of features of polygons, then it may be 

helpful for the coding aspect of the task to have medium-low cognitive demand 

so that the students are able to focus more on the mathematical learning goals. 

 
Tasks with Higher Levels of Cognitive Demand 

Medium-high and high cognitive demand tasks can create greater 

opportunity for students to learn by making connections between prior 

knowledge and new experiences. These connections can lead to more lasting and 

meaningful knowledge that students can then draw on in future experiences. 

These types of tasks can be useful when the goal of a lesson is for students to 

learn a new coding concept, such as using a repetition control structure to 

increase efficiency in the code, or for students to begin to make connections 

across multiple concepts like students would need to do in order to create an 

animation of the water cycle.  

 

Medium-high Cognitive Demand Tasks  
Medium-high cognitive demand coding tasks require students to make 

decisions and put together multiple lines of code to accomplish a task. Medium-

high tasks differ from medium-low tasks in several ways. When a student 

engages in a medium-high task, there is some expectation of metacognition. For 

example, the task might require that students think through the situation or 

problem before writing the code. The requirement to create the entire code 

before implementing the code with their robot focuses students on the entire 

process and requires that students anticipate outcomes of their code. For 

example, students were tasked with programming their robot to travel around the 

outline of a capital letter R, drawn on a gridded mat and made up of only 

straight-line segments (see Task E in Table 2). Students were asked to write the 

entire code before implementing the code with their robot. This requires a level 

of metacognition and reflection, and it reduces the probability that students will 

write and test each line of code separately. In medium-high tasks, there is some 

consideration of efficiency and potentially some use of control structures (i.e., 

sequential, repetition, selection). Considering how to write more efficient code 

requires students to consider how different coding structures may reduce the 
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number of lines of code. This means that students must reflect on aspects of the 

problem or of their created code that could be modeled or reduced by a control 

structure. For example, consider a coding task that asks students to program a 

robot to travel the path of a square. One version of this task might tell students 

they can use three types of blocks: start, motors, and delay. A subsequent, and 

more cognitively demanding, version of this task asks students to rewrite their 

code to program the robot to travel the path of a square using a loop block (see 

Task F in Table 2). By explicitly asking students to use the loop block, the task 

meets the criteria for a consideration of efficiency, and in order to consider how 

to use a loop block, the task requires that students analyze and modify their 

previously written code. Analyzing and modifying previously written code 

requires students to engage in some thinking and reflection to put the new code 

together. 

Another example of a medium-high task that requires metacognition and 

reflection is asking students to program a robot to travel around a square or 

rectangle with certain parameters and constraints. For example, in a lesson in 

which students were being introduced to programming a robot, they first 

programmed the robot to travel 10 steps, then measured (in centimeters) how far 

the robot traveled. A later task, and one that is considered a task of medium-high 

cognitive demand, involved using those previous measurements to program the 

robot to travel around a given rectangle on the first try (see Task G in Table 2). 

Because students were asked to complete this task on the first try, students 

engaged in some metacognition and reflection as they used their previous 

measurements to write code for the robot to trace the square or rectangle. In 

contrast, a task that appears similar, but is less cognitively demanding, asks 

students to first draw a polygon and then program the robot to travel the outline 

of the drawn polygon. This task is considered medium-low and not medium-

high for several reasons: a lack of parameters or constraints on the drawn 

polygon, no consideration of efficiency, and no expectation of creating the entire 

code before testing the program. In this task, students can write and test one line 

of code at a time. The requirement of “on the first try” in Task G places an 

emphasis on reflection and accuracy that is not present in medium-low tasks.  

 
High Cognitive Demand Tasks 

In Task H (see Table 2), pairs of students were asked to “guess” each 

other’s code. First, one student in the pair coded their Ozobot with any program 

they preferred, then gave their robot to their partner. The partner was tasked 

with recreating the code based on the actions of their partner’s robot. Coding a 

robot to mimic a partner’s robot’s actions requires thought not only about the 

different coding blocks available but also the order and duration of the blocks to 

ensure the code produces the same actions of the initial robot. Each pair of 

students swapped roles so each student had a chance to “guess” their partner’s 

code, and the intention was for the code to be guessed in as few trials as 
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possible. As students are programming their robot to challenge their partner, 

they may consider which series of actions might be most difficult to distinguish, 

and so they may anticipate several outcomes as they are choosing between 

different options. As they try to solve the challenge presented by their partner, 

they anticipate which codes produced the outcomes, and then they engage in 

reflection and modification of their code if their created code does not produce 

the same robot actions as their partner’s code and robot. Students are also trying 

to get the matching code with as few tries as possible, and likely in fewer tries 

than their partner takes to guess their written code. Task H requires the student 

to engage in more metacognition, reflection, and coordination of actions 

compared to medium-high, medium-low, and low cognitive tasks. 
In Task I (see Table 2), students were asked to code a scene in Scratch to 

animate all phases of the rain cycle (i.e., precipitation, evaporation, 

condensation, runoff, and collection). Each individual image in Scratch, called a 

