The liver is the largest organ in the abdomen, weighing about 1800 g in men and slightly less in women. A space occupying lesion by definition is a discrete abnormality arising within the liver. Space occupying lesions of the liver can be classified into developmental, neoplastic, inflammatory and miscellaneous. Although in some cases, it is difficult to distinguish these entities with imaging criteria alone, certain focal liver lesions have classic ultrasonic, computed tomographic (CT) and magnetic resonance (MR) imaging feature. The majority of these lesions are detected incidentally in asymptomatic patients.[2][3] An accurate history and physical examination are essential for the diagnosis and treatment of solid liver masses. For example, the use of oral contraceptives or anabolic steroids might be related to hepatic adenoma (HA), alcohol use and occupational exposure are associated with angiosarcoma and primary sclerosing cholangitis, liver fluke, Caroli’s disease, and choledochal cysts are associated with cholangiocarcinoma.[4] Physical examination should look for liver tenderness, stigmata of chronic liver disease, or general deterioration signs (fever, weight loss). High alkaline phosphatase, high lactate dehydrogenase (LDH), low albumin, high prothrombin time, and iron overload are non-specific but might suggest an underlying chronic hepatitis, cirrhosis or an infiltrative process.[4] Hence, this study mainly intends to know the incidence, various modes of presentation, different modalities of diagnosis, treatment and prognosis in a rural setup, studied to identify factors which can help in better management of these cases thus helping to improve the prognosis and management care in primary hepatic space occupying lesions. **Aim:** To do the clinicopathological study and management of primary hepatic space occupying lesions. **Conclusion:** This study was carried out at Jawaharlal Nehru Medical College and Acharya Vinoba Bhave Rural Hospital, Sawangi(M), Wardha, Maharashtra, between July 2015 TO October 2017. — Out of 45 primary hepatic space occupying lesions in this study, most common lesion were liver abscess and hydatid cyst of liver and the most common neoplastic lesion was hepatocellular carcinoma. — USG was the imaging modality of choice and was highly effective in diagnosis with 100% sensitivity and specificity, although this is operator dependant. — Percutaneous drainage proved to be the best treatment modality in case of liver abscess with supportive therapy and was associated with less complications, which is suggestive that minimal invasive treatment is the need of the hour. — Partial cystectomy with ometoplasty was the treatment of choice in case of hydatid cyst of liver with better outcome. — Management in case of malignant lesions such as hepatocellular carcinoma and intrahepatic cholangiocarcinoma who presented in advanced stages was done by palliation and chemotherapy. — Cholangitis is the most common complication in our study, which is associated to the direct consequence of the disease or due to the iatrogenic causes such as instrumentation during surgery or any image guided procedure.

KEYWORDS: Liver, primary hepatic space occupying lesions, hydatid cyst, cholangiocarcinoma, liver abscess.

