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ABSTRACT 

Different categories of good quality fatty acids under different classes 

of phospholipids are considered to be important determinants of 

ecosystem health and stability. They are also a valuable tool to 

measure inputs, cycling of materials in estuarine- mangrove food webs. 

Lingula anatina, a Precambrian brachiopod benthic macrofauna, 

inhabiting at the confluence of Subarnarekha estuary. They obtained 

their essential fatty acids (EFAs) of phospholipid groups, needed for  

their different physiological activities. These EFAs entered within their body through 

biotransformation and bioconversion processes from different food sources available in 

plenty at this intertidal basin. Different saturated and unsaturated fatty acids present within 

the body of studied species indicated that these can be considered as a good biomarker to 

understanding thophic interactions at a mangrove- estuarine ecosystem at the confluence of 

Subarnarekha estuary. 

KEY WORDS: Brachiopod, Phospholipids, Biomarker, Subarnarekha Estuary. 

 

INTRODUCTION 

Lipids are major sources of metabolic energy and essential materials for the formation of cell 

and tissue membranes. They are very important in the physiology and reproductive processes 

of marine animals and reflect the special biochemical and ecological conditions of the marine 
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environment.
[1, 2, 3]

 The relative proportion and composition of fatty acids (FA) in marine 

organisms are characteristic for every species and genus. Several comprehensive reviews are 

available on marine FA, their occurrence, their roles and the methods used in their     

analysis.
[ 4, 5, 6, 7, 8]

 

 

Marine phospholipids (PL) have been the focus of much attention recently. Many studies 

have shown that marine PL provides more advantages than marine triglycerides (TAG) 

available from fish oil. These advantages include: i) a higher content of physiologically 

important n-3 long chain polyunsaturated fatty acids (LC PUFA) such as eicosapentaenoic 

acid (EPA) and docosahexaenoic acid (DHA)
[9]

 ii) a better bioavailability of EPA and 

DHA
[10]

 iii) a broader spectrum of health benefits including those from n-3 LC PUFA, their 

polar head groups and the combination of the two in the same molecule
[11]

iv) a better 

resistance towards oxidation due to the antioxidative properties of PL.
[12, 13]

 

 

Phospholipids can be categorized into three major classes: glycerophospholipids, ether 

glycerolipids and sphingophospholipids. Among them, glycerophospholipid is the most 

widespread class and serves as ecologically important biomarker to understanding marine- 

estuarine food web interactions among different floral and faunal community. Therefore, the 

emphasis is given on phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

phosphatidylserine (PS) and sphingomyelin (SPM) to document various types of saturated 

and unsaturated fatty acids of above phospsolipid groups of Lingula anatina. 

 

Bilayer structures of phospholipids are main constituents of biological membranes, which 

serve as biological boundaries, responsible for metabolic regulation.
[14]

 Marine phospholipids 

also contain high amounts of pharmaceutically significant polyunsaturated –ω3 fatty acids, 

mainly eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3). 

The interest in marine phospholipids as carriers of –ω3 fatty acids increases as –ω3 fatty 

acids from phospholipids were observed to be more easily accessible for catabolic processes 

than –ω3 fatty acids from triglycerides.
[15]

 

  

In marine ecosystem, lipids provide the densest form of energy which is transferred from 

algae to vertebrates via zooplankton. 
[16]

 Alongside they contain essential fatty acids and 

sterols which are considered to be important drivers of ecosystem health and stability. The 

importance of different fatty acids and phospholipids with different head groups in regulation 

of cellular processes together with the fact that fluidity may be controlled by just a few 
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compounds suggests that molecular species analysis would also help describe mechanism 

behind the ecological effects of essential fatty acids.
[16] 

 

Studies on fatty acids of phospholipids have been carried out previously by various authors in 

various animals like  Freites et al.(2002) , Caers et al. (1999) and  Soudant et al. (1999)  in 

mussels; Soudant et al. (1999)  and Abad et al.(1995) in Oysters; Kraffe et al. (2004) and 

