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ABSTRACT 

Apolipoprotein J (apoprotein J, apo J, clusterin) is a multifunctional 

protein normally associated with lipids in plasma and cerebrospinal 

fluid, and secreted as lipoparticles by hepatocytes and astrocytes. Apo 

J is abundant in numerous biological fluids including semen, urine, 

breast milk, plasma and cerebrospinal fluid. There are two major 

sources of apo J in the circulation: plasma, in which it is found 

associated with high-density lipoprotein (HDL) particles; and platelets, 

where it is a constituent of the α-granules. Apo J has been implicated  

in a wide range of physiological and pathophysiological processes, such as reverse lipid 

transport and redistribution, apoptosis, folding of damaged extracellular proteins (chaperone), 

cell adhesion and aggregation, membrane recycling, complement regulation, tissue 

remodeling, tumorigenesis and several age related diseases (e.g. atherosclerosis and 

Alzheimer‟s disease). In blood, complexes of apo J with apolipoprotein A-I and the human 

esterase paraoxonase regulate the transport and local redistribution of lipids. Serum apo J 

concentrations are increased in experimental models of diet-induced atherosclerosis, as well 

as in patients with diabetes mellitus or coronary heart disease. However, the 

pathophysiological role of apo J in atherosclerosis and the therapeutic implications merit 

further evaluation. 

 

KEYWORDS: Apolipoprotein J, clusterin, atherosclerosis, HDL, cardiovascular disease, 

plasma. 

 

APOLIPOPROTEINS 

Apolipoproteins or apoproteins are the polypeptides found in various types of lipoproteins. 

Earlier, the existence of three major groups of apolipoproteins – Apo A, Apo B and Apo C 
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were reported
[1]

, but lately, more apolipoproteins, such as D, E, H and J have been 

characterized. The classification of apolipoproteins based on their various characteristics, 

physiological function and chromosomal locations is summarized in Table 1. The gene of 

apolipoproteins are located on chromosomes 1, 2, 3, 6, 11 and 19 (Table 1). All these 

apolipoproteins are associated with lipoproteins and involved in the transport of 

chylomicrons, triglyceride, cholesterol, fatty acids, etc. They also act as cofactors or 

activators of enzymes like lecithin-cholesterol acyl transferase (LCAT) and lipoprotein lipase 

(LPL). They are differently implicated in various diseases and play significant role in 

diagnosis and prognosis of several disease conditions. 

 

Table 1:- Classification and properties of major human plasma apolipoproteins 

 

HISTORY AND NOMENCLATURE 

Petar Alaupovic, an internationally renowned biochemist and lipidologist, was a founder of 

the modern field of lipoproteins whose ideas continue to have an impact on its development. 

He proposed the ABC nomenclature for apolipoproteins, which initially included 

apolipoproteins A-I, A-II, B, C-I, C-II, C-III, D, and E. Dr Alaupovic showed that these 

lipoprotein subtypes have specific functions and relation to atherosclerosis.
[9]

 

 

Originally, clusterin was identified as a major constituent of ram rete testis fluid and shown to 

induce the aggregation of Sertoli cells in vitro (hence named “clusterin”) and favor 

homotypic aggregation within mixed cell suspensions.
[10,11]

 Subsequent researcher shows that 

Apolipoprotein 
Chromosomal 

location 
Functional activity Lipoprotein carrier(s) 

Apo A-I
[2] 

11 Cofactor LCAT Chylomicron, HDL 

Apo A-II
[2] 

1 Not known HDL 

Apo A-IV
[3] 

11 

 

2 

Activation of LCAT,  Secretion of 

triglyceride from liver binding 

protein to LDL receptor 

Chylomicron, HDL 

VLDL, IDL, LDL 

Apo B-48
[4] 

2 
Secretion of triglyceride from 

intestine 
Chylomicron 

Apo B-100
[4] 

2 Cholesterol transport from liver LDL 

Apo C-I
[4] 

19 Activation of LCAT (?) Chylomicron, VLDL, HDL 

Apo C-II
[5]