INTRODUCTION

The liver confounds the surgeon’s dependence on anatomy. With its smooth, soft, shiny exterior the liver leaves a shadowly harmless first impression. Yet as those well acquainted with its ways could assure, it is one of the most difficult organ a surgeon can handle. [1] Bismuth wrote in 1982, — The time when liver surgery was confined to atypical hepatectomies or wedge resections, according to location or volume of a lesion, belongs to the past. At present, liver resections are based upon the precise knowledge of natural lines of division of the liver which define the anatomical surgery of the liver. [1] Complete understanding of the surgical anatomy is essential for any practitioner who intervenes in the liver and biliary tract, which ever be the mode of intervention. The liver is the largest organ in the abdomen, weighing...
about 1800 g in men and slightly less in women. A space occupying lesion by definition is a discrete abnormality arising within the liver. Space occupying lesions of the liver can be classified into developmental, neoplastic, inflammatory and miscellaneous. Although in some cases, it is difficult to distinguish these entities with imaging criteria alone, certain focal liver lesions have classic ultrasonic, computed tomographic (CT) and magnetic resonance (MR) imaging feature. The majority of these lesions are detected incidentally in asymptomatic patients. An accurate history and physical examination are essential for the diagnosis and treatment of solid liver masses. For example, the use of oral contraceptives or anabolic steroids might be related to hepatic adenoma (HA), alcohol use and occupational exposure are associated with angiosarcoma and primary sclerosing cholangitis, liver fluke, Caroli’s disease, and choleodochal cysts are associated with cholangiocarcinoma. Physical examination should look for liver tenderness, stigmata of chronic liver disease, or general deterioration signs (fever, weight loss). High alkaline phosphatase, high lactate dehydrogenase (LDH), low albumin, high prothrombin time, and iron overload are non-specific but might suggest an underlying chronic hepatitis, cirrhosis or an infiltrative process. Liver abscesses, both amebic and pyogenic, continue to be an important cause of morbidity and mortality in tropical countries. The primary mode of treatment of amebic liver abscess is medical; however, as many as 15% of amebic abscesses may be refractory to medical therapy. Also, secondary bacterial infection may complicate 20% of amebic liver abscesses. In recent years, imaging guided percutaneous drainage has been increasingly used to treat liver abscesses with reported success rates ranging from 70% to 100%. Cystic diseases of Liver constitute a large percentage of the liver space occupying lesion. Hydatid disease of the liver is still endemic in certain parts of the world. The diagnosis of uncomplicated hydatid cyst of the liver depends on clinical suspicion. Ultrasonography and computed tomography, the most important diagnostic tools, are helpful for determining the complications and planning treatment. The modern treatment of hydatid cyst of the liver varies from surgical intervention to percutaneous drainage or medical therapy. Surgery is still the treatment of choice and can be performed by the conventional or laparoscopic approach. Percutaneous drainage and treatment of the cyst with hypertonic saline or alcohol seems to be a good alternative to surgery in selected cases. Currently, we treat types I and II by ultrasound-guided percutaneous drainage and types IV and V (excluding totally calcified cysts) surgically. Type III cysts can be managed either way depending on the presence of drainable content. Modern imaging techniques have led to the recognition of some incidental lesions that usually have no clinical relevance, e.g. simple liver cysts, liver capillary haemangiomas. Simple hepatic cysts are a congenital abnormality that are usually asymptomatic, but, as with all lesions that may have either no clinical importance or may be part of a defined condition or syndrome (e.g. polycystic kidneys, von Hippel-Lindau disease), the prevalence and characteristics of these lesions within the population should be known. Hepatocellular carcinoma (HCC) is the most frequent primary liver malignancy and the third cause of cancer-related death in the Western Countries. The well-established causes of HCC are chronic liver infections such as hepatitis B virus or chronic hepatitis C virus, nonalcoholic fatty liver disease, consumption of aflatoxins and tobacco smoking. Clinical presentation varies widely; patients can be asymptomatic while symptomatology extends from right upper abdominal quadrant pain and weight loss to obstructive jaundice and lethargy. Imaging is the first key and one of the most important aspects at all stages of diagnosis, therapy and followup of patients with HCC. The Barcelona Clinic Liver Cancer Staging System remains the most widely classification system used for HCC management guidelines. Up until now, HCC remains a challenge to early diagnose, and treat effectively; treating management is focused on hepatic resection, orthotopic liver transplantation, ablative therapies, chemoembolization and systemic therapies with cytotoxic drugs, and targeted agents. Biliary tract cancer accounts for Cholangiocarcinoma (intrahepatic, hilar and distal) and gallbladder cancer, are distinguished with different pathogenesis and prognosis. The treatment is based on surgery, radiotherapy in selected cases, and chemotherapy. The standard cytotoxic treatment for advanced/metastatic disease is represented by the combination of gemcitabine and cisplatin, whereas fluoropyrimidines are generally administered in second line setting. At the present time, no biologic drug demonstrated a clear efficacy in this cancer, although the molecular characterisation could provide a promising basis for experimental treatments. A good supportive care and an early palliative care are warranted in most patients and should be delivered as a part of a global approach. Hence, this study mainly intends to know the incidence, various modes of presentation, different modalities of diagnosis, treatment and prognosis in a rural setup, studied to identify factors which can help in better management of these cases thus helping to improve the prognosis and management care in primary hepatic space occupying lesions.

AIM: To do the clinicopathological study and management of primary hepatic space occupying lesions.

OBJECTIVES

To study the clinical features and mode of presentation of different types of primary hepatic SOL in different age groups & sex.

To study different modalities of investigations available to diagnose various types of primary hepatic SOL.

To study various modes of management including complications, morbidity & mortality.
MATERIALS AND METHODS
This present study was carried out at Acharya Vinoba Bhave Rural Hospital (AVBRH) of Jawaharlal Nehru Medical College between July 2015 to October 2017 in which total 45 cases of primary hepatic space occupying lesion which were studied prospectively. Type of Study: prospective study. Sample size = 45 cases. Sample Size Formula: N= \(\chi^2 \) p(1-p) + Np(1-p) C2(N-1) +p(1-p) C2(N-1)

Where \(\chi^2 \) is the chi-square value at 5% level of significance \(=3.84 \)

N=Total no of cases of primary hepatic space occupying lesions in three years in AVBRH =108

C= Desired confidence interval \(=0.05 \)

P=Proportion \(=0.50 \)

N= 3.84*(0.5*0.5) +108*0.5*0.5 =27.96

In present study N =45 total patients

Inclusion criteria: All patients more than 18 yrs having primary hepatic space occupying lesions. Exclusion criteria: Patients with suspected secondaries in liver Patient of bleeding diathesis. Patient on anticoagulant medication. Noncooperative patient who refuses to undergo the study.

Mode of study
After detailed history, complete general and systemic examinations, provisional diagnosis was done. Diagnosis was confirmed with the help of various diagnostic modalities like USG, CT scan & FNAC. USG was done in all cases but CT scan & FNAC were done in selected patients where the diagnosis was in doubt or more detailed information about the pathology was needed. Along with various diagnostic investigations, patients were subjected to routine investigations such as haemogram, liver function test, PTINR, kidney function test etc. to know the status of the disease, condition of the patient & feasibility for surgery/procedure. After complete evaluation, mode of management was selected depending on extent of disease.

Statistical analysis
Statistical analysis was done by using descriptive and inferential statistics using chi-square test and software used in the analysis were SPSS 22.0 version and GraphPad Prism 6.0 version and p.