sprite, must be coded individually (e.g., each individual raindrop must be 

programmed to appear, move, and disappear). In this task, students must code 

the different phases of the rain cycle sequentially. Coding each of these phases 

individually is already a complex activity (e.g., using different sprites, costumes, 

and backgrounds), but having to sequence them to model all phases of the rain 

cycle requires a high level of complex action coordination. In this scenario the 

number of choices for students to make is high because of the number of ways 

that they could choose to portray the rain cycle. The choices are not arbitrary as 

they will have to correctly model the phenomenon, and one decision about how 

to portray the cycle leads to subsequent decisions on how to write the code to 

accomplish the task. These choices often require creative or new coding 

solutions than what students have previously experienced. 

Engaging in high level tasks provides students with opportunities to 

investigate, strategize, and explore different aspects of coding blocks and their 

knowledge of coding, which can also be integrated with specific content areas. 

Teachers can implement varying levels of scaffolding into these lessons to 

support students without taking away from the overall cognitive demand. For 

example, in task H (Table 2), the teacher can put a maximum on the number of 

blocks a student uses to code the original robot. This action is useful for time 

management, among other things, and does not lower the cognitive demand of 

the activity. Similarly, the teacher can put parameters around various aspects of 

Scratch, such as the number of sprites to use, or the different aspects to use, such 

as sound or text.  
Medium-high and high tasks are appropriate when the goal of the lesson is 

for students to learn or solidify their learning of a specific coding concept. 

Medium-high cognitive demand tasks give students the chance to reflect and 

think about their code, and what the student reflects on may be intentionally 

designed to support their understanding of a specific coding concept. For 

example, by asking students to create more efficient code using a loop block, 
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students have the opportunity to learn about and experience the use of control 

structures. High cognitive demand tasks are appropriate for students to make 

connections across multiple coding concepts. These tasks can allow students to 

solidify and extend their knowledge as well as explore new ideas that may be 

applied or more fully investigated in later lessons. Because high cognitive 

demand tasks allow for so many student decisions, the goals of the lessons are 

typically not centered around a single coding concept, but rather the goal of 

these lessons tend to be more about students engaging in coding practices and 

connecting multiple ideas. 

 

Interplay of Cognitive Demand, Knowledge, and Grade Level 
TAG-C is a general framework that can be used across all grade levels 

because the cognitive demand of tasks is based on the knowledge and 

experience level of the students rather than a specific grade level. That is, there 

can be a medium high task in second grade that looks quite different from a 

medium-high task in 10th grade. Further, a higher cognitive demand task for a 

fifth-grade student who is a novice coder may be a lower cognitive demand task 

for a fourth-grade student who has had more experience coding. For example, 

consider the medium-high cognitive demand task G where students are asked to 

make their Ozobot travel the perimeter of a rectangle on the first try. This task 

requires students to imagine the physical movement around the rectangle, 

consider the specific measurements, and make connections to specific coding 

blocks. If students had previous experiences coding the robot to trace shapes, 

then this task would have been routine, and students would be able to anticipate 

the connections needed to create the code without engaging in deeper reflection 

of connections, and thus for these students, the task might be medium-low 

cognitive demand. Medium-high and high cognitive demand tasks can be used 

to reinforce knowledge or make more connections; however, if students have 

enough prior knowledge and experience, then the cognitive demand of the task 

will be lower than originally intended. This change in cognitive demand can also 

hold in the other direction; what we may consider lower cognitive demand tasks 

for experienced coders may be higher cognitive demand for students who have 

less experience.  
Discussion 

In ways that are similar to the application of cognitive demand of 

mathematics and science tasks, TAG-C can allow researchers to analyze the 

curricular materials used in classrooms and how those tasks support students’ 

higher-level thinking. By focusing on the types of thinking in which students 

engage within a task, researchers can also begin to study how the cognitive 

demand of the tasks can change during coding tasks to better understand how 

teachers can maintain or potentially raise the cognitive demand for students.  

Researchers in mathematics and science education have investigated how 

the cognitive demand of mathematics tasks might be lowered, maintained, or 
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raised during implementation (Henningsen & Stein, 1997; Stein et al., 1996; 

Tekkumru‐Kisa et al., 2018). In mathematics education, this work supported a 

better understanding of the ways in which teachers often lower the cognitive 

demand during a lesson (Henningsen & Stein, 1997), and the work in science 

education furthered this by making sense of specific ways in which teachers 

maintain cognitive demand in science lessons (Tekkumru-Kisa et al., 2018). It 

would be fruitful to explore how the cognitive demand of coding tasks might 

change during implementation and to examine the role of the teacher in 

supporting cognitive demand throughout a coding task. 

Cognitive demand frameworks have the benefit of being applicable across 

all levels of schooling and across content areas within a particular subject. For 

example, the TAG framework (Smith & Stein, 1998) can be applied to counting 

tasks at the elementary school level as well as geometry tasks at the high school 

level. Because of this, it is important to consider the prior knowledge and 

understanding of the students in order to accurately assess the cognitive demand 

of the task. The counting task that is high cognitive demand for a kindergarten 

student would likely be a low cognitive demand task for a high school student. 