 19 Cofactor of LPL Chylomicron, VLDL, HDL 

Apo C-III
[6]

 11 
Inhibition of apo CII, activation of 

LPL 
Chylomicron, VLDL, HDL 

Apo D
[2] 

3 Unknown HDL 

Apo E
[7]

 19 
Facilitation of uptake of 

chylomicrons remnant and LDL 
Chylomicron, VLDL, HDL 

Apo (a)
[8] 

6 Unknown Lp (a) 
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clusterin is similar to apoJ. Besides apoJ and clusterin, other synonyms include complement 

lysis inhibitor (CLI), Ku70-binding protein 1 (KUB-1), sulfated glycoprotein 2 (SGP-2), 

Testosterone-repressed prostate (TRPM-2).
[12]

 

 

GENETICS 

CLU in humans is encoded by a single copy-gene, which is located on chromosome 8p21. 

The wide distribution in different tissues indicates the importance of its biological roles.
[12]

 

CLU is involved in lipid transport since it is associated with high-density lipoproteins (HDL) 

in plasma, specifically with particles containing apolipoprotein A-1 and cholesteryl ester 

transfer protein (CETP).
[13]

 It has been shown that induces cholesterol export from 

macrophage foam cells,
[14]

 transports lipids during cell differentiation and cell death
[15]

 and 

stabilizes stressed proteins.
[16]

 

 

STRUCTURE AND LOCATION 

It is a 70 kDa glycoprotein, circulating as disulphide linked heterodimer component of lipid 

poor HDL and VLDL. Its function is not clear, but it is thought to be involved in lipid 

transport, regulation of complement function, sperm maturation and membrane recycling.
[14]

 

The structure of apoJ/clusterin has not provided much insight into function. Mammalian 

apoJ/clusterins are approximately 80-kDa heterodimers
[17,18]

 consisting of two 40-kDa chains 

joined by a unique five-disulfide-bond motif.
[19]

 The protein has limited homology to other 

proteins and lacks clear functional motifs.
[17]

 It does contain three putative amphipathic α-

helical regions, which could allow it to interact with lipids and hydrophobic regions of other 

proteins.
[20]

 A number of studies presented that is implicated in aging and age-related diseases 

as neurodegeneration, diabetes and atherosclerosis
[21-23]

 and acts as a biomarker of cellular 

senescence and oxidative stress.
[24]

 

  

Human apoJ has three such domains, one in Jα and two in Jβ.
[25]

 These domains are not, 

however, homologous with the 22-mer repeat that constitutes the amphipathic helices of 

members of the apolipoprotein gene family.
[26]

 Unlike other apolipoproteins but similar to 

certain coagulation and complement proteins, apoJ circulates as a disulfide-linked 

heterodimer for which the subunits, Jα  and Jβ, are produced by proteolytic cleavage of the 

apoJ precursor.
[25,27,28]

 Each apoJ subunit is glycosylated via Asn, and carbohydrate accounts 

for 30% of the molecular mass. Moreover, apoJ shares some homology with complement 

components C7, C8, and C9, specifically within a Cys rich motif in Jar (residues 75-98).
[29]
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Plasma apoJ-lipoproteins are spherical particles
[14,30]

 that have a bimodal distribution within 

HDL2 and HDL3+VHDL classes in the density range 1.16-1.25 g/ml.
[14]

 The apoJ-containing 

species are relatively poor in lipid: protein makes up 78-89%, and lipid 11-22% of the 

lipoprotein mass.
[14,30]

 Of the lipids, phospholipid and cholesterol predominate; triglyceride 

accounts for about 1% of apoJ-HDL lipid.
[14,30]

 The major proteins are apoJ and apoA-I; the 

mole ratio of apoJ: apoA-I present in affinity-purified apoJ-HDL is 5:l.
[31]

 The apoA-I 

associated with apoJ represents only 2-4% of the total apoA-I in plasma
[14,30]

 and is tightly 

associated with apoJ, requiring nonionic detergents for dissociation.
[30]

 The origin of blood 

apoJ- DL, present at      mg dl,
[29,32]

 is not known. The relatively high abundance of apoJ 

mRNA in hepatocytes
[25]

 combined with the large size of the liver predict that the liver, rather 

than other organs that also express apoJ mRNA,
[25]

 is the source of the circulating pool of 

apoJ.     

