ejpmr, 2016,3(4), 305-308

www.ejpmr.com

Research Article ISSN 3294-3211 EJPMR

SYNTHESIS AND CHARACTERISATION OF LANTHANIDE (III) CHLORIDE COMPLEXES WITH BIDENTATE DONOR 2-AMINO-4-METHYL BENZOTHIAZOLE

Kavita L. Kendre*

Department of Chemistry, Yeshwant College, Nanded. (M.S.) India.

*Correspondence for Author: Dr. Kavita L. Kendre

Department of Chemistry, Yeshwant College, Nanded. (M.S.) India.

Article Received on 13/02/2016

Article Revised on 04/03/2016

Article Accepted on 24/03/2016

ABSTRACT

The Nd(III), Sm(III) and Tb(III) complexes of 2-amino-4-methyl benzothiazole have been synthesized in alcohol and refluxed in the reaction medium (1:3, M: L ratio). The yield percentage of formed complex is ranging from 60-70%. The complexes are colored solids. The complexes were synthesized and characterized by elemental analysis, IR, electronic spectra, molar conductance, TGA and powder XRD. An IR spectrum indicates that the ligand behaves as bidentate ligand. Molar conductance studies indicates the electrolytic behaviour of these complexes. Thermal decomposition profiles are consistent with the proposed formulations. The powder XRD studies show that all the complexes are amorphous in nature. The antimicrobial activities of the ligand and their metal complexes were screened by agar diffusion method and found that the metal complexes have higher antimicrobial activity than the free ligand.

KEYWORDS: 2-amino 4-methyl benzothiazole, inner transition metals, antimicrobial activity.

INTRODUCTION

Benzothiazoles are bicyclic ring system. Benzothiazole derivatives have been studied and found to have various chemical reactivity and biological activity.^[1] Benzothiazole ring made from thiazole ring fused with benzene ring. Thiazole ring is a five-member ring consists of one nitrogen and one sulfur atom in the ring.

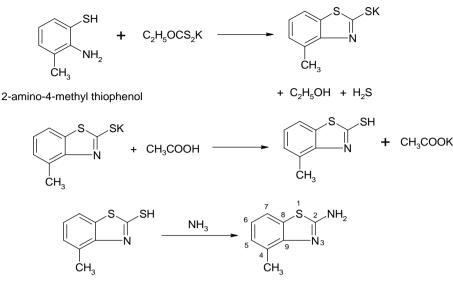
Benzothiazole ring found to be possessing pharmacological activities such as anti-viral^[2], anti-bacterial^[3], anti- microbial^[4] and fungicidal activities.^[5] They are also useful as anti-allergic^[6], anti-diabetic^[7], antitumor^[8], anti- inflammatory^[9], anthelmintic, and anti-HIV agents. Benzothiazoles show antitumor activity, the phenyl-substituted Benzothiazoles.^[10,12] Substituted 6-nitro-and 6-aminobenzothiazoles show antimicrobial activity.^[13]

It's amino methyl phenyl and carbonitrile derivatives shows selective growth inhibitory properties against human cancer cell lines^[14] and proliferation of cells^[15] respectively. Chlorinated and fluorinated derivatives of this moiety exhibit good in vitro as well as in vivo antitumor activity. A series of potent and selective agents were developed. Substituted anti-tumor 2-(4-aminophenyl) benzothiazoles examined, in vitro, shows antitumor activity in ovarian, breast, lung, renal and colon carnicoma human cell line¹⁶ 2-(4-Aminophenyl) benzothiazoles^{17,16} consists of a novel mechanistic class of antitumor agents.

These activities are probably due to presence of the -N=C-S group.^[19] Substituted benzothiazole have been reported to show diverse application as metal complexing agents^[20-23] and photostabliser. The wide range of application of the ligand and its complexes are used our interest for assaying their antimicrobial activity against gram positive and gram negative microorganism.

in the present study, 2-amino-4-Hence, methylbenzothiazole has been synthesized. Their characterization was done by spectroscopic methods. Further Anticorrosive, antibacterial and antifungal activities of these derivatives have been studied in DMSO. Thus, the aim of this research is to synthesize and characterize lanthanide (III) complexes of 2-amino-4-methyl benzothiazole as we attempted to throw light on the coordination position for 2-amino-4-methyl benzothiazole with the La(III) ion.

