ejpmr, 2016,3(9), 635-637

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

<u>www.ejpmr.com</u>

Research Article ISSN 2394-3211

EJPMR

"THERMODYNAMIC STUDY OF SUBSTITUTED THIOCARBAMIDO-NAPHTHOLS AT DIFFERENT CONCENTRATIONS AND DIFFERENT TEMPERATURES IN MIXED SOLVENT MEDIA"

Dipak T. Tayade¹ and Ajay B. Wadekar²*

¹Department of Chemistry, GVI.S.H. Amravati-444604. Dist. Amravati, (M.S.), India. ²Department of Chemistry, S.D.M.B.Science And Art College Shegaon-444203, Dist. Buldana (M.S.), India.

*Corresponding Author: Ajay B. Wadekar

Depart ment of Chemistry, S.D.M.B.Science And Art College Shegaon -444203, Dist. Buldana (M.S.), India.

Article Received on 23/07/2016

Article Revised on 12/08/2016

Article Accepted on 01/09/2016

ABSTRACT

Conductivity play vital role in drug diffusion. Thermodynamic parameters affected by substituent's of drug. Thus recently in laboratory, conductometrically have been investigated thermodynamic parameters of 5-Phenylthiocarbamido-1-naphthol [PTCN] or L_2 and 5-p-Tolyl -thiocarbamido-1-naphthol [p-MPTCN] or L_4 have been studied at different concentrations in 80% ethanol-water mixture at different temperatures. This work highlights investigation of G K and μ values. The thermodynamic parameters viz ΔH , ΔS and ΔG for ion pair formation determine from the value of ion association constant at 298K and 303K. This investigation provided valuable information regarding to solute-solvents, solute-solvent and solvent-solvent interaction, effect of various substituent's of drugs and effect of dilution from conductometric measurements of 5-Phenyl -thiocarbamido-1-naphthol.

KEYWORDS: Thermodynamic parameters, 5-Phenylthiocarbamido-1-nahthol [PTCN] and 5-p-Tolylthiocarbamido-1-naphthol or L_4 [p-MPTCN].

INTRODUCTION

Conductrometric measurments of electrolytic solution provided valuable information concerned to solubility and permeability of drugs, which are essential biopharmaceutical parameters. These two parameters are accountable for effective bioavailability and good in vitro and vivo correlation.^[1] Now-a-days pharmaceutical technologist has great challenge to enhance solubility and dissociation rate and oral bioavailability of weakly water soluble drugs.^[2] Hydrotropic solubalisation is considered as one of the sophisticated methods of solubalisation.^[3] Enhance aqueous solubalisation of insoluble drugs by adding hydrotropic agents. Number of researchers work on effect of solubility enhancers^[4-5] and due to that increase solubility of drugs but no detail explanation available regarding to these improving solubility. `The split of electrolyte conductivities into the ionic components ideally requires transference numbers, the accurate measurements of which present serious experimental problems in many non-aqueous solvents. Conductometric measurments provided valuable information about solute-solute and solute-solvent interaction ^[6]. Many researchers studied conductometric measurements of electrolytic solution in aqueous and non aqueous solutions Conductance measurements and drugs activity correlation provide valuable information investigation of drug-receptor concerned with

interactions, transport property of drugs and ion-solvent interactions.^[7-18] Conductrometrically investigation of ionic association of divalent asymmetric electrolyte Cu(NO₃)₂ with Kryptofix-22 in mixed (CH₃OH-DMF) solvents at different temperatures was carried out by Gomma and Al-Jahdalli.^[19] Present work concern to effect of different substituent's on conductometric properties, thermodynamic behavior and Walden product 5-Phenylthiocarbamido-1-naphthol of and 5-p-Tolylthiocarbamido-1-naphthol at different concentrations and at 298K and 303K. Shedlovsky method^[20] used for data analysis. Recently observed values of association constant at various concentrations which help to examine thermodynamic parameters like ΔH ; ΔS and ΔG

MATERIALS AND METHOD

All reagents and chemicals were procured from commercial sources (SD Fine Chemicals, India; Aldrich, USA) and used without any further purification. In present investigation used all freshly prepared solution. To Prepared 0.01M, 0.005M. 0.0025 M and 0.0012 M solutions of 5-Phenylthiocarbamido-1-naphthol and 5-p-Tolylthiocarbamido-1-naphthol. Maintain thermal equilibrium (298K and 303K) of drugs solution by using getting thermostat. After thermal equilibrium, conductivity of those electrolyte solutions was measured.

