SJIF Impact Factor 2.026

EUROPEAN JOURNAL OF PHARMACEUTICAL Research Article AND MEDICAL RESEARCH

www.ejpmr.com

ISSN 3294-3211

EJPMR

PHYTOCHEMICAL SCREENING AND ANTIOXIDANT POTENTIAL OF PAAVU DECOCTION OF KANYAKUMARI DISTRICT, INDIA

R. Mary Suja^{1*} and **B.** Christudhas Williams²

¹PhD Scholar, Department of Botany and Research Centre, Scott Christian College (Autonomous) Nagercoil, India.

²Assistant Professor Department of Botany and Research Centre, Scott Christian

College (Autonomous) Nagercoil, India.

Article Received on 15/07/2015 Article Revised on 06/08/2015 Article Accepted on 30/08/2015

*Correspondence for Author Ms. R. Mary Suja PhD Scholar, Department of Botany and Research Centre, Scott Christian College(Autonomous) Nagercoil, India.

ABSTRACT

The main objective of the present investigation is to evaluate the phytochemical constituents and antioxidant potential of Siddha Cancer medicine prescribed by the Traditional Siddha Practitioner of Kanyakumari District, India. Paavu Decoction is an internal form of Breast Cancer medicine prescribed above 18 years was prepared with 21 different plant ingredients. Phytochemical analysis of the Paavu Decoction, aqueous, silver nitrate and ethanol extract revealed the

presence of alkaloid, flavanoid, phenol, terpenoid, reducing sugar, tannin, steroid and glycosides except saponin constituents. The unexplored area of hydroxyl radical assay of Paavu Decoction and extracts varied from the minimum scavenging 47.59 ± 0.020 % (25µl) of ethanol extract to the maximum scavenging 81.21 ± 0.025 % (100µl) of L-ascorbic acid, DPPH radical assay varied from the minimum scavenging $44.31 \pm 0.025\%$ (25µl) of aqueous extract to the maximum scavenging 83.21 ± 0.011 % (100µl) of Paavu Decoction, nitric oxide radical scavenging varied from the minimum scavenging 37.32 ± 0.030 % (25µl) of aqueous extract to the maximum scavenging 75.26 ± 0.012 % (100µl) of Paavu Decoction, hydrogen per oxide assay varied from the minimum scavenging 42.61 ± 0.010 % (25µl) of aqueous extract to the maximum scavenging 86.31 ± 0.015 % (100µl) of Paavu Decoction and reducing power varied from the minimum scavenging 36.20 ± 0.011 % (25µl) of silver nitrate extract to the maximum scavenging 79.12 ± 0.010 % (100µl) of Paavu Decoction. The antioxidant assay of the Paavu Decoction and extracts indicated promising antioxidant

activities in concentration dependent manner. Siddha Cancer drugs highlight the effect of Paavu Decoction as a great potential source to rid Breast Cancer.

KEYWORDS: Paavu Decoction, phytochemical, antioxidant, Kalanchi, Cancer.

INTRODUCTION

Siddha system is one of the pioneer systems of medicine among traditional medicine practices in India. There are many formulations prescribed by the ancient Siddhars. Unique way of prescribing medicines by this system draws attention worldwide for keen research in drugs for reverse pharmacology manner. In this modern era there are number of new drug inventions are going day by day and substituting the previous generation drugs in order to empower the health systems. But the age old systems are blended with natural principles remains unchanged. The philosophy behind this system is bound with humane and nature of the universe. In Siddha system of medicine, the line of treatment goes with single drug therapy to compound drug formulations which are prescribed in classical literature as curative ailments for many diseases.

Traditional Siddha medicine upholds balancing, uprighting and eliminating the pathogens as the main principles of treating diseases and maintaining health. Siddha Medicine stresses "prevention before diseases rather than treating diseases". The drugs prescribed by the Siddhars could be classified into three groups: *thavaram* (herbal product), *thadhu* (inorganic substances) and *jangamam* (animal products).^[1] Breast cancer develops from breast tissue signs of breast cancer may include a lump in the breast, a change in breast shape, dimpling of the skin and fluid coming from the nipple or a red scaly patch of skin.^[2] In those with distant spread of the disease, there may be bone pain, swollen lymph nodes and shortness of breath or yellow skin.^[3] The therapeutic value of medicinal plants depends upon the presence of one or more constituents possessing certain physiological and pharmacological activity. When two or more herbs are used in formulations, they are known as polyherb. The main herbs are selected according to the disease and other herbs are used to enhance the effects of chief herb.^[4]