EXPERIMENTAL


a) Synthesis of 2-amino-4-methyl Benzothiazole

Synthesis of 2-amino-4 -methyl benzothiazole was carried out by the method of Rojer Adams. The method of thiocynation and bromination was adopted. (0.1M) 2-xylidine (2-methylaniline) and sodium thiocynate (0.2M) in 100 ml glacial acetic acid are mixed together maintaining 0^oC temperature.

0.2M bromine in acetic acid (25 ml) was added to the above solution drop wise and the mixture was stirred

continuously by a mechanical stirrer till the complete addition of bromine. The temperature was maintained below 5^{0} C. The solid thus obtained after complete

addition of bromine was filtered so as to remove excess of bromine and then dissolved in hot water.

2-amino-4-methyl benzothiazole

Again it was filtered and filtrate then treated with alkali like NaOH or KOH for the precipitation of free base. The precipitate thus obtained was filtered, washed and dried. The product was recrystallized from ethanol.

Synthesis of AMBT Lanthanide complexes

To a hot methanolic solution (30ml) of the 2-amino 4methyl benzothiazole (0.02 mol), solution (10 ml) of methanolic solution metal (III) chlorides hydrated (0.01 mol) was added with constant stirring. The pH of the reaction mixture was adjusted to 7-8 by adding 10% alcoholic ammonia solution and refluxed for about 45 min. The precipitated solid metal complex cooled at room temperature and was filtered off and washed with methanol, petroleum ether and dried over calcium chloride in vacuum desiccators, light pink coloured fine

Table No. 1: Physical and analytical Data

crystals of complexes were obtained. Purity of sample was checked by TLC and melting point (yield= 60 %).

RESULT AND DISCUSSION

Physical and analytical parameters

Reagent grade chemicals were used without further purification. All the melting points were taken by open capillary method. All the complexes having melting point > 270° C. The purity of the synthesized compounds was checked by Thin Layer Chromatography. The coloured Lanthanide (III) chloride complexes were found to be stable at room temperature. In complexes, metal and ligands are in 1:3 molar ratio possessing general formula [ML₃]. It was confirmed by elemental analysis. The molar conductivity in DMSO is ranges from 89-102 indicating electrolytic nature of complexes. Yeild of complexes is in range 60-65%.

Tuble 1 (01 11 1 hjbleur und undry deur Dudu						
Compound	Empirical Formula	Formula Wt	Yield (%)	Color	M.P. ⁰ C	M : L ratio
AMBT	C ₈ H ₈ N _{2S}	164.23	70	White	>190°C	-
[Nd(AMBT) ₃ 2H ₂ O]3Cl	$C_{24}H_{28}N_6O_2S_3Cl_3Nd$	779.28	65	lavender	$>270^{\circ}C$	1:3
[Sm(AMBT) ₃ 2H ₂ O]3Cl	$C_{24}H_{28}N_6O_2S_3Cl_3Sm$	785.4	60	cream	$>270^{\circ}C$	1:3
[Tb(AMBT) ₃ 2H ₂ O]3Cl	$C_{24}H_{28}N_6O_2S_3Cl_3Tb$	793.97	60	Light orange	$>270^{\circ}C$	1:3

Table No. 2:	Elemental	Analysis Data	

Compound	M.F.	Elemental Analysis % found (calculated)						
Compound	IVI.F .	С	Н	N	0	S	Cl	Μ
AMBT	$C_8H_8N_2S$	55.89	5.23	17.83	-	20.11	-	-
AIVID I	C81181V25	(58.51)	(4.91)	(17.06)	-	(19.52)	-	-
Nd-AMBT C	$C_{24}H_{30}N_6O_2S_3Cl_3Nd$	37.46	4.19	11.42	4.98	12.84	14.01	18.95
Nu-ANID I	$C_{24}\Pi_{30}\Pi_6 O_2 S_3 C_{13}\Pi_0$	(36.99)	(3.62)	(10.78)	(4.11)	(12.06)	(13.65)	(18.51)
Sm-AMBT		37.28	4.12	11.13	4.80	12.89	13.96	20.12
SIII-AIVID I	$C_{24}H_{28}N_6O_2S_3Cl_3Sm$	(36.70)	(3.59)	(10.70)	(4.07)	(12.25)	(13.54)	(19.14)
		36.86	3.90	11.22	4.79	12.81	13.88	20.62
Tb-AMBT	$C_{24}H_{28}N_6O_2S_3Cl_3Tb$	(36.30)	(3.55)	(10.58)	(4.03)	(12.12)	(13.40)	(20.02)