 

In rodents, apoJ becomes bound to the heads and distal tails of spermatozoa, suggesting its 

participation in sperm maturation.
[33,34]

 ApoJ can also bind to membranes of other cells, 

notably adrenal chromaffin cells
[35]

 and erythrocytes,
[36]

 where it has been implicated in the 

processes of membrane retrieval
[37]

 and cell-cell association, respectively. In addition, apoJ is 

up regulated in tissues undergoing programmed cell death and degeneration.
[38]

 ApoJ-

lipoproteins secreted into the blood may circulate without further modification. Alternatively, 

they may be secreted as species quite different in macromolecular structure and composition 

from those in plasma, and be converted to the plasma species by plasma enzymes and/or lipid 

transfer proteins. The differences in overall size and in lipid: protein ratios between 

Hepatocellular carcinoma (Hep G2) cell and plasma apoJ-lipoproteins suggest that HepG2 

cells secrete “nascent” apoJ-lipoproteins that lose lipid, particularly triglyceride, and 

accumulate apoA-I as they circulate. Alternatively, circulating lipoproteins comprised of both 

apoJ and apoA-I may be derived from tissues other than the liver. Consistent with the concept 

of apoJ-lipoprotein remodeling is the finding that purified apoJ, added to apoJ-deficient 

plasma, binds apoA-I.
[31]

  

 

The associated apoA-I has the potential to alter the half-life of apoJ-lipoproteins in the 

circulation by stabilizing them or by blocking their uptake and clearance, with a consequent 

increase in apoJ levels. Although the lipid compositions of plasma apoJ-HDL and nascent 

HepG2 apoJ-lipoproteins are similar in that both contain significant phospholipid and 

cholesterol, HepG2 cell apoJ-lipoproteins contain significantly more triglyceride. HepG2 cell 

apoJ-lipoproteins secreted over a period of 6 h have a phospho1ipid: triglyceride ratio (2:1), 
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similar to that of apoE-lipoproteins (3: l) but significantly greater than that of apoA-I-

containing lipoproteins (7-8: l). Taken together, these findings suggest that apoJ is secreted 

by the liver as a triglyceride-rich lipoprotein that is transformed during circulation to a 

triglyceride-poor species. The corollary of this suggestion is the prediction that the 

triglyceride in nascent apoJ-lipoproteins is a substrate for LPL, HTGL, and/or cholesteryl 

ester transfer protein (CETP). 

 

Clusterin expression is increased during pathological stresses (e.g. hydrostatic pressure insult 

or ischemic injury in the kidney) and certain disease states (e.g. gliomas).
[12]

 A variety of 

independent studies have suggested that clusterin protects cells from stresses such as tumor 

necrosis factor, heat, and oxidative stress.
[39]

 Furthermore, recent studies of clusterin knock-

out mice have suggested that clusterin protects mice from (i) the pathological consequences 

of inflammation associated with experimentally induced autoimmune myocarditis
[40]

 and 

ischemia,
[41]

 although the latter claim has been disputed,
[42]

 and (ii) age-dependent deposition 

of antibody-containing aggregates in the kidney.
[43]

 The clusterin promoter contains a highly 

conserved 14-bp element, which is recognized by the transcriptional regulator heat shock 

factor 1.
[44]

 Heat shock factor 1 activates expression of heat shock proteins (which protect 

cells from stresses) and clusterin.
[44]

 An emerging theme is that clusterin is a protective 

molecule that is up-regulated during times of physiological stress. 