Fernandez-Reiriz et al. (1999) in clams and Pazos et al. (1997) in molluscs; Hayashi and  

Kishimura (2002) in squids; Suprayudi et al.(2004) , Hamasaki et al. (2002) and Lahdes et 

al.(2000) in crustaceans and Litchfield and Morales  (1976) and Barnathan and  Kornprobst 

(1998) in sponges, Parrish(2009) in echinoderms and Vertebrates. Phospholipids, the most 

important lipid classes have been studied in bivalves also.
[31]

 But no studies have been carried 

out in intertidal brachiopod benthic animal such as Lingula anatina inhabiting in three 

contrasting mudflats at Talsari at the confluence of Subarnarekha estuary. The present study 

aims focusing the qualitative composition of saturated and unsaturated fatty acids of four 

classes of phospholipid’s groups in Lingula anatina. 

 

MATERIOLS AND METHODS 

Individuals of Lingula anatina were collected randomly from three contrasting study sites 

(namely SI, SII, and SIII) from the confluence of Subarnarekha estuary Bay of Bengal at 

Talsri (Longitude 87º5′ E to 88º5′ E and Latitude 20º30′ N to 22º2′ N) near New Digha, West 

Bengal, India. Muscles of Lingula anatina were separated by dissection in the laboratory and 

immediately frozen and stored at -20°C until analyzed. The study was undertaken during 

premonsoon period, 2011. 

  

Total lipids were extracted from each sample following Bligh and Dryer (1959) method. 

Identification and confirmation of fatty acids were done by following Ackman (1989). The 

same methodology as published by Das et al, 2014 and Samanta et al., 2014 for total lipid 

extraction and identification and confirmation of fatty acids were also followed during 

present research work. 

 

RESULTS 

Biochemical analysis of muscles of samples of Lingula anatina have revealed that among 3 

major classes of lipids (viz.-neutral lipid-NL, glycolipid –GL and phospholipids -PL), 

phospholipids were recorded highest amount during present study as documented in Table 2. 

Further analysis of PL exhibited 4 different classes of phospholipids i.e. PE, PC, SPM and PS 
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which have been found to be present within the muscles of L.anatina as represented in Table 

3. Among these PC have been recorded in highest amount (32.84%, Table 3). 

 

Various classes of fatty acids (as found during present research), their designation, names, 

recent uses as biomarkers and their documentation by several authors, under 4 major groups 

of phospholipids are represented in the Table 4 and 5. From this it is found that Lingula 

anatina contained 7 different types of saturated fatty acids (SAFA), 7 mono unsaturated fatty 

acids (MUFA) and 14 different types of polyunsaturated fatty acids (PUFA). Out of 14 

different types of PUFA 21:5ω3 registered highest amount (11.9%; under PS group) followed 

by 20:ω3 (6.8%; under PC group) and 20:4ω6 (5.9%; under PE group and 2.4% under SPM 

group). 

 

The present paper has documented that the studied animal contained good amount of PUFA 

(79.09%) out of which 47.70% belongs to -ω3 categories and 34.02% belongs to –ω6 

categories. From Table 5 it is also inferred that the L. anatina possessed very high amount of 

SAFA. 

 

Among different categories of SAFA 16:0 was recorded in highest amount (PC- 40.8%, 

SPM- 38%, PE- 35.5% and PS- 14.6%) in all types of phospholipid groups. Out of 7 various 

classes of MUFA 18;1ω9 recorded highest amount (PC- 8.2%; PE- 4.1% and SPM- 3.9%) 

followed by 22:1 (1.6%) as expressed in Table 4. During present work it was found that 

among 14 different classes of PUFA 20:4ω6 was documented its highest value in PE group 

(5.9%) and SPM group (2.4%) where as 20:5ω3 showed its highest concentration (6.8%) in 

PC group and 21:5ω3 has showed  its maximum peak (11.9%) in PS group as showed in 

Table  5. 