INFRARED SPECTROSCOPY

The infrared spectrum of AMBT exhibited a strong band at 1585 cm⁻¹ which is attributed to C=N. This band value lowers in complexes indicating that the (C=N) group is involved in complex formation.^[24-26] The band at 1070 cm⁻¹ which is attributed C-S stretching frequencies, there is no indicable change in value of frequencies, so sulphur does not take part in complex formation. AMBT exhibited a strong band at 3278, 3053 cm⁻¹ which are

attributed to-NH₂. This band in AMBT shifted to lower wave number 2924-2926 cm⁻¹ in the metal complexes, indicating that the $-NH_2$ group is involved in complex formation. The coordination through the nitrogen atom in (C=N) groups are further supported by the occurrences of new band around at 441-460 cm⁻¹ in the spectra of the complexes which, may be assigned to v(M-N).^[27-29] The presence of bands at 3344-3385 cm⁻¹ indicates presence of H₂O molecule in complexes.

Compound	vC=N	v-NH ₂	vC -S	$\nu M - N$	$\nu M - O$	vH ₂ O
AMBT	1585	3278, 3053	1070	-	-	-
[Nd(AMBT) ₃ 2H ₂ O].3Cl	1496	2924	1072	441	-	3344
[Sm(AMBT) ₃ 2H ₂ O].3Cl	1500	2926	1070	453	-	3385
[Tb(AMBT) ₃ 2H ₂ O].3Cl	1531	2926	1072	460	-	3383

ELECTRONIC SPECTROSCOPY

The electronic spectra of ligand and their corresponding lanthanide (III) complexes are recorded in DMSO in the region 200-800 nm. The ligand show band at 344 nm (π - π^*) in the ranges 280nm and in the corresponding

lanthanide complexes, bands around 270-274 nm are observed. Shifts in absorption bands and appearance of new band and increase in molar absorptivity (table-4) are indicative of involvement of metal orbital in bonding with ligand.

Table No. 4: Ele	ctronic Spectra	l data
------------------	-----------------	--------

Complex	Absor- bance	v / cm^{-1}	Assignment	Molar Conduc-tance	Magnetic Moment	Geometry
AMBT	344	29069	n - π*	_	-	_
Nd-AMBT	271	36900	π - π*	89	Paramagnetic (3.63)	Octahedral
Sm-AMBT	270	37037	π - π*	90	Paramagnetic (1.45)	Octahedral
Tb-AMBT	274	36496	π - π*	101	Paramagnetic (9.23)	Octahedral

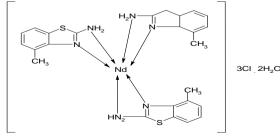
¹H NMR Spectroscopy

Spectra of ligand and all the complexes were recorded in DMSO-d₆ solution at 400 MHz and chemical shifts are in units of ppm relative to TMS as internal standard on the delta (δ) scale. The general ¹H NMR spectrum of the ligand in DMSO shows the following signals.

2 ppm a singletof 2H(-NH2) and singlet band for 3H (- CH_3) group, 6.8-7.07 ppm a multiplet band for pyridine hydrogen. 2 ppm a singlet band for NH_2 hydrogen

changes to 2-4 ppm indicating coordination through NH2 nitrogen. Two new long and sharp bands 2-4 ppm shows presence of oxygen of water molecules.

Antibacterial activity


All the synthesized compounds showed significant antibacterial activity All the complexes of lanthanide metal ions with ligand shows good antibacterial activity against E.coli and Aspergillus niger.

Sr. No.	Compound	E. coli (nm)	S. Aureus (nm)
1	AMBT - Ligand	13	17
2	Nd – AMBT complex	09	11
3	Sm – AMBT complex	10	-
4	Tb – AMBT complex	09	-
5	Control	27	14

CONCLUSION

Based on the results of elemental analysis, thermal study and spectroscopic studies following structures are proposed to the complexes under study.