OBSERVATION AND RESULTS
Demographics
In present study, it was observed that the youngest patient was 22 yrs who presented with amoebic liver abscess & the oldest was of 86 yrs diagnosed as pyogenic liver abscess & mean age of presenting PHSOL was 49.22±15.69 yrs.

Liver abscess manifested most commonly in 7th Decade & mean age is 50.42 yrs. hydatid cyst of liver manifested most commonly in 4 th decade & mean age is 45.85 yrs. hemangioma of liver manifested most commonly in 4th & 5th decade & mean age is 43.20 yrs. hepatocellular carcinoma manifested most commonly in 7th decade & mean age is 61.85 yrs. cholangiocarcinoma manifested most commonly in 3 rd decade & mean age is 43.60 yrs. out of 45 cases, there were 33 males & 12 females showing male: female sex ratio of 2.75 :1.

In present study, liver abscess and hydatid cyst were more common in males.(92.86% & 71.43%). HCC was found in 5(71.43%) males & 2(28.57%) females. Intrahepatic cholangiocarcinoma was found in 3(60%) males & 2(40%) females. Hemangioma was found in 2(40%) males & 3 (60%) females.

Symptoms of PHSOLs

<table>
<thead>
<tr>
<th>PHSOL</th>
<th>No. of cases</th>
<th>Pain in abdomen</th>
<th>Fever</th>
<th>Nausea / Vomiting</th>
<th>Loss of appetite</th>
<th>Abdominal lump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver abscess</td>
<td>14</td>
<td>13(92.86%)</td>
<td>12(85.71%)</td>
<td>4(28.57%)</td>
<td>7(50%)</td>
<td>1(7.14%)</td>
</tr>
<tr>
<td>Hydatid cyst</td>
<td>14</td>
<td>4(28.57%)</td>
<td>2(14.29%)</td>
<td>1(7.14%)</td>
<td>4(28.57%)</td>
<td>10(71.43%)</td>
</tr>
<tr>
<td>Hemangioma</td>
<td>5</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>1(20%)</td>
</tr>
<tr>
<td>HCC</td>
<td>7</td>
<td>5(71.43%)</td>
<td>4(57.14%)</td>
<td>2(28.57%)</td>
<td>6(85.71%)</td>
<td>3(42.86%)</td>
</tr>
<tr>
<td>Cholangiocarcinoma</td>
<td>5</td>
<td>5(100%)</td>
<td>3(60%)</td>
<td>3(60%)</td>
<td>4(80%)</td>
<td>1(20%)</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>27(60%)</td>
<td>21(46.67%)</td>
<td>10(22.22%)</td>
<td>21(46.67%)</td>
<td>16(35.56%)</td>
</tr>
<tr>
<td>P value</td>
<td>29.60,p-value=0.020,Significant,p<0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clinical Signs of PHSOLs

<table>
<thead>
<tr>
<th>PHSOL</th>
<th>No. of cases</th>
<th>Pallor</th>
<th>Icterus</th>
<th>Abdominal tenderness</th>
<th>Hepatomegaly</th>
<th>Abdominal lump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver abscess</td>
<td>14</td>
<td>6(42.86%)</td>
<td>7(50%)</td>
<td>13(92.86%)</td>
<td>12(85.71%)</td>
<td>9(64.29%)</td>
</tr>
<tr>
<td>Hydatid cyst</td>
<td>14</td>
<td>1(7.14%)</td>
<td>0(0%)</td>
<td>4(28.57%)</td>
<td>13(92.86%)</td>
<td>11(78.57%)</td>
</tr>
<tr>
<td>Haemangioma</td>
<td>5</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>2(40%)</td>
<td>1(20%)</td>
<td>1(20%)</td>
</tr>
<tr>
<td>HCC</td>
<td>7</td>
<td>3(42.86%)</td>
<td>2(28.57%)</td>
<td>6(85.71%)</td>
<td>7(100%)</td>
<td>4(57.14%)</td>
</tr>
<tr>
<td>Cholangiocarcinoma</td>
<td>5</td>
<td>0(0%)</td>
<td>5(100%)</td>
<td>5(100%)</td>
<td>1(20%)</td>
<td>1(20%)</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>10(22.22%)</td>
<td>9(20%)</td>
<td>30(66.67%)</td>
<td>34(75.56%)</td>
<td>26(57.78%)</td>
</tr>
</tbody>
</table>

P value = 35.44, p-value = 0.0035, Significant

USG finding of different PHSOLs

<table>
<thead>
<tr>
<th>PHSOL</th>
<th>No. of cases</th>
<th>Lesion size in (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-5 cm</td>
</tr>
<tr>
<td>Liver abscess</td>
<td>14</td>
<td>0(0%)</td>
</tr>
<tr>
<td>Hydatid cyst</td>
<td>14</td>
<td>0(0%)</td>
</tr>
<tr>
<td>Haemangioma</td>
<td>5</td>
<td>3(60%)</td>
</tr>
<tr>
<td>HCC</td>
<td>7</td>
<td>0(0%)</td>
</tr>
<tr>
<td>Cholangiocarcinoma</td>
<td>5</td>
<td>1(20%)</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>4(8.89%)</td>
</tr>
</tbody>
</table>
Haematological investigations of different PHSOLS