Tridosha is the physiological base around which the Siddha system of medicine revolves. Three basic functions operating through a constant interplay between the environment and the individual are thought to be required to maintain the integrity of a living system. In benign neoplasm one or two of the three bodily systems are out of control and it is not too harmful to the body as the body could overcome this condition. Malignant tumours are very harmful because all the three major humours loose mutual co-ordination and thus cannot prevent tissue proliferation resulting in deadly morbid condition. (*Vippuruthi, Putru*).^[5] Low levels of antioxidants or inhibition of the antioxidants enzymes, cause oxidative stress and may damage or kill cells. As oxidative stress might be an important part of many human diseases, the use of antioxidants in pharmacology is intensively studied, particularly as treatments for stroke and neurodegenerative diseases. However, it is unknown whether oxidative stress is the cause or the consequence of disease.^[6] Antioxidants are widely used in dietary supplements and have been investigated for the prevention of diseases. Siddha system of medicine is one of the ancient system of medicine in India was gifted by 18 siddhars said the longevity of the human was upto 100 years but nowadays it was reduced due to lifestyle modification to avoid it, we are in demand to stop oxidation stress.^[7]

MATERIALS AND METHODS

Collection of plant materials

The plant materials were collected from unpolluted rural areas of India and other ingredients were procured from commercial Siddha raw drug store was authenticated and prepared by my Uncle (Siddha Traditional Practitioner). All the ingredients were shade dried, powdered and stored in porcelain pots. The Siddha formulation were prepared as prescribed in the written scripts, books and palm leaf parchments of my Grandpa and Forefathers - Traditional Vadiyars (Table -1).

S.No	Siddha Name	Scientific Name	Quantity
1	Seenthil	Tinospora cordifolia	2 Kalanchi
2	Chukku	Zingiber officinale	5 Kalanchi
3	Milagu	Piper nigrum	4 Kalanchi
4	Thippili	Piper longum	5 Kalanchi
5	Nellikai	Emblica officinalis	3 Kalanchi
6	Kadukkai	Terminalia chebula	4 Kalanchi
7	Thandrikkai	Terminalia belerica	3 Kalanchi
8	Kottamalli	Coriandrum sativum	4 Kalanchi
9	Seeragam	Cuminum cyminum	5 Kalanchi
10	Karamjiragam	Nigella sativa	4 Kalanchi
11	Sivanarvembu	Indigofera asphalanthoides	4 Kalanchi
12	Chitarathai	Alpinia speciosa	1 Kalanchi
17	Kodivelikizhangu	Plumbago indica	2 Kalanchi
18	Veppampattai	Azadirachta indica	4 Kalanchi
19	Culliver	Anagallis arvensis	1 Kalanchi

Table: 1	Composition	of Paavu	Decoction
----------	-------------	----------	-----------

20	Karunjuraiver	Capparis sepiaria	4 Kalanchi
21	Suddhi Seidalingam	Mercuric chloride (Natural)	3 Kalanchi

Preparation of Extract

All the dried herbs were finely powdered and fresh leaves were triturated in household mortar and pestle without adding water. The powdered herbs were weighed (Kalanchi). The sampling decoction was subjected to maceration using different solvents aqueous, silver nitrate and ethanol for 48 hrs. The extracts were filtered and steam boiled for further studies.

Phytochemical Analysis and antioxidation assay of Paavu Decoction

The phytochemical analysis of Paavu decoction, aqueous, silver nitrate and chloroform extract of siddha medicine were carried out to analyse the presence of alkaloid, flavanoid, phenol, terpenoid, saponin, reducing sugar, tannin, steroid and glycosides [8 & 9]. Antioxidation assay of hydroxyl, DPPH, nitric oxide, hydrogen per oxide and reducing power activity.^[10, 11 & 12]

RESULT

Qualitative Analysis

The qualitative analysis of Siddha Paavu Decoction (Kashayam) revealed the presence of alkaloid, flavanoid, phenol, terpenoid, reducing sugar, tannin, steroid and glycosides except saponin. On the other hand, aqueous extract revealed the presence of alkaloid, tannin and steroid whereas, the absence of flavanoid, saponin, phenol, terpenoid, reducing sugar and glycosides. Meanwhile, ethanol extract revealed the presence of alkaloid, terpenoid, tannin, steroid and glycosides whereas, the absence of flavanoid, saponin, phenol and reducing sugar. However, silver nitrate extract revealed the presence of alkaloid, phenol, terpenoid, tannin, steroid and glycoside whereas, the absence of flavanoid, saponin, phenol and reducing sugar. However, silver nitrate extract revealed the presence of alkaloid, phenol, terpenoid, tannin, steroid and glycoside whereas, the absence of flavanoid, saponin and reducing sugar (Table:2).