SRTUCTURE

Structure of Nd-AMBT complex

REFERENCES

- Bryson M., Fulton B., Benfield P. Drugs, 1996; 52, 549.
- Akihama S., Okhude M., Mizno A., Meiji Yakka, Diagakn Kenkyu Kiyo. Chem Abstr, 1968; 68: 10369.
- Russo F., Santagati M., Farmaco., Ed Sci., 1976; 31: 41.
- Ghoneim K.M., Basil S. El-, Osman AN, Said M.M., Megahed S.A. Rev Roum Chim, 1991; 36: 1355.
- Singh S.P., Seghal S. Indian J. Chem., 1988; 27B: 941.
- 6. Musser J.H., Brown RE, Love B, Baily K, Jones H, Kahen R, et al. J. Med. Chem., 1984; 27: 121.
- Pattan S.R., Suresh C., Pujar V.D., Reddy VVK, Rasal V.P., Kotti BC. Indian J. Chem, 2005; 4B: 2404.
- Yoshida M, Hayakawa I, Hyashi N, Agatsuma T, Oda Y, Tanzawa F et al. Bioorg. Med. Chem. Letters., 2005; 15: 3328.
- Sawhney SN, Bansal OP. Indian J. Chem., 1977; 15B: 121.
- Bradshaw, T.D., Bibby, M. C., Double, J.A., Fichtner, I., Cooper, P.A., Alley, M.C., Donohue, S., Stinson, S.F., Donohue, S., Stinson, S.F., Tomaszewjski, J.E., Sausville, E.A. and Stevens, M.F.G., Mol. Cancer. Therapeutics, 2002; 1: 239.
- Donohue, S., Stinson, S.F., Tomaszewjski, J.E., Sausville, E.A. and Stevens, M.F.G., Mol. Cancer. Therapeutics, 2002; 1: 239.
- Hutchinson, I., Jennings, S.A., Vishnuvajjala, B. R., Westwell, A.D. and Stevens, M.F.G., J. Med. Chem., 2002; 45: 744.
- 13. El-Sherbeny, M.A., Arzeneim, Forsch., 2000; 50: 843.
- Racane L., Tralic-Kulenovic V., Fiser-Jakic L., Boykin D.W. and Karminski-Zamola, G., Heterocycles, 2001; 55: 2085.
- 15. Mahmood-ul-Hasan, Chohan Z.H. and Supuran C.T., Main Group Met. Chem., 2002; 25: 291.
- Brien SEO, Browne H.L., Bradshaw T.D., Westwell A.D., Stevens MFG, Laughton CA, Org. Biomol. Chem., 2003; 1: 493.
- Trapani V, Patel V, Leong CO, Ciolino H P, Yeh GC, Hose C, Trepel JB, Steven MFG, Stausvill EA Loaiza-Perez A I, Brit. J. Cancer., 2003; 88: 599.
- El-Sherbeny, M.A., Arzneim, Forsch, 2000; 50: 843.
- 19. R.A. Siddiqui, N Khan, Indian J.Pharm. Sci., 2007; 69: 10-17.
- 20. J Mantz, Riluzole, CNS Drug Reviews., 1996; 2: 40-51.
- K Deka, N Barooah, RJ Sarma and JB Baruah, J. Mol. Struct., 2007; 827: 44-49.
- FQ Wang, WJ Zhuang and LP Jin, J. Mol. Struct., 2007; 832: 48-54.
- A Yaseen, AS Haithman and A Sadonia, Z. Naturforsch, 1991; 62b: 23-528.

- 24. K. L. L., Shukla, R. K., 1981; 58: 115.
- 25. A.P. Mishra and M. Khare Journal of the Indian Chemical Society, 2000; 77(8): 367–370.
- Basavaraj M. Kalshetty, Shambuling S, Karabasannavar, Ramesh S. ani and Mallikarjun B. Kalashetti. Drug invention today, 2013; 5: 105-12.
- 27. Praveen K. Singh and B. Singh Ind, J. Chem., 1998; 37A: 331.
- N. Chkaku and K. Nakamoto Inorg, Chem, 1971; 10: 768.
- 29. M. Alaudeen and C.P. Prabhakaran Indian J. Chem, 1996; 35A; 517.