 

A comparison of the sequences of clusterin from eight different mammals shows that there 

are five highly conserved histidine residues within residues 241 and 290 of the protein 

(human clusterin numbering). Thus, His-252 and His-263 are found in all of the available 

sequences, whereas His-290, His-241, and His-261 are also highly conserved, being found in 

a minimum of five of the eight sequences. It is therefore possible that this region of clusterin 

represents an “electrostatic switch”; p -dependent protonation of its histidine residues may 

lead to disruption of the interfaces between heterodimers within clusterin aggregates, 

favoring dissociation of the aggregates.  

 

FUNCTIONS 

Apolipoprotein J (apoJ)/clusterin is a circulating glycoprotein constitutively expressed by 

diverse epithelial cells. The protein is induced in injured organs in various disease states, such 

as Alzheimer‟s disease, atherosclerosis, myocardial infarction, and multiple forms of acute 

and chronic renal disease.
[45,46]

 Proposed functions for apoJ/clusterin include lipid transport, 

complement defense, regulation of apoptosis, membrane protection, and promotion of cell-
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cell interactions.
[46] 

ApoJ/clusterin can bind a large number of macromolecules implicated in 

disease initiation and progression, including immunoglobulins and complement components. 

Recently clusterin has been demonstrated to function as a molecular chaperone, preventing 

denatured protein precipitation through binding to exposed hydrophobic regions and 

improving high-molecular weight complex solubility.
[47]

 
 

 

In addition to its association with lipoproteins, apoJ has been isolated from human plasma in 

association with soluble complexes of the terminal complement cascade components, C5b-

9.
[20]

 Its association with C5b-9 complexes implies a role in complement function and, in fact, 

apoJ is a potent inhibitor of complement-mediated cell lysis in vitro by interacting with C5b-

7 to prevent activation of C8 and C9.
[48,49]

 Potential roles in both lipid metabolism and 

complement function are substantiated by structural considerations. 

 

ApoJ and its homologs are thought to participate in biological functions other than lipid 

transport and complement regulation (Table 2). ApoJ is particularly abundant in the male 

reproductive tract where it is secreted by testicular Sertoli cells and epididymal epithelium.
[33] 

 

Table 2: Apo J homologs 

Name Species Comments 

Apolipoprotein J human HDL associated protein 

NA1/NA2 human HDL associated protein 

SP-40, 40, CLI human Complement cell lysis inhibitor 

TRPM-2 rat Programmed cell death 

SGP-2, DAG rat Reproductive tract; Sertoli cell secretory protein 

S45-S35 rat Sperm binding protein 

Clusterin ram Cellular aggregation 

gp80 dog MDCK apical secretory protein 

Glycoprotein III cow Adrenal medullary chromaffin granule secretory protein  

 

The exact role of apoJ-lipoproteins in whole body lipid metabolism and homeostasis is 

unknown at present. The possibility that apoJ may bind apoA-I after entering the circulation 

leads to speculation about the circumstances of an interaction between them. The apoA-I that 

binds to apoJ-lipoproteins may be lipid-deficient apoA-I derived from several sources: 

secreted from hepatocytes or shed from triglyceride-rich lipoproteins as a consequence of 

lipoprotein lipase (LPL) or hepatic triglyceride lipase (HTGL)-mediated triglyceride 

metabolism.
[50,51]

 This latter potential source is intriguing in light of the positive correlation 

between plasma triglyceride and apoJ levels.
[32]

 Since high levels of triglyceride-rich 

lipoproteins and increased lipolysis can result in a rise in the level of lipid deficient apoA-I, 
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apoJ may serve as a „„sink” for apoA-I shed from these lipoproteins. In vivo, the distribution 

of clusterin within tissues is broad; clusterin mRNA being relatively abundant in testes, brain, 

liver, and ovary and detectable in several other tissues including the kidney, thymus, spleen, 

and heart. Various functional aspects of apoJ/clusterin are discussed below. 