S.No	Phytochemicals	Decoction	Aqueous	Ethanol	Silver nitrate
1	Alkaloid	+	+	+	+
2	Flavanoid	+	-	-	-
3	Saponin	-	-	-	-
4	Phenol	+	-	-	+
5	Terpenoid	+	-	+	+
6	Reducing Sugar	+	-	-	-
7	Tannin	+	+	+	+
8	Steroid	+	+	+	+
9	Glycoside	+	-	+	+

Table: 2 Qualitative Analysis of Paavu Decoction and extracts

+ Presence

⁻ Absence

Quantitative Analysis

The quantitative analysis of the Paavu Decoction revealed the phytochemical constituents of alkaloid 3.13 ± 0.001 ml/l; flavanoid 2.611 ± 0.002 ml/l; phenol 1.006 ± 0.001 ml/l; terpenoid 2.111 ± 0.001 ml/l; reducing sugar 1.791 ± 0.000 ml/l; tannin 1.963 ± 0.001 ml/l; steroid 2.537 ± 0.000 ml/l and glycosides 1.968 ± 0.001 ml/l. On the other hand, aqueous extracts of the decoction showed the phytochemical constituents of alkaloid 0.916 ± 0.000 ml/l; tannin 0.415 ± 0.001 ml/l and steroid 1.052 ± 0.000 ml/l; ethanolic extract of alkaloid 2.500 ± 0.000 ml/l; tannin 2.124 ± 0.001 ml/l; steroid 1.975 ± 0.001 ml/l and glycosides 2.500 ± 0.000 ml/l; tannin 2.124 ± 0.001 ml/l; steroid 1.975 ± 0.001 ml/l; phenol 1.823 ± 0.002 ml/l; terpenoid 2.371 ± 0.002 ml/l; tannin 1.261 ± 0.000 ml/l; steroid 2.962 ± 0.000 ml/l and glycosides 2.217 ± 0.001 ml/l.

Antioxidation

Assay

Hydroxyl radical scavenging

Hydroxyl radical scavenging of the Paavu Decoction varied from the minimum of 57.26 \pm 0.011 % (25µl) to the maximum of 81.06 \pm 0.020 % (100µl). On the other hand, aqueous extract of the decoction varied from the minimum scavenging of 59.20 \pm 0.011 % (25µl) to the maximum scavenging of 75.07 \pm 0.010 % (100µl). Meanwhile, ethanolic extract of the decoction varied from the minimum scavenging of 47.59 \pm 0.020 % (25µl) to the maximum scavenging of 71.07 \pm 0.010 % (100µl). The silver nitrate extract of the decoction varied from the minimum scavenging of 59.25 \pm 0.011 % (25µl) to the maximum scavenging of 59.25 \pm 0.011 % (25µl) to the maximum scavenging of 77.26 \pm 0.011 % (100µl). The antioxidant potential of standard antioxidant L-ascorbic acid varied from the minimum scavenging of 57.25 \pm 0.020 % (25µl) to the maximum scavenging of 81.21 \pm 0.025 % (100µl). In general, hydroxyl radical scavenging of the Paavu Decoction and extracts varied from the minimum scavenging 47.59 \pm 0.020 % (25µl) of ethanol extract to the maximum scavenging 81.21 \pm 0.025 % (100µl).