RESULT AND DISCUSSION

Prepared 0.01, 0.005 M, 0.0025M and 0.0012 M solutions of L_2 and L_4 in 80% ethanol-water mixture respectively. To measured conductance of each solutions

by using conductivity bridge at 298K and 303K respectively. Resultant data tabulated in **Table-1 to Table-2**

1-Naphthol[L ₂]	Table 1: Conductometric	Measurements	At Different	Concentrations	Of 5-Phenylthiocarbamido-
	1-Naphthol[L ₂]				

.

Determination OF G, K And µ At 80% Ethanol-Water Mixture								
Temp.	Concentration	Observed	Specific	Molar conductance				
1	C (M)	conductance (G)	conductance (k)	(μ)				
	0.01	0.03062	0.003572 X 10 ⁻³	0.357233				
	0.005	0.01568	0.001887 X 10 ⁻³	0.377548				
298k	0.0025	0.0107	0.001362 X 10 ⁻³	0.545015				
	0.0012	0.00828	0.001059 X 10 ⁻³	0.882578				
	0.01	0.0309	0.003684 X 10 ⁻³	0.368487				
	0.005	0.01656	0.002055 X 10 ⁻³	0.411067				
303k	0.0025	0.01119	0.001421 X 10 ⁻³	0.568588				
	0.0012	0.00904	0.001145 X 10 ⁻³	0.954592				

	Table 2: Conductometric	Measurements	At	Different	Concentrations	Of	5-P-Tolyl	-
	thiocarbamido-1-Naphthol	[L ₄]						
ſ			4 17		1 777 4 3 67 4			

Determination OF G, K And µ AT 80% Ethanol-Water Mixture									
Temp.	Concentration	Observed	Specific	Molar					
Temp.	C (M)	conductance (G)	conductance (k)	conductance (µ)					
	0.01	0.02082	0.002429 X 10 ⁻³	0.2429					
	0.005	0.0134	0.001613 X 10 ⁻³	0.32264977					
298K	0.0025	0.0087	0.001107 X 10 ⁻³	0.443142857					
	0.0012	0.00862	0.001102 X 10 ⁻³	0.918819358					
	0.01	0.02161	0.002577 X 10 ⁻³	0.257702139					
303K	0.005	0.01262	0.001566 X 10 ⁻³	0.313264457					
JUJK	0.0025	0.00966	0.001227 X 10 ⁻³	0.490845091					
	0.0012	0.0952	0.001206 X 10 ⁻³	1.05277778					

Determine the specific constant (Ksp), log (Ksp) and thermodynamic parameters viz. change in free energy (Δ G), change in entropy (Δ S) and change in enthalpy

 (ΔH) of [p-MPTCN] at various molar concentration and at same temperature by known literature methods. The results obtained were given in **Table-3 and 4.**

Table-3 : Conductometrically Determination Of Ksp, Log Ksp, Δ G, Δ H And Δ S At Different									
Concentration And Different Temperatures In 80% Ethanol-Water Mixture									
	S	ystem: 5-Phe	nylthiocarbamid	lo-1-Naphthol	L ₂ -[PTCN]				
Temp	Conc. C (M)	Кяр 10 ⁻³	Log Ksp	ΔG	$\Delta \mathbf{H}$	$\Delta \mathbf{S}$			
	0.01	0.00549	-4.26015	24307.79	-76850.9	-339.459			
298 K	0.005	0.0153	-4.81417	27468.94	-86846.1	-383.607			
290 K	0.0025	0.007995	-5.09736	29084.77	-91954	-406.17			
	0.0012	0.004836	-5.31619	30333.37	-95902.2	-423.609			
	0.01	0.0970	-4.30373	24968.44	-80244.5	-347.237			
303K	0.005	0.0155	-4.81081	27910.3	-89699	-388.15			
2028	0.0025	0.00739	-5.1311	29768.49	-95671.5	-413.993			
	0.0012	0.00486	-5.31857	30856.15	-99166.7	-429.118			