 

1. Cardiovascular System 

The role of CLU in atherosclerosis remains largely unknown. Since cellular stress is engaged 

with the pathogenesis of the disease, the study of the apolipoprotein expression on vascular 

tissue and the elucidation of underlying mechanism merit scientific interest. Studies have 

shown that CLU distribution in human aorta is increased with the progression of 

atherosclerosis indicating a protective response to oxidative stress.
[13,52,53]

 Additionally to its 

roles as secreted protein, it has been reported that might act intra-cellularly regulating 

homeostasis in human cells.
[54] 

High serum concentration of CLU has been coupled to 

vascular damage and generalized stress conditions such as type II diabetes and coronary 

artery disease
[23]

 and it has been associated with significant coronary stenosis.
[55] 

 

 

In aortic tissue, CLU expression increases with atherosclerosis progression from fatty streaks 

to advanced lesions
[13,52]

 while its presence in normal aortas is unobtrusive.
[13]

 The molecule 

localization on vascular tissue could be attributed to HDL particles penetration from plasma, 

production through vascular smooth muscle cells (VSMC), release from activated platelets 

and retention in vascular wall through glycoproteins of extracellular matrix.
[56]

 Recently, it 

has been shown that CLU expression in VSMC is induced by cellular RNA released from 

necrotic cells in atherosclerotic lesions through toll-like receptor 3
[53]

 while it seems that 

inhibits the apoptosis of VSMC in vitro by binding to modified-LDL particles
[57]

 The 

enhanced expression of CLU on injured tissue may serve the clearance of necrotic cell debris 

contributing to its protective role. 

 

CLU expression was not higher in diabetic patients or in patients suffering from coronary 

artery disease. Studies have demonstrated that serum CLU concentration is elevated in these 

patients‟ categories
[23,55]

 reflecting a generalized stress induction mechanism, which is related 

to these diseases. Certainly, it was supported that the elevated serum levels indicate vascular 

damage.  
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2. Immunity 

A role for apoJ/clusterin in immune complex-mediated disease was first suggested by its 

interaction with immunoglobulins.  apoJ/clusterin can bind to the Fc and Fab regions of all 

isotypes of IgG, IgM and IgA by a noncovalent mechanism.
[58]

 The site of interaction is 

different than the Fc binding site of C1q and protein A.
[58]

 apoJ/clusterin has been shown to 

preferentially bind to aggregated compared to monomeric IgG.
[58]

 These results suggest that 

apoJ/clusterin has multiple potential binding sites through which it may interact and facilitate 

the clearance of polymeric IgG present in immune complexes. 

 

In addition to its interaction with immunoglobulins, apoJ/clusterin has been found in 

conjunction with immune deposits in a number of immune-mediated glomerular diseases, 

including IgA nephropathy, membranous glomerulonephritis, and lupus nephritis.
[59,60]

 In 

most cases apoJ/clusterin colocalizes with components of the membrane attack complex 

when these components are present with immunoglobulins but not when the membrane attack 

complex is found in the absence of immunoglobulins, suggesting a direct role for 

apoJ/clusterin in the processing of immune complexes.
[59,60]

 apoJ/clusterin has also been 

localized to the glomerulus in such immune-mediated models of glomerulonephritis as 

Heymann nephritis and anti-Thy 1 nephritis.
[61,62]

 In the latter model, upregulation of both 

clusterin mRNA and protein has been demonstrated in mesangial cells, providing evidence 

that clusterin can be synthesized by these cells following immune attack.
[62]

 The association 

of apoJ/clusterin with immune deposits in experimental and human glomerulonephritis 

suggests it may modulate responses to immune-complex-induced injury. An association 

between apoJ/clusterin and immune complex disease is found in patients with systemic lupus 

erythematosis (SLE). Levels of apoJ/clusterin in serum are lower in patients with SLE than in 

normal controls or patients with rheumatoid arthritis, osteoarthritis, or Sjogren‟s 

syndrome.
[63]

 ApoJ and known apolipoproteins have in common the predicted amphipathic 

helices that are important in protein-lipid interactions.
[25,27]

  

 