<table>
<thead>
<tr>
<th>Blood investigation</th>
<th>Liver abscess (14)</th>
<th>Hydatid cyst (14)</th>
<th>Hemangioma (5)</th>
<th>HCC (7)</th>
<th>Cholangioc Ca (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (<10 gm/dl)</td>
<td>7(50%)</td>
<td>1(7.14%)</td>
<td>0(0%)</td>
<td>3(42.85%)</td>
<td>2(40%)</td>
</tr>
<tr>
<td>TLC (> 11000 cell/dl)</td>
<td>11(78.57%)</td>
<td>2(14.29%)</td>
<td>0(0%)</td>
<td>2(28.57%)</td>
<td>5(100%)</td>
</tr>
<tr>
<td>S albumin (<3g/dl)</td>
<td>5(35.71%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>1(14.29%)</td>
<td>2(40%)</td>
</tr>
<tr>
<td>T bilirubin (>2.0 mg/dl)</td>
<td>5(35.71%)</td>
<td>1(7.14%)</td>
<td>0(0%)</td>
<td>1(14.29%)</td>
<td>5(100%)</td>
</tr>
<tr>
<td>AST (>40 U/L)</td>
<td>11(78.57%)</td>
<td>10(71.43%)</td>
<td>2(40%)</td>
<td>6(85.71%)</td>
<td>5(100%)</td>
</tr>
<tr>
<td>ALT (>40 U/L)</td>
<td>10(71.43%)</td>
<td>10(71.43%)</td>
<td>2(40%)</td>
<td>6(85.71%)</td>
<td>5(100%)</td>
</tr>
<tr>
<td>ALP (>170 U/L)</td>
<td>13(92.86%)</td>
<td>12(85.71%)</td>
<td>3(60%)</td>
<td>7(100%)</td>
<td>5(100%)</td>
</tr>
<tr>
<td>PT/INR (>18 sec/1.5)</td>
<td>2(14.29%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
</tr>
</tbody>
</table>

Mode of management of PHSOLS

<table>
<thead>
<tr>
<th>PHSOL</th>
<th>Wait and watch</th>
<th>Medical</th>
<th>Embolisation</th>
<th>RFA</th>
<th>PCD</th>
<th>PAIR</th>
<th>Surgical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyogenic liver abscess(2)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>2(100%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>Amebic liver abscess(12)</td>
<td>0(0%)</td>
<td>2(16.67%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>10 (83.33%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>Hydatid (14)</td>
<td>0(0%)</td>
<td>3(21.43%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>1(7.14%)</td>
<td>10 (71.43%)</td>
<td></td>
</tr>
<tr>
<td>Hemangioma (5)</td>
<td>4(80%)</td>
<td>0(0%)</td>
<td>1(20%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>Hcc (7)</td>
<td>0(0%)</td>
<td>7(100%)</td>
<td>0(0%)</td>
<td>1 (14.29%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>Cholangiocarcinoma (5)</td>
<td>0(0%)</td>
<td>5(100%)</td>
<td>0(0%)</td>
<td>1(20%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>Total (45)</td>
<td>4 (8.89%)</td>
<td>17 (37.78%)</td>
<td>1(2.22%)</td>
<td>2 (4.44%)</td>
<td>12 (26.67%)</td>
<td>1(2.22%)</td>
<td>10 (22.22%)</td>
</tr>
</tbody>
</table>

X2-value 115.40, p-value=0.0001, Significant
Post operative/ post procedure complications

<table>
<thead>
<tr>
<th>COMPLICATION/ LESION</th>
<th>Cysto-cutaneous Fistula</th>
<th>SSI</th>
<th>Cysto-biliary Fistula</th>
<th>Infection in Residual Cavity</th>
<th>Cholangitis</th>
<th>Pulmonary complications</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYOGENIC LIVER ABSCESS(2)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>1(50%)</td>
<td>1(50%)</td>
</tr>
<tr>
<td>AMOEBOIC LIVER ABSCESS(12)</td>
<td>1(8.33%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>2(16.67%)</td>
<td>1(8.33%)</td>
<td>2(16.67%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>HYDATID(14)</td>
<td>0(0%)</td>
<td>1(7.14%)</td>
<td>1(7.14%)</td>
<td>1(7.14%)</td>
<td>2(14.29%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>HEMANGIOMA(5)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>HCC(7)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>2(28.57%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>CHOLANGIOCARCINOMA</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>0(0%)</td>
<td>5(100%)</td>
<td>2(40%)</td>
<td>2(40%)</td>
</tr>
<tr>
<td>Total (45)</td>
<td>1(2.22%)</td>
<td>1(2.22%)</td>
<td>1(2.22%)</td>
<td>3(6.67%)</td>
<td>10(22.22%)</td>
<td>5(11.11%)</td>
<td>6(13.33%)</td>
</tr>
</tbody>
</table>