 

Results of the analysis of different categories of phospholipids as recorded and presented in 

Table 5 has indicated that major fatty acid components in muscles of studied macrofauna 

were 16:0(max- 40.8%, PC), 18:0 (max- 37.1%, SPM), 18:1ω9 (max- 8.2%, PC), 18:2ω6 

(max-4.2, PC), 18:3ω3(max-2.3%, PC), 20:4ω6 (max- 5.9%, PE) and 20:5ω3(6.8% PC). The 

amount of 22:6ω3 was quite low during present study as presented in Table 4 and 5. Fatty 

acid designations, names and some recent uses as biomarkers has been presented in the Table 

6. 
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Table 1- Percentage of total lipid obtained from muscle of Lingula anatina. 

Sample Amount taken Total lipid obtained 

Muscles 4.32 gm 0.12 gm (2.78%) 

 

Table 2- Percentage of various classes of lipid obtained from total lipid of muscle of 

Lingula anatina. 

Samples Percentage of lipid (W/W) 

Phospholipids (PL) 55.13 

Neutral Lipids (NL) 32.57 

Glycolopids (GL) 12.30 

 

Table 3- Phospholipid composition of phospholipid fraction obtained from the total 

lipid of Lingula anatina. 

Samples Lipid obtained (mg) Percentage of lipid (w/w0) 

Phosphatidylethanolamine (PE) 10.6 12.09 

Phosphstidylcholine (PC) 28.8 32.84 

Sphingomyelin (SPM) 9.9 11.29 

Phosphatidylserine (PS) 2.8 3.19 

 

Table 4: Total amount of different fatty acids obtained from different classes of 

phospholipids. 

Name of fatty acids Percentage of fatty acids (w/w) 

PUFA 79.02 

-ω3 47.70 

-ω6 34.02 

 

Table 5: Fatty acids compositions of various classes of phospholipids obtained from 

muscle sample of Lingula anatina (% w/w of each component in total fatty acids). 

Components 
a
 PE PC SPH PS 

14:0 4.6 2.4 1.4  

15:0 1.2 0.7 0.6  

16:0 35.5 40.8 38.0 14.6 

17:0 6.1 2.3 4.3 10.2 

18:0 23.1 10.1 37.1 13.6 

22:0 0.5 0.8 0.4 3.5 

24:0 3.0 0.9 0.01 5.7 

Total SAFA 74.00 58.00 81.81 47.60 

14:1     

15:1 0.3 0.1 0.1  

16:1 2.2 12.8 1.4  

17:1 0.6 0.1 0.4  

18:1ω9 4.1 8.2 3.9  

22:1 0.2 0.1 0.7 1.6 

24:1  0.1 1.6 0.4 
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Total MUFA 7.4 21.4 8.1 2.0 

16:2 0.4 0.2 0.1  

17:2 0.3 0.3   

18:2ω6 4.2 2.6 1.8 9.3 

18:3ω6 0.2 0.1 0.1  

18:3ω3 0.1 2.3 0.1 8.7 

20:3ω3 1.5 0.2 0.6  

20:4ω6 5.9 3.2 2.4 5.5 

20:4ω3 0.2 1.1 0.5 1.0 

22:4ω6 0.5 0.5 0.3 0.6 

20:5ω3 1.9 6.8 1.8 1.1 

21:5ω3 0.5 0.1 0.2 11.9 

22:5ω6 0.3 0.02 0.1 5.7 

22:5ω3 0.3 0.7 0.4 1.8 

22:6ω3 0.6 1.9 0.8 0.2 

Total PUFA 16.9 20.02 9.2 32.9 

Total –ω3 5.1 13.1 4.4 21.1 

Total –ω6 11.1 6.42 4.7 11.8 

PUFA/SAFA 0.22 0.34 0.11 0.69 
a 

First and second figures represent, carbon chain length: number of double bonds. The - 

values represent the methyl end chain from the center of double bond furthest removed from 

the carboxyl end. 

 

Table 6- Fatty acid designations, names and some recent uses as biomarkers. 