Some of clusterin‟s known properties seem to be explained by its avidity for exposed 

hydrophobic domains on macromolecules. First, clusterin, which is a potent inhibitor of 

complement mediated lysis in vitro,
[19,64,65]

 and colocalizes with membrane attack complex 

(MAC) deposits in vivo,
[20,60,59,66]

 most probably binds to newly exposed hydrophobic 

domains in nascent C5b-7, C5b-8, and C5b-9 complexes thereby inhibiting membrane 

insertion.
[67]

 Second, clusterin associates with certain high density lipoprotein (HDL) 
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particles
[14,68,30]

 and is dissociated from these particles by non-ionic detergents, suggesting 

that it interacts directly with lipids.
[30]

 There is growing evidence that clusterin may be 

involved in tissue remodeling. Clusterin gene expression is highly increased during the 

involution of certain tissues in response to hormonal modulations or injury,
[38,69,70,71,72,73]

 in 

particular under circumstances where cell death occurs by apoptosis. Recent reports indicate, 

however, that clusterin is not expressed by apoptotic cells in vivo,
[21,74]

 and it has been 

suggested that clusterin may be part of the repair and remodeling response within regressing 

tissues.
[12] 

Recently, clusterin gene expression has been correlated to the in vitro 

differentiation of aortic smooth muscle cells
[65]

 and the oncogenic transformation of 

neuroretinal cells by various retroviral oncogenes.
[75]

 

 

3. Oxidative stress 

The chaperone action of clusterin might be physiologically “protective” by reducing the rate 

or extent of progression of diseases associated with abnormally high levels of protein 

precipitation. Many features of the chaperone action of clusterin are similar to that of the 

intracellular small heat shock proteins (sHSPs).
[11]

 For example, both types of chaperone 

interact specifically with stressed proteins that are slowly aggregating on the off-folding 

pathway toward a precipitated state
[64]

 to form stable, solubilized high molecular weight 

complexes.
[39,22]

 They do not themselves refold stressed proteins but, by binding to them, 

create a refolding-competent reservoir from which other ATP-dependent chaperones may 

retrieve functional proteins.
[17]

 The quaternary structure and chaperone action of at least some 

of the sHSPs is affected by increased temperature. For example, elevated temperature induces 

an increased rate of subunit exchange in mammalian αA-crystallin and a concomitant 

enhancement of its chaperone action.
[76]

 Similarly, at low to physiological temperatures, yeast 

HSP26 exists in solution as oligomers. 

 

Clusterin/Apolipoprotein J is a secreted protein biosensor of oxidative stress, which is 

unregulated in a wide variety of pathological processes including aging, neurodegeneration, 

diabetes and atherosclerosis.
[23,24]

 Although the precise function of the molecule is still under 

investigation, it has been accepted that CLU exerts cytoprotective and anti-inflammatory 

actions.
[53]

 Clusterin has been implicated in pathological conditions in which oxidative stress 

plays a central role such as aging, neurodegenerative diseases, and cancer progression.
[77]

 

Based on its large repertoire of unrelated binding partners, it has been also implicated in 

diverse physiological processes such as lipid transport, cell differentiation, regulation of 
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apoptosis, clearance of cellular debris, and stabilization of misfolded proteins.
[77]

 Both 

cytoprotective and cytotoxic roles for clusterin have been reported. Functionally, clusterin is 

similar to the small heat shock proteins with chaperone-like activity, binding to stressed and 

misfolded proteins.
[22]

 Much of the work on clusterin has focused on its role as an 

extracellular chaperone,
[78,79]

 binding to exposed hydrophobic regions of proteins and 

maintaining them in a state competent for subsequent refolding by other chaperones, e.g. 