X2-value 28.49, p-value=0.24, Not Significant

DISCUSSION

Demographic Features
The present study was carried out in, Acharya Vinoba Bhave Rural Hospital (AVBRH), Jawaharlal Nehru Medical College, Sawangi (Meghe), Wardha. Over the period from July 2015-October 207, patients presenting with Primary Hepatic Space Occupying Lesions admitted in this hospital were taken in this study. Total 45 cases were studied prospectively. In our study maximum number of patients i.e. 14 were in the age group of 61-70 years, the youngest patient in our study was 22 years old while the eldest was 86 years with the mean age of 49.22±15.69. In studies conducted by Yeouda et al (1999),[228] had maximum number of patients in the age group of 61-70 year. Also, studies conducted by Vishwanath et al (2013),[229] and Hima bindu et al (2014),[230] had maximum number of patients in the age group of 41-50 year group. A study conducted by Parahjuli et al (2011),[231] also had similar reports which were comparable to our study. In our present study of 45 patients, 33 patients were male and 12 patients were female giving the M: F ratio of 2.78: 1. Our finding was similar to Vishwanath et al (2013),[229] and Roy sk et al (2015).[232] However few studies such as Yeouda et al (1999),[228] and Hima bindu et al (2014),[230] have also shown equal predominance in males as well as females as compared to our study.

Signs and symptoms
In our study, the most common symptom was pain in abdomen 60% followed by loss of appetite and fever 46.67% each, with a significant p-value of 0.02. Similar findings were seen in studies conducted by Yeouda et al (1999),[228] Vishwanath et al (2013),[229] & Hima bindu et al (2014),[230] with most common sign as pain in abdomen followed by fever and weight loss. Although the percentage values were different because of the variation in the sample size due to inclusion of liver secondaries. In our present study, most common sign was hepatomegaly 75.56% followed by abdominal tenderness 66.67%. Our finding was similar to studies conducted by Yeouda et al (1999),[228] Vishwanath et al (2013),[229] & Hima bindu et al (2014),[230] having hepatomegaly as the commonest sign followed by abdominal tenderness. In another study conducted by Basak NC et al (2017),[233] showed similar outcome although the study included metastatic lesions.

USG findings
In our present study, solitary liver lesion was commonly found in 66.67% with most common lesion size range 6-10 cm 44%, followed by 11-15 cm 40%. The right lobe of liver was more commonly involved with incidence of 55.56%. A study conducted by Vishwanath et al (2013),[229] had 62% of solitary lesions with 65% involvement of right lobe of liver. Also, in a study conducted by Basak NC et al (2017),[233] had 56% of solitary lesions with 56% involvement of right lobe of liver which was marginally less than the present study. However, in a study conducted by RichardMspigeal et al (1978),[235] significantly different results were observed in comparison to the present study as it includes only benign lesions.
Liver abscess
In our present study out of the 45 PHSOLs, 14 were found to be liver abscess with the mean age of 50.42±17.65 years, most common incidence was in 7th decade & the M: F ratio was found to be 13:1. In the study conducted by Soumik et al (2014),[236] had mean age of 41yrs with similar sex ratio of 13.3: 1. Also, studies conducted by A H Mohsen et al (2014),[237] & Hyo Min et al (1993),[238] had similar observations in view of mean age but were significantly different in sex ratio. A study conducted by Lodhi et al (2004),[239] had similar observations and is comparable to our present study.

Signs and symptoms
Our present study, pain in abdomen 92.86% was the most common symptom followed by fever 85.71% & loss of appetite accounting for 50% of cases. In study conducted by Hyo min et al (1993)[238] 85% cases had pain in abdomen & 71% cases had fever. Also studies conducted by A H Mohsen et al (2002),[237] Lodhi et al, (2004),[239] S singh et al,(2013),[240] had similar observations as our present study. However, in a study conducted by Jonathan et al(2015),[241] observed significantly different findings with 40% having pain in abdomen and 47% having fever. In our present study, abdominal tenderness 92.86% was the most common sign followed by hepatomegaly 85.71 %. In studies conducted by Huang et al (1996)[242] had 65% abdominal tenderness & 48% had hepatomegaly. However, study conducted by Lodhi et al (2004),[239] had similar observations as our present study with 87% abdominal tenderness and 71% having hepatomegaly. Also, studies conducted by Mangukiya et al (2012),[243] S singh et al (2013),[244] had similar observation as our present study and were comparable.

Haeatological investigations
In our present study, Alakaline phophatase levels were elevated most commonly (92.86%) followed by leucocytosis in 78.57% of the patients. In studies conducted by Lok et al (2008) (44), low albumin levels were found in 92.8% of patients Leukocytosis (74.8%), increased alkaline phosphatase (72.1%), and elevated alanine aminotransferase levels (ALT; 58.6%). Also studies conducted by Hye min et al(1993)(238), Huang et al(1996)(242), S. Singh et al(2013)(82) showed similar results and were comparable to our present study.