Concentration of medicine and extracts	Paavu Decoction	Aqueous Extract	Ethanol Extract	Silver nitrate (Nanoparticle)	L-Ascorbic acid (Standard)
25µl	57.26 ± 0.011	59.20 ± 0.011	47.59 ± 0.020	59.25 ± 0.011	57.25 ± 0.020
50µl	66.50 ± 0.015	67.37 ± 0.010	51.77 ±0.025	66.19 ± 0.015	67.41 ± 0.010
75µl	74.69 ± 0.010	71.29 ± 0.010	66.27 ± 0.011	71.69 ± 0.011	73.99 ± 0.011
100µl	81.06 ± 0.020	75.07 ±0.010	71.07 ±0.010	77.26 ± 0.011	81.21 ± 0.025

 Table: 3 Hydroxyl Radical Scavenging of Paavu Decoction and Extracts

DPPH radical scavenging

DPPH radical scavenging assay of the Paavu Decoction varied from the minimum of $59.71 \pm 0.005 \% (25\mu)$ to the maximum of $83.21 \pm 0.011 \% (100\mu)$. On the other hand, aqueous extract of the decoction varied from the minimum scavenging of $44.31 \pm 0.025 \% (25\mu)$ to the maximum scavenging of $59.62 \pm 0.010 \% (100\mu)$. Meanwhile, ethanolic extract of the decoction varied from the minimum scavenging of $54.23 \pm 0.011 \% (25\mu)$ to the maximum scavenging of $77.69 \pm 0.011 \% (100\mu)$. The silver nitrate extract of the decoction varied from the minimum scavenging of $57.23 \pm 0.030 \% (25\mu)$ to the maximum scavenging of $79.62 \pm 0.011 \% (100\mu)$. The antioxidant potential of standard antioxidant L-ascorbic acid varied from the minimum scavenging of $49.63 \pm 0.000 \% (25\mu)$ to the maximum scavenging of $79.73 \pm 0.010 \% (100\mu)$. In general, DPPH scavenging of the Paavu Decoction and extracts varied from the minimum scavenging $44.31 \pm 0.025\% (25\mu)$ of aqueous extract to the maximum scavenging $83.21 \pm 0.011 \% (100\mu)$ of Paavu Decoction (Table: 4).

Concentration of	Paavu	Aqueous	Ethanol	Silver nitrate	L-Ascorbic acid
medicine and extracts	Decoction	Extract	Extract	(Nanoparticle)	(Standard)
25µl	59.71 ± 0.005	44.31 ±0.025	54.23 ±0.011	57.23 ± 0.030	49.63 ±0.000
50µl	67.22±0.015	46.26 ± 0.020	67.61 ±0.010	68.09 ± 0.020	57.74 ± 0.000
75µl	79.62 ±0.020	51.69 ±0.005	72.67 ±0.011	73.96 ±0.011	69.21 ±0.015
100µl	83.21 ±0.011	59.62 ±0.010	77.69 ±0.011	79.62 ±0.011	79.73 ±0.010

 Table: 4 DPPH Radical Scavenging of Paavu Decoction and Extracts

Nitric Oxide Radical Scavenging

In general, nitric oxide radical scavenging of the Paavu Decoction and extracts varied from the minimum scavenging $37.32 \pm 0.030 \% (25\mu l)$ of aqueous extract to the maximum scavenging $75.26 \pm 0.012 \% (100\mu l)$ of Paavu Decoction (Table: 5). of the Paavu Decoction varied from the minimum of $46.12 \pm 0.005 \% (25\mu l)$ to the maximum of $75.26 \pm 0.012 \%$ $(100\mu l)$. On the other hand, aqueous extract of the decoction varied from the minimum scavenging of $37.32 \pm 0.030 \% (25\mu l)$ to the maximum scavenging of $62.04 \pm 0.037 \%$ $(100\mu l)$. Meanwhile, ethanolic extract of the decoction varied from the minimum scavenging of $49.20 \pm 0.010 \% (25\mu l)$ to the maximum scavenging of $63.76 \pm 0.005 \% (100\mu l)$. The silver nitrate extract of the decoction varied from the minimum scavenging of $54.26 \pm 0.015 \%$ $(25\mu l)$ to the maximum scavenging of $54.26 \pm 0.015 \%$ $(25\mu l)$ to the maximum scavenging of $66.23 \pm 0.011 \% (100\mu l)$. The antioxidant potential of standard antioxidant Gallic acid varied from the minimum scavenging of $49.19 \pm 0.000 \%$ $(25\mu l)$ to the maximum scavenging of $71.94 \pm 0.030 \% (100\mu l)$. In general, nitric oxide radical scavenging of the Paavu Decoction and extracts varied from the minimum scavenging 37.32 ± 0.030 % (25µl) of aqueous extract to the maximum scavenging 75.26 ± 0.012 % (100µl) of Paavu Decoction (Table: 5).