HSP70.
[80,81,16]

  

 

The role of clusterin as an extracellular chaperone is well established.
[77,79,82]

 For example, its 

interaction with β-amyloid promotes β-amyloid clearance and uptake (via cell surface 

megalin receptor) and subsequent degradation.
[82]

 Recent association of single nucleotide 

polymorphisms at the CLU gene locus with Alzheimer disease
[83,84]

 supports the suggestion 

that both CLU and APOE may act as modifying genes to cooperatively regulate the 

deposition and clearance of β-amyloid,
[85]

 which may affect the onset and/or clinical 

expression of the disease. Similarly clusterin and COMMD1, by affecting the efficiency of 

clearance of mutant Cu-ATPase molecules, may play a role in modifying the clinical 

expression of Menkes and Wilson diseases. Whether they function cooperatively or 

redundantly remains to be established. Recently, the pharmacological folding chaperones 

such as 4-phenylbutyrate and curcumin showed potential to rescue the folding defects of 

ATP7B harboring patient mutations
[86]

 and may overcome some of the effects of variations in 

these potential modifying genes.  

 

Intracellular (nuclear and cytosolic) forms of clusterin exist, but the mechanisms responsible 

for the derivation of these forms remain poorly defined, and less is known about its 

intracellular role.
[77,79]

 Clusterin potentially represents the only chaperone that regulates 

protein stability both extra and intracellularly.
[77]

 Therefore, the Cu-ATPases provide a new 

model toward understanding the role of intracellular clusterin. This work also provides an 

insight into the mechanisms of Cu-ATPase quality control, which is necessary for the 

maintenance of normal copper homeostasis and cell survival in disease states in the context of 

continuous synthesis of mutant Cu-ATPase molecules. Overall, the results from this study 

support the possibility that variations in clusterin alleles could contribute to the variability in 

the clinical expression of Menkes and Wilson diseases.  
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The enhanced ligand-binding and chaperone actions of clusterin at low pH may have 

important physiological relevance. A phenomenon known as local acidosis occurs at sites of 

tissue damage or inflammation where the local pH falls to <6. This phenomenon has been 

reported to occur at sites of inflammation,
[87]

 cardiac ischemia,
[88]

 and infarcted brain
[89]

 and 

in the brains of Alzheimer‟s sufferers.
[90]

 Under these conditions, clusterin oligomers may 

dissociate, and the enhanced binding/chaperone actions of the 80-kDa species could help to 

inhibit the aggregation and deposition of inflammatory and/or toxic insoluble protein 

deposits, which would otherwise exacerbate pathology. 

 

4. Erythrocytes 

sCLU is a primarily secreted protein sorted for secretion through the classic endoplasmic 

reticulum- and Golgi-associated secretory pathway.
[54,91,92,93] 

There is evidence that sCLU is 

also a “secreted” component of mature RBCs through the membrane exovesiculation process. 

sCLU contributes to the scavenging of oxidized or aggregated molecules that are selectively 

removed from senescent or stressed RBCs via vesiculation. By assuming that, sCLU 

represents not only a molecular biomarker of cellular senescence and oxidative stress but also 

a pro-survival factor that contributes to the transient inhibition or delay of the premature 

removal of otherwise functional RBCs from the circulation; this proposed function of sCLU 

is further supported by the recently predicted role of the protein in the RBCs death regulatory 

pathways.
[94]

 

 

A possible mechanism for the chaperone action of clusterin is schematically represented in 

Fig. 1. This scheme is analogous to that proposed for the sHSPs
[95]

 and draws on the 

conclusions of recent work demonstrating that clusterin binds preferentially to slowly 

aggregating proteins on the off-folding pathway.
[64]

 The unfolding of a target protein under 

stress conditions occurs via a series of partly structured intermediates or molten globule states 

that are present along the normal protein folding pathway. These intermediates are relatively 

long-lived and potentially unstable, because they expose significant hydrophobicity to 

solution, which may facilitate their aggregation and precipitation via the irreversible off-

folding pathway. A protein that is present on the off-folding pathway undergoes dynamic 

processes of association and dissociation. In solution, clusterin also exhibits reversible 

association to form aggregates of various sizes.
[96]
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FIG. 1: A schematic representation of a possible mechanism for the chaperone action of 

clusterin. 