Components 
a
 Fatty acid Name Biomarker for  

Recent 

referances 

14:0 Myristic 
Protobacteria, Diatoms, 

Prymnesiophytes 
[35] 

15:0 Pentadecanoic Phytoplancton 
[36] 

16:0 Palmitic Mangrove leaves 
[34] 

17:0 Margaric  Bacteria 
[8] 

18:0 Stearic Mangrove leaves 
[34] 

22:0 Behenic Terrestyrial Plants 
[37] 

24:0 Lignoceric Mangrove and Terrestrial Plants 
[38] 

14:1 Tetradedecenoic Proteobacteria 
[35] 

15:1 Pentadecenoic  Bacteria. 
[39] 

16:1 Palmitoleic Planktons, Mangroves 
[16, 34] 

17:1 Heptadecenoic  Bacteria 
[36] 

18:1ω9 Oleic 

Crustacea, Deep Sea fish, 

Macroalgae, Mangrove, 

Carnivory 

[40] 

24:1 Tetracosanoic Zooplzncton 
[38] 

16:2 Hexadecadienoic  Planktons, Mangrove leaves 
[34] 

17:2 Heptadecadienoic Planktons 
[34] 

18:2ω6 Linoleic 
Mangrove, Sea grass, 

Macroalgae, Vascular plants, 
[40] 

18:3ω6 γ linolenic Macro algae 
[40] 
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18:3ω3 α linolenic 
Mangrove, Sea grass, Vascular 

plant 
[40] 

20:3ω3 Eicosatrienoic  
 

20:4ω6 Arachidonic 
Protozoa, Microeukaryotes, Red 

algae, Kelp 
[40] 

20:4ω3 Eicosatetraenoic Fungi, Protozoa, Algae 
[40] 

22:4ω6 Adrenic 
Phytoplanktons 

(Euglenophyceae) 
[41] 

20:5ω3 Eicosapentaenoic  
Diatom, Brown and Red Macro 

algae 
[40] 

21:5ω3 Heneicosapentaenoic Planktons 
[34] 

22:5ω6 Osbond, ω6DPA 
Phytoplanktons(Ocromonadeles, 

Cryptophyceae) 
[41] 

22:5ω3 Clupanodonic, DPA Diatoms 
[42] 

22:6ω3 Docosahexaenoic Zooplancton 
[40] 

a 
First and second figures represent, carbon chain length: number of double bonds. The - 

values represent the methyl end chain from the center of double bond furthest removed from 

the carboxyl end. 

 

 

Figure 1: Fatty acids compositions of various classes of phospholipids obtained from 

muscle sample of Lingula anatina (% w/w of each component in total fatty acids). 

 

DISCUSSION  

Aquatic ecosystems occupy the largest part of the biosphere, and lipids in those systems 

provide the densest form of energy yielding at least two third more energy per gram than 

proteins and carbohydrates. They are highly reduced compounds and are thus important fuels 

for oxidation. 
[16] 

Lipids are also a solvent and absorption carrier for fat soluble vitamins, 

carotenoids and organic contaminants. Thus the study of lipid flow among trophic levels is 

important for models of both population dynamics and of bioacuumulation of hydrophobic 

chemicals.
[16]

 Fatty acids are important not only for their impact on animal growth but also 
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many other facets of functions like reproduction, immunity, ion balance regulation and even 

buoyancy regulation
[43]

 and buoyancy control.
[44] 

There are two related families of fatty acids 

(FA) consisting of ω3 and ω6 PUFAs. FAs in each of the families are interconvertible ususlly 

through alternate use of desaturases and elongases. The extent to which a given species at a 

given life stage can convert one ω3 FAs to another or one ω6 FAs to another determines the 

degree of essentiality of the FA for that species at that life stage.
[16] 

In marine fauna essential 

FAs like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have very important 

functions at various trophic levels. 
[45]

 For example EPA is thought to be a key factor in 

buoyancy control. Probably for this, the studied animal exhibited successful infaunal 

succession as observed by Samanta et al., 2014. EPA and DHA are has been found as stress 

resistant.
[46]