USG finding
In our study out of 14 cases of liver abscess, 78.57% cases involved the right lobe, 21.43% cases involved left lobe & none of the cases involved both the lobes. In the study conducted by S. Singh et al (2013), 80% cases of liver abscess involved the right lobe while 15% involved left lobe & 5% involved both the lobes. Also, the studies conducted by Hye Min et al (1993),[238] Lodhi et al (2004),[239] Mangukiya et al (2012)[244] had similar results and were comparable to ourpresent study. A study conducted by Jonathan et al (2015) [241] involved right lobe in 59.5% cases, left lobe in 16.7% cases and both lobes in 23.8% cases which were found to be different as compared to our present study. The more common involvement of right lobe could be explained on the basis of a) There are blood channels divided into two halves and the major portion supplies the right lobe of the liver.

b) The bulk of right lobe is larger as compared to left lobe. In the present study, out of 14 liver abscess the maximum volume was found to be 900cc while the minimum was 160cc. In 3(21.43%) cases the volume was found to be between 100 -300 cc, in 4(28.57%) cases the volume was found to be between 301 -600 cc and in 7(50%) cases the volume was found to be between 601 -900 cc. In a study conducted by Singh et al (2013),[82] observed that volume of abscess cavity was between 150 cc – 350 cc & only 2 cases were found to have volume between 600 – 900 cc.

Treatment
In our present study, 16.67% cases underwent only medical management & 85.71% cases underwent percutaneous drainage with supportive therapy. In a study conducted by A Mohsen et al (2002),[237] 17.39% cases were treated by medical management alone, 18.9% underwent percutaneous drainage with supportive therapy & 14.5% underwent surgical management. Also studies conducted by Soumik et al (2014),[240] showed comparable results to the current study. However, Hye Min et al (1993)[238] observed 21% surgical management and none of the patient underwent percutaneous drainage due to the lack of technique at that time. In our present study, the mean time of 50% reduction of abscess volume was 4±1.6 days & most commonly the pigtail was removed between 6-9 days after insertion. The reduction in volume was checked by doing USG on 3rd day after pigtail insertion In a study conducted by S. Singh et al (2013)[82] the mean time for reduction in volume was 4.9±1.6 days & the pigtail was removed between 6 – 9 days after insertion. Rajak et al (1997)[53] observed the mean time in reduction of abscess volume of 5 days and pigtail removal in a period of 7- 9 days. However, study conducted by Jonathan et al (2015)[241] the pigtail was kept in situ for 14.4 ± 17.6 days which was different as compare to the present study.

Complications
In our present study out of 14 cases of liver abscess, 1(2.22%) developed cystocutaneous fistula, 2(16.67%) developed infected residual cavity, 1(8.33%) developed cholangitis, 3(21.42%) developed pulmonary complications & 1 (7.14%) died post operatively/ procedure. Complications such as hemorrhage, pleural effusion/ empyema, persistent bile drainage, catheter displacement, sepsis etc., have been reported with PCD 12% in the studies of Lambiase et al(1991),[244] Baek et al (1993),[245] described the much lower incidence of complications with PNA than with PCD as one of the major advantages of needle aspiration over catheter drainage. However, in our study and some studies like of
Rajak et al (1998),[15] Yu et al (2004),[246] the procedures were found to be safe if performed properly with minimal complications. There was no mortality in either of the study groups.

Hydatid cyst of liver

Demographics

In our present study of the 45 PHSOLs, 14 were of hydatid cyst of liver and they manifested most commonly in 4th decade & mean age was 45.85 yrs, with M: F sex ratio of 2.5: 1.

On comparing the various studies with our present study, it was observed that the studies conducted by Palanivelu et al (2006),[249] & Mergen et al (2007),[251] had mean age similar & had male preponderance. On the contrary, the studies conducted by Ahmet et al (1999)[247] Yorganci et al (2002),[248] & Daradekh et al (2006)[250] had similarities in mean age with our study but had female preponderance.

Signs and symptoms

In our study out of 14 cases of hydatid cyst, 71.43% had complaint of lump in abdomen & 28.57% had complaints of pain in abdomen. the commonest sign was observed as hepatomegaly in 85.71% cases. In studies conducted by Ahmet et al (1999),[247] Yorganci et al (2002),[248] Palanivelu et al(2006)[249] Mergen et al (2007)[251] had contrasting observations as compared to our present study in view of symptoms, as they had abdominal pain as their most common symptom, which is suggestive that the maximum patients in their study came in the infective stage. Although hepatomegaly was seen as the most common sign in these studies which is similar to our present study. In a recent study conducted by Ankit kayal et al (2014),[252] had similar results as our present study and lump in abdomen was the most common symptom, even if the percentage is different but the more amount of patients presented with lump in abdomen and commonest sign was hepatomegaly.

Imaging studies

In our present study out of 14 cases of hydatid cyst, 7(50%) had solitary lesion, 7(50%) had multiple lesions, 6(42.86%) cases involved the right lobe, 4(28.57%) cases involved left lobe & 4(28.57%) cases involved both the lobes. In studies conducted by Yorganci et al (2002),[248] Yagci et al (2005)[253] & Mergen et al (2007)[251] in turkey, observed similar findings with right lobe of liver with 72.6%, 64.78%, 73.1% respectively predominantly involving right lobe, but differed in the percentage of lesions having more number of solitary lesion 71%, 68%, 69% respectively. Also studies conducted by El tahir et al (1992)[232] & another study conducted by Palanivelu et al (2006)[249] had similar observations which can be compared with our study.