 

5. Nervous system 

In the nervous system, a close relationship between neurodegeneration and clusterin gene 

expression has been established.
[97,98]

 Although several normal populations of neuronal and 

glial cells contain clusterin mRNA,
[97,99]

 higher clusterin mRNA levels are observed after 

deleterious experimental treatments, like surgical,
[100,101]

 or excitotoxic
[97,99]

 brain injuries, but 

also in pathological brains from Alzheimer‟s diseased human patients,
[73]

 scrapie infected 

hamsters,
[102]

 or at epileptic foci.
[103]

 Clusterin mRNA accumulation has also been observed 

in retinitis-pigmentosa,
[104]

 and shown to coincide with the time of photoreceptor cell deaths 

in mouse models of this disease.
[105]

 Purkinje cells whose apoptosis is induced by the lurcher 

gene, were shown to contain high levels of clusterin mRNAs prior to their death .
[106]

 Besides, 

the clusterin protein has been found associated with dystrophic neurites,
[107]

 amyloid 

plaques
[108]

 and the soluble form of beta amyloid protein
[109]

  from Alzheimer‟s diseased 

human brains. The ischaemic, but not the normal, human Purkinje cells are also intensely 

immunostained with anti-clusterin antibodies.
[110]

 In spite of these numerous observations, the 

precise function of clusterin in damaged nervous system remains to be elucidated. 

 

6. Genito-urinary system 

Clusterin is induced during renal and other tissue injuries.
[12,97,111-113]

 Despite its immediate 

and often prominent recruitment after injury, the role of clusterin remains elusive. Persistent 

increased expression of clusterin occurred in several chronic models of renal disease 

including renal ablation, tubulointerstitial disease induced by dietary deficiency of vitamin E 

and selenium, and in a mouse model of polycystic kidney disease.
[114-116]

 Studies in human 
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renal disease have demonstrated clusterin predominantly in glomerular immune deposits 

usually in association with other complement components.
[60,66]

 Tubular staining for clusterin 

has either not been a prominent feature of the diseases studied
[60]

 or details regarding such 

tubular staining have not been provided.
[66]

 Neither of these studies examined clusterin in 

cystic disorders. Despite the marked tubular epithelial cell induction of clusterin in 

experimental models of renal injury, limited details regarding tubular expression of clusterin 

in human renal disease are available. 

 

The earliest studies of clusterin were done in the reproductive system where clusterin was 

identified as a major protein in the secretory products of cultured rat Sertoli cells and the fluid 

of ram rete testis.
[117,10]

 In the rat testis, clusterin is synthesized by Sertoli cells, secreted into 

the lumen of the seminiferous tubules, and is the dominant protein in the spent medium of 

cultured rat Sertoli cells.
[118]

 Clusterin is also localized to the prostate. Tenniswood and co-

workers found that after castration of rats, expression of clusterin or testosterone-repressed 

prostate message-2 (TRPM-2) increased in the ventral prostate
[119]

 in relation to cellular 

damage. Clusterin has been localized to the cytoplasm of epithelial cells in the proximal 

region of the prostatic duct.
[71]

 Also, the prostate form of clusterin is glycosylated differently 

than testicular and epididymal clusterin.
[120]

 Although prominent in the entire reproductive 

tract of the male, less is known about where clusterin is expressed in the female reproductive 

tract. Northern analysis showed that clusterin mRNA is expressed in the human ovary and the 

surface epithelia of the uterus and the uterine glands.
[121]

 

 

CONCLUSIONS AND FUTURE PERSPECTIVES 

Apolipoprotein J (apoJ)/clusterin is a circulating glycoprotein constitutively expressed by 

diverse epithelial cells. Apo J has been implicated in a wide range of physiological and 

pathophysiological processes, such as reverse lipid transport and redistribution, apoptosis, 

folding of damaged extracellular proteins (chaperone), cell adhesion and aggregation, 

membrane recycling, complement regulation, tissue remodeling, tumorigenesis and several 

age related diseases (e.g. atherosclerosis and Alzheimer‟s disease). Further study is required 

to fully understand the complex pathophysiological role of apoJ/clusterin. 
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