 Therefore these animals after being kept in an unearthed condition in a bucket in 

the laboratory showed that they were capable to live successfully for 8-10days. Arachidonic 

acid (AA, 20:4ω6) is one example whose essentiality has often been overlooked.
[47] 

AA 

enters several metabolic pathways in invertebrates.
[48]

 Presence of AA in body part of studied 

species further indicated that detritus serves as one part of food of L. anatina and this is also 

supported by Kelly and Scheibling,2012, M¨uller-Navarra, 2004 and Samanta et al. 2014. In 

addition to AA there is another ω6 long chain PUFA i.e. docosapentaenoic acid (DPA, 

22:5ω6) which may be essential in marine fauna It may play an important structural role in 

membranes and/or may be a precursor of bioactive docosanoids via enzymatic 

oxygenation.
[16]

  

 

Few studies have shown a clear and direct relationship between unsaturated fatty acids and 

membrane fluidity in marine organisms.
[49] 

While phospholipid molecular species containing 

DHA are believed to be important in controlling membrane fluidity as reported earlier by 

(Farkas et al., 2000).  Hall et al., 2002 reported that there is very strong relationship between 

membrane fluidity and EPA. Low values of the PUFA/SAFA ratio (Tables-5 as determined in 

the present research investigation are because of the presence of high levels of palmitic acid 

(16:0), suggesting a contribution of vegetal detritus in the diet of L. anatina which 

corroborates the findings of Reemtsma et al., 1990 and
 
Samanta et al.,2014. Samanta et al., 

2014 reported on the occurrence of 16:0, 18:0, 16:2, 17:2, 21:5ω3 in the planktons, mangrove 

leaves which were consumed by studied animals and hence they were also detected within the 

muscles of L. anatina which further strengthen the present findings.   
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Biological markers are receiving widespread attention in aquatic ecological environments.
[53] 

Among several biochemical markers lipids and fatty acids can be used as signatures of 

individual organisms or of groupings of organisms or of certain environmental processes. 

From this point of view it can be concluded that presence of different classes of fatty acids 

(ALA, EPA, DHA, AA, etc) within the body of studied species derived through 

biotransformation and bioconversion processes from different sources like mangrove leaves, 

planktons and suspended materials on which they feed. Presence of 15:0 in the muscles of L. 

anatina indicated that they are plankton feeders and they collect it from suspended particulate 

matters avilabe in sufficient amount in the studied tidal basin. Presence of 18:1ω9 further 

indicated that it was entered within the body of studied fauna from degraded mangrove leaves 

through biotrnsformation process. From table 5 it is cleared that Lingula anatina captured 

foods from various sources like phytoplanktons (15:0), zooplanktons (24:1 and 22:6ω3), 

diatoms (20:5ω3, 14:0), brown and red macro algae (20:5ω3, 18:3ω6), sea grass (18:2ω6, 

18:3ω3) and mangrove plants (18:3ω3, 20:5ω3, 18:2ω6, 18:1ω9, 24:0 ) etc which are 

available in plenty within and surrounding their habitats at Talsari near Subarnarekha estuary. 

The heterogeneous nature of phospholipids means that much information can be generated by 

determining individual classes of fatty acids of different groups of phospholipids. Individual 

class of fatty acids such as EPA or DHA of certain phospholipids’ category viz. PE, PC, SPM 

or PS may be used to indicate the presence of certain types of organisms as well as their 

physiological state and activity. Lipid classes can also be used to indicate sources of organic 

matter
[54] 

including dissolved organic matter and hydrophobic contaminants.
[55]

 Lipid class 

information is particularly valuable when used in conjugation with determination of 

individual fatty acids.
[56]

 Information provided by fatty acid biomarkers may be used to 

delineate carbon cycling and transfer of materials through food webs.
[16] 

 

CONCLUSIONS 

Present investigation has revealed that muscles of the studied animal, Lingula anatina stored 

major amount of 4 categories of phospholipids. Fractionation analysis of these phospholipids 

exhibited that studied species contained various classes of good quality MUFA and PUFA 

and they obtained these through biotransformation and food chain food web interactions. 
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