Concentration of	Paavu	Aqueous	Ethanol	Silver nitrate	Gallic acid
medicine and extracts	Decoction	Extract	Extract	(Nanoparticle)	(Standard)
25µl	46.12 ± 0.005	37.32 ± 0.030	49.20 ± 0.010	54.26 ±0.015	49.19 ±0.000
50µl	56.31 ± 0.020	44.71 ±0.020	55.76 ± 0.015	57.39 ±0.015	54.71 ±0.025
75µl	67.23 ± 0.020	57.61 ±0.020	59.62 ± 0.000	64.62 ±0.011	66.33 ± 0.000
100µl	75.26 ± 0.012	62.04 ± 0.037	63.76 ± 0.005	66.23 ±0.011	71.94 ±0.030

Table: 5 Nitric Oxide Radical Scavenging of Paavu Decoction and Extracts

Hydrogen per oxide Scavenging

Hydrogen per oxide radical scavenging assay of the Paavu Decoction varied from the minimum of $69.32 \pm 0.010 \% (25\mu)$ to the maximum of $86.31 \pm 0.015 \% (100\mu)$. On the other hand, aqueous extract of the decoction varied from the minimum scavenging of $42.61 \pm 0.010 \% (25\mu)$ to the maximum scavenging of $69.07 \pm 0.020 \% (100\mu)$. Meanwhile, ethanolic extract of the decoction varied from the minimum scavenging of $45.62 \pm 0.010 \% (25\mu)$ to the maximum scavenging of $73.13 \pm 0.011 \% (100\mu)$. The silver nitrate extract of the decoction varied from the minimum scavenging of $56.31 \pm 0.011 \% (25\mu)$ to the maximum scavenging of $68.67 \pm 0.020 \% (100\mu)$. The antioxidant potential of standard antioxidant L-ascorbic acid varied from the minimum scavenging of $58.47 \pm 0.015 \% (25\mu)$ to the maximum scavenging of $85.21 \pm 0.000 \% (100\mu)$. In general, hydrogen per oxide scavenging of the Paavu Decoction and extracts varied from the minimum scavenging $42.61 \pm 0.010 \% (25\mu)$ of aqueous extract to the maximum scavenging $86.31 \pm 0.015 \% (100\mu)$ of Paavu Decoction (Table: 6).

Concentration of	Paavu	Aqueous	Ethanol	Silver nitrate	L-Ascorbic acid
medicine and extracts	Decoction	Extract	Extract	(Nanoparticle)	(Standard)
25µl	69.32 ± 0.010	42.61 ±0.010	45.62 ± 0.010	56.31 ±0.011	58.47 ±0.015
50µ1	76.29 ± 0.010	55.72 ± 0.005	57.29 ± 0.020	59.26 ±0.005	67.33 ±0.020
75µl	81.62 ±0.011	64.07 ±0.015	64.67 ±0.011	63.35 ±0.015	74.66 ±0.020
100µl	86.31 ±0.015	69.07 ±0.020	73.13 ±0.011	68.67 ±0.020	85.21 ±0.000

Table: 6 Hydrogen peroxide Radical Scavenging of Paavu Decoction and Extracts

Reducing Power Activity

Reducing Power activity of the Paavu Decoction varied from the minimum scavenging of $54.72 \pm 0.011 \% (25\mu l)$ to the maximum scavenging of $79.12 \pm 0.010 \% (100\mu l)$. On the other hand, aqueous extract of the decoction varied from the minimum scavenging of $39.00 \pm 0.000 \% (25\mu l)$ to the maximum scavenging of $61.72 \pm 0.010 \% (100\mu l)$. Meanwhile,

ethanolic extract of the decoction varied from the minimum scavenging of $42.36 \pm 0.000 \%$ (25µl) to the maximum scavenging of $63.10 \pm 0.015 \%$ (100µl). The silver nitrate extract of the decoction varied from the minimum scavenging of $36.20 \pm 0.011 \%$ (25µl) to the maximum scavenging of $64.97 \pm 0.005 \%$ (100µl). Reducing power activity of the standard antioxidant (Vitamin-C) varied from the minimum scavenging of $51.97 \pm 0.005 \%$ (25µl) to the maximum scavenging of $75.94 \pm 0.010 \%$ (100µl). In general, reducing power activity of the Paavu Decoction and extracts varied from the minimum scavenging $36.20 \pm 0.011 \%$ (25µl) of silver nitrate extract to the maximum scavenging $79.12 \pm 0.010 \%$ (100µl) of Paavu Decoction (Table: 7).