Although our framework was developed with coding tasks at the elementary 

level, we believe it can be applied to coding tasks at higher levels of schooling, 

including at the undergraduate level. Future research may explore how the TAG-

C framework applies at these higher levels, and revisions to the framework may 

incorporate other constructs, such as levels of abstraction, that were not 

foregrounded in the set of elementary STEM tasks from which the framework 

was developed.  

While the TAG-C framework is a helpful tool for researchers, it can also 

support teachers, teacher educators, and curriculum developers. In mathematics 

education, teachers and teacher educators use the TAG framework (Stein & 

Smith, 1998) for assessing classroom tasks and discussing how to facilitate 

higher-level tasks for all students without lowering the cognitive demand. This 

may mean finding ways to scaffold the task or planning questions to support 

student thinking during a task. In science education, teacher actions such as 

advancing students’ ideas and pressing for sensemaking support students’ 

higher-level thinking (Tekkumru-Kisa et al., 2019; Tekkumru-Kisa et al., 2018). 

Teachers can use the TAG-C framework to select and create tasks; teacher 

educators can use our coding cognitive demand framework to help teachers 

consider the types of tasks they create, select, and modify for coding lessons and 

ways of supporting students during those lessons. Professional development 

centered on supporting teachers’ implementation of high cognitive demand tasks 

have demonstrated an increased focus on teaching actions and on student 

thinking during lesson implementation (Boston & Smith, 2009; Walkoe, 2015). 

Researchers in mathematics education have looked at the effects of cognitively 

demanding tasks within the curricula on student achievement (Cai et al., 2011; 

Grouws et al., 2013; Schoenfeld, 2002; Sztajn et al., 2012), and the TAG-C 
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framework can be used in a similar way to develop and assess curriculum for 

learning coding. Curriculum developers can use this framework to consider the 

cognitive demand of their tasks and how they support students’ higher-level 

thinking, and then they can research the effects of such a curriculum on student 

achievement.  

Differences in student ability and experiences are common in coding 

contexts and create an important challenge for both teachers and curriculum 

developers. Even by 5th grade, there are often students who have studied coding 

independently and through schooling since first or second grade, and within 

those same classrooms are completely novice coders. A task that is high 

cognitive demand for the novice coders may be lower cognitive demand for 

experienced coders in the same classroom. Differences in student experiences 

and prior knowledge are not uncommon for any discipline, and so differentiation 

is just as important in coding lessons as it is in science, reading, or math. Higher 

cognitive demand tasks frequently offer more opportunities for students to make 

decisions and for instructors to change parameters to fit the needs of students, 

and so these tasks can offer greater opportunities for differentiation within a 

specific lesson. Strong educational curriculum should provide ways of 

differentiating activities for students without lowering the cognitive demand of 

the activity. Lower cognitive demand tasks are typically more explicit and often 

do not have as many opportunities for students to make decisions, and so it may 

be more difficult to provide differentiation within a single activity. In these 

cases, it may be worthwhile to consider alternative activities with the 

appropriate challenge for students who already have the requisite knowledge. 

Considering curriculum development leads to the practical and open 

question of how much of each of these different levels is optimal for student 

learning. We raise some considerations with our framework about when 

different levels of tasks may be useful. For example, lower cognitive demand 

tasks may be useful when students are learning a new coding platform and need 

to spend cognitive effort on non-coding aspects of the task, such as learning 

about the physical characteristics of their robot or the technicalities of loading a 

given code into the robot. However, within the same lesson, students could 

complete a high-cognitive demand task such as the “Guess my code” task, and 

so it may be beneficial to research how much instructional time spent on lower 

versus higher cognitive demand tasks is beneficial for students, and what types 

of learning outcomes may be supported by different distributions of tasks. This 

question has not been thoroughly investigated in either math or science 

education, and there is a need for more research in this area across disciplines. 

Finally, we suggest that this type of framework that assesses cognitive 

demand could be usefully developed and applied to other disciplines. For 

example, a cognitive demand framework could be developed for engineering 

tasks, and research with this framework could provide useful information for 

engineering task development and implementation in the same ways that it has 
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served mathematics and science education. A cognitive demand framework is 

widely useful because of its general application to tasks without being specific 

to grade-level or domain within a given discipline, and the development of the 

framework is even more worthwhile because of its usefulness for teachers and 

researchers as well as other educational stakeholders. 

In our project, the teachers completed some lessons that were focused on 

coding, but more often they worked on integrating robotics and coding with 

other disciplines. The integration of coding tasks with other disciplines increases 

the complexity of assessing the cognitive demand of tasks, and this also 

increases the difficulty of understanding how to best support students during 

implementation of the tasks. More work needs to be done to consider the 

cognitive demand of integrated tasks that include coding. 
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