Complications

In our present study out of 14 cases of hydatid cyst, 7.14% developed surgical site infection, 7.14% developed cystobiliary fistula, 7.14% developed infected residual cavity & 14.29% developed cholangitis. In a study conducted by Ahmet et al (1999),[247] most common complication was infected residual cavity with 29.5% in PAIR patients & 4.5% in omentoplasty patients, 6.6% developed cholangitis, 8.9% developed cystobiliary fistula which resolved spontaneously. Daradekh et al (2006)[250] observed most common complication as cystobiliary fistula 15.6%, infected residual cavity in 11% & pulmonary complications in 7% patients. The overall morbidity rate of this series was 53.8%, for which the author gave an explanation that 37.8% of these presented with pre-existing comorbidities.

Hemangiomia

Demographics

In our present study, there were 5 patients of hemangiomia. The mean age was 45 years and the male: female sex ratio was 1:1.5.

On comparison with the other three studies done by Gandolfi et al (1991)[237] & Gedaly et al (1999)[238] there was similarity in the mean age. Recent studies done by Arash et al (2011)[259] showed similar demographic data & increased female preponderance.
Signs and Symptoms of hemangioma

In this study lump per abdomen was the most common symptom (25%). Most common signs were Hepatomegaly and Abdominal tenderness 20%.

Investigations

In the present study, 5 cases were diagnosed as hemangioma of liver in which hematological and liver function tests were within normal limits. In various studies chronic anemia is not uncommon in patients requiring surgical excision. 12 of 24 (severe in two cases) in the series of Belli et al. (263) and 6 of 49 in the series of Trastek et al. (264) The only study with a low incidence of anemia was that of Kato et al. (265) with 1 of 55 patients who had anemia. Imaging studies in 4 out of 5 patients, the hemangioma was an incidental finding, CECT abdomen was done in one of the patient presenting with giant hemangioma and clinically had abdominal lump along with tenderness and hepatomegaly. Anaemia was also present in this patient.

Hepatocellular carcinoma

Demographics

In our present study of the 45 PHSOLs, 7 were found to be hepatocellular carcinoma with the mean age of 61.85 years, most common incidence was in 7th decade & the M: F ratio was found to be 2.5:1. On comparison of our present study with studies conducted by Nelly et al (2000),265 & Thomasset et al (2015)266 had their demographic distribution similar with mean age being 56 yrs, 58yrs and sex ratio of 2.8:1, 3.5 :1 respectively. Also in the other studies conducted by Saini et al (2006),265 R Kumar et al (2008)265 & yin et al (2012)267 had similar observations as shown in table above, and mainly had more number of male cases which has been mainly linked with increased alcohol and HBV infection. In contrast with our present study, the observations made by Shashi bhalla et al (2011),266 had lower mean age of incidence (45 years).

Signs and symptoms

In our present study, the commonest symptom was loss of appetite/weight 85.71% and the most common sign was hepatomegaly 100%.

Liver function

In our present study out of the 7 cases of HCC, 14.29% cases had S albumin 2.0 mg/dl, 85.71% cases had AST >40 U/L, 85.71% cases had ALT >40 U/L & 100% cases had ALP >170 U/L. There was no significant derangement seen in the serum bilirubin & serum albumin level, although the sample size of our study is small and the results may vary on comparison. On comparing our current study with Llovet et al(2008)269 who studied the effect of sorafenib in advanced HCC, observed similar findings with the mean serum albumin & serum bilirubin levels 3.9 g/dl & 0.7 g/dl respectively. The cases in this study mainly consisted of child pugh score A in view of liver function test.

USG finding

In our present study, USG assessment was done regarding size, site & no. of lesions. Out of the 7 cases of HCC, 3(42.86%) cases had lesion size 6-10 cm, 3(42.86%) cases had lesion size 10 -15 cm, 1(14.29%) cases had lesion size 16-20 cm, 3(42.86%) cases involved the right lobe, none involved left lobe, 2(28.57%) cases involved both the lobes, 3(42.86%) had solitary lesion & 2(28.86%) had multiple lesions. In studies conducted by Gellati et al (2003),267 observed that 69% patients had multiple lesions & 55.1% patients had tumor size between 2-5 cm. Also studies conducted by R kumar et al (2008),265 Shashi bhalla et al, 2011266 Nelly et al (2000)263 observed predominant involvement of right lobe of liver, similar tumor size ranging maximally from 1- 10 cm & more no. of solitary lesion. Dubbins et al (1991)268 in his study over USG findings and diagnosis via USG of hepatocellular carcinoma observed similar results in terms of size of tumor as both the lobes of liver were involved in 63 % cases and 63% cases had multiple lesions which was contrasting to our present study.

Imaging studies & Cytopathological relations In our present study, USG was done in all the PHSOLs and CECT abdomen was done in all the malignancy patients which was then followed by FNAC/FNAB. Out of the 7 patients of HCC, the FNAC was positive in all the patients & early diagnosis followed by due follow up, with a result of primary hepatocellular carcinoma.