Concentration of medicine and extracts	Paavu Decoction	Aqueous Extract	Ethanol Extract	Silver nitrate (Nanoparticle)	Vitamin – C (Standard)
25µl	54.72 ± 0.011	39.00 ± 0.000	42.36 ± 0.000	36.20 ±0.011	51.97 ± 0.005
50µ1	63.93 ± 0.020	47.20 ± 0.011	46.27 ±0.010	47.09 ±0.020	63.21 ±0.011
75µl	74.10 ± 0.005	56.39 ±0.011	57.93 ±0.010	56.31 ±0.005	71.73 ±0.011
100µl	79.12 ±0.010	61.72 ± 0.010	63.10 ± 0.015	64.97 ± 0.005	75.94 ±0.010

Table: 7 Reducing Power Activity of Paavu Decoction and Extracts

CONCLUSION

It is obvious that the plant kingdom offers a better prospect of providing useful medicinal compounds for the treatment of numerous challenging diseases. The polyherbal formulation of Paavu Decoction was evaluated for the phytochemical and antioxidation activity. The presence of secondary metabolites showed that the Paavu Decoction was found to be an effective antioxidant, when it is compared to standard antioxidant compounds (Ascorbic acid, Gallic acid and Vitamin C).

ACKNOWLEDGEMENT

The authors are thankful to the Siddha Medicinal Practitioner for providing medicines to carry out the research. Reverential thanks to my Grandpa's and Uncle, Traditional Siddha Practitioners for their treasure of knoweledge in the field of Siddha Medicine and providing medicines to carry out the research. I express my whole hearted thanks and indebtedness to my Guide Dr. B. Christudhas Williams for his valuable guidance. Prayerful thanks to my Father S. Raja Rethna Dhas, Mother D. Mary Mercy Bai, Sister R. Mary Suji and Brother R. Sujin Sam for their warm support, encouragement and prayers.

REFERENCES

- 1. "Siddha Therapy, Natural Remedies and Self-Treatment". Varma Kalai. Master Murugan,
- 2. Chillayah (20 October 2012). Retrieved 31 May 2013.
- 3. "Breast Cancer Treatment (PDQ®)". NCI. 2014-05-23. Retrieved 29 June 2014.
- Saunders, Christobel; Jassal, Sunil (2009). *Breast cancer* (1. ed. ed.). Oxford: Oxford University Press. p. Chapter 13. ISBN 978-0-19-955869-8.
- Gandhiraja, N S. Sriram, V. Meenaa, J. KavithaSrilakshmi, C. Sasikumar and R.Rajeswari. Phytochemical Screening and Antibacterial Activity of the Plant Extracts of *Mimosa pudica* L. Against Selected Microbes, *Ethnobotanical Leaflets.*, 2009; 13: 618-24.
- Sambasivampillai TV.1998.Dictionary based on Indian medicinal science. Chennai, India; Directorate of Indian Medicine and Homeopathy Publications.
- Bjelakovic, G, Nikolova, D, Gluud, LL, Simonetti, RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. *JAMA.*, 2007; 297(8): 842–857.
- Shanmugavelu, Noi Nadal Noi Mudhal Nadal Thirattu (Part-I), Department of Indian Medicine and Homeopathy, Chennai, Government of Tamilnadu, 2003; 47-51.
- Allen ST. Chemical analysis of Ecological Material. New York: Blackwell Scientific Publication; 1974; 313.
- Harbone JR. Phytochemical Methods. A Guide to Modern Techniques of Plant Analysis, London: Charpan and Hall; 1976; 78.
- Halliwell, B., Gutteridge, J.M.C., Cross. C.E. 1987. Free radicals, antioxidants and human diseases: where are we now? *Journal of Laboratory and Clinical Medicine.*, 119: 598-620.
- 12. Nabavi SM, Ebrahimzadeh MA, Nabavi SF, Hamidinia A and Bekhradnia AR.
- Determination of antioxidant activity, phenol and lavonoid content of Parrotia persica Mey, Pharmacologyonline., 2008; 2: 560-567.
- Sofowora AE (1993). Medicinal Plants and Traditional Medicines inAfrica.. 2nd edition Spectrum Books, Ibadan, Nigeria. 289.