Treatment

Out of 7 cases of HCC, 7(100%) underwent medical management in the form of chemotherapy, 1(14.29%) underwent radiofrequency ablation. On comparing the present study with the various studies in the above table, Nelly et al (2000)263 Gellati et al(2003)268 Saini et al (2006)265 & Borie et al (2008)269 had similar management with chemotherapy being the most common choice of treatment, only few underwent Radiofrequency ablation and curative surgery with R0 resection. However, in a recent study conducted by Takayoshi et al (2016)270 at a centre in Osaka, Japan had most common line of treatment as major and minor hepatectomies (92.5%). This was possible because of early screening of the patients & early diagnosis followed by due follow up, yet out of the 30 patients 1 died and 6 survived for 8 years and the other 23 developed recurrence which were treated with chemotherapy and radiofrequency ablation.
In our present study, plenty of limitations are present in view of treatment modality of HCC. Patients usually presented in advanced stage of the disease & lack of facilities for liver surgeries and non availability of various newer advancement in management of HCC such as TACE etc.

Intrahepatic cholangiocarcinoma

Demographics

In our present study, 5 patients were of intrahepatic cholangiocarcinoma. Patients manifested most commonly in 3rd decade & mean age is 43.60 yrs. It was found in 3(60%) males & 2(40%) females.

On comparison of our present study, mean age in intrahepatic cholangiocarcinoma 44yrs and a M : F sex ratio of 1.5 :1 showing male preponderance with various studies mentioned in table above, it was observed that study by Weber et al(2001)(204), Gugliemi et al(2009)(275), Ahmad Ramzi et al(2012)(276) & Yan Ming Zhou et al(2014)(277) had equivocality with our study in terms of sex ratio but slightly differed in the mean age of the patients.

Signs and symptoms

In our present study, the most commonest symptom is pain in abdomen 100% followed by loss of appetite 80% while the most common sign seen in the patient was icterus 100%, although the sample size is small but these findings were found to be significant. The studies conducted by R T Schlinkert et al(1991),1274 Roayaie et al(1998)199 & Endo et al(2008)199 have commonest symptom of presentation as pain in abdomen and sign as icterus, but they differ in the percentage with the present study which is mainly due to proper and early screening techniques in patients presenting in premalignant states and large amount of sample size.

Haematological study

In intrahepatic cholangiocarcinoma out of the 5 cases, 40% cases had Hb 11000 cell/dl, 40% cases had S albumin 2.0 mg/dl, 100% cases had AST >40 U/L, 100% cases had ALT >40 U/L & 100% cases had ALP >170 U/L. The raised bilirubin levels (70% & mean = 15.7) is further indicative of biliary obstruction and it is also an indicator for unresectability of the tumor, Roayaie and colleagues (1998)199 concluded that jaundice as a presenting symptom is predictive of unresectable disease because of significant involvement of inflow structures bilaterally or the presence of massive parenchymal replacement.

Treatment

In our present study, the patients mainly presented in advanced stage of the disease, so the main domain of treatment was by chemotherapy and palliation 100%. As most of our cases presented with jaundice and elevated serum bilirubin levels, they were first subjected to percutaneous transhepatic biliary drainage and internal stenting (PTBD) which was followed by systemic chemotherapy in the form of Gemcitabine and Carboplatin, patients also presented with pre existing co-morbidities which were detrimental in the final outcome of the patient.

Complications

In our study, Out of 5 cases of intrahepatic cholangiocarcinoma, 5 (100%) developed cholangitis, 2(40%) developed pulmonary complications & 2 (40%) died. The late presentation of the patients with advanced stage of disease was very much responsible for the outcome. The complications found in our study were commonly found in various studies mentioned in table above, but there was marked difference in the percentage of patients involved. This difference was seen due to the difference in the sample size of various studies when compared to our present study. One of the commonest complications which were seen in all the studies with surgical dominance was recurrence which was then followed by cholangitis and mortality.

CONCLUSION

This study was carried out at Jawaharlal Nehru Medical College and Acharya Vinoba Bhave Rural Hospital, Sawangi(M), Wardha, Maharashtra, between July 2015 TO October 2017. → Out of 45 primary hepatic space occupying lesions in this study, most common lesion were liver abscess and hydatid cyst of liver and the most common neoplastic lesion was hepatocellular carcinoma. → USG was the imaging modality of choice and was highly effective in diagnosis with 100% sensitivity and specificity, although this is operator dependant. → Percutaenous drainage proved to be the best treatment modality in case of liver abscess with supportive therapy and was associated with less complications, which is suggestive that minimal invasive treatment is the need of the hour. → Partial cystectomy with ometoplasty was the treatment of choice in case of hydatid cyst of liver with better outcome. → Management in case of malignant lesions such as hepatocellular carcinoma and intrahepatic cholangiocarcinoma who presented in advanced stages was done by palliation and chemotherapy. → Cholangitis is the most common complication in our study, which is associated to the direct consequence of the disease or due to the iatrogenic causes such as instrumention during surgery or any image guided procedure.

RECOMMENDATIONS

Detailed history, thorough clinical examination is very important to reach correct clinical diagnosis of primary hepatic space occupying lesions. → USG abdomen should be considered as first investigation of choice for diagnosing PHSOLs. → In patients of liver abscess with size of abscess cavity.

REFERENCE

15. IV. Surgical Treatment of Tumor of the Liver, with the Report of a Case, [cited 2017 Oct 17].
Harshall et al. European Journal of Biomedical and Pharmaceutical Sciences