Table-4	: Conductor	metrically Det	ermination Of	Ksp, Log k	Ksp, ΔG, ΔH A	nd ΔS At Different				
Concentration And Different Temperatures In 80% Ethanol-Water Mixture										
System: 5-P-Tolylthiocarbamido-1-Naphthol L ₄ -[p-MPTCN]										
Temp	Conc.	Ksp 10 ⁻³	Log Ksp	٨G	ΔH	ΔS				
	C (M)	10-3	Log Kop	20						
	0.01	0.02539	-4.5952	26219.53	-82895.5	-366.158				
298K	0.005	0.01120	-4.95066	28247.69	-89306.3	-394.476				
290K	0.0025	0.005283	-5.27709	30110.28	-95197.2	-420.495				
	0.0012	0.005233	-5.28124	30133.93	-95310.1	-420.953				
	0.01	0.02430	-4.61434	26770.45	-86036.6	-372.3				
303K	0.005	0.008978	-5.04681	29279.49	-94100.1	-407.193				
505K	0.0025	0.005510	-5.2588	30509.38	-98052.4	-424.296				
	0.0012	0.005322	-3.27364	18992.28	-60999.5	-263.999				

CONCLUSION

Table-1 and 2 showed that observed conductance (G), specific conductance (k) decreases while molar conductance (μ) were increases continuously along with decreasing molar concentrations from 0.01M to 0.0012M. G k and μ increases along with rising temperatures for both ligands (L₂ and L₄). Table-3 and 4 revel that values of Ksp, log Ksp , ΔH and ΔS decreases continuously while ΔG increases along with decreasing molar concentration from 0.01M to 0.0012M and rising temperatures respectively for both ligands (L₂ and L₄). From Table- 1 and 2 it concludes that L_2 has more values of conductance than L₄. Because L₂ has phenyl substituent, it stabilized structure while this was not happen in Tolyl group cause of +I effect of -CH3 group. These parameters directly influence by structure as well as nature of drugs. The change in thermodynamic parameters values closely affected by molar concentrations and temperatures. These parameters shackle by another factors viz. the solute (drug)-solvent interactions, solvent-solvent interactions, solventsolvent-solute interactions and solute-solute-solvent interactions. This type investigation supporting to pharmacodynamics and pharmacokinetics study of drugs.

REFERENCES

- Chakraborty S., Shukla D., Jain A., Mishra B., Singh S., J. Coll. Int. Sci., 2009; 355: 242-249.
- Pouton C. W., Euro. J. Pharm. Sci., 2006; 29: 278-287.
- Naggar A.H. Mauof H. A., Ekshiba A.A., Farghaly O.A., The pharmaceutical and chemical journal, 2016; 3(1): 125-137.
- Agrawal S., Pancholi S. S., Jainand N. K., Agrawal G P., Int. J. Pharm., 2004; 274: 149-155.
- Pancholi G D. and Gradock J. C., J. Pharm. Sci., 1994; 68: 728-732.
- Dash U. N. and Supkar S., Proc. Ind. Acad. Sci. Chem. Soc., 1995; 107: 541.
- Patil K. J., Manwatkar S. M. and Dongde S. S., J. Ind. Chem. Soc., 1994; 33: 4.
- Karia F., Baluja S., Asian J. Chem., 2000; 12(2): 593.
- Wadi R. K., Kakkar V., J. Ind. Chem. Soc., 2000; 39(6): 598.
- 10. Maccarthy, Patrick, Z.D. Hillz, J. Chemical

Education, 1986; 63(3): 162.

- 11. Huang C. Y., Job Plot Method in Enzymology, 1982; 87: 509.
- 12. Springer C.H., Coetzee J. F. and kay R. L., J. Ph. Chem., 1969; 73: 471.
- 13. Dash U.N. and Supkar S., Proc. Ind. Acad. Sci. Chem. Soc., 1995; 107: 541.
- 14. W.A.L. Izonfuo and C.C. Obunwo, Ind. J. Chem., 1999; 38A: 939.
- 15. Roy M.N., Nandi D. and Hazra D. K., 1993 J. Ind. Chem. Soc., 1993; 70: 121.
- 16. Heydari S. and kakhki R.M., Arabian Journal of Chemistry, xxx, 2013; 1-4.
- Hanan M. Elwy, Mona M. Abdel-Moaty and Safaa M. Abdel-Hamid, Anal. Bioanal. Electrochem., 2015; 7(1): 105-117.
- Gamal A. H. Gouda, Gomaa A. M. Ali and Tarek A. Seaf Elnasr, Int. J. Nano. Chem., 2015; 1(2): 39-44.
- 19. Gomma E. A. and Al-Jahadalli B. M., Am. J. Condensed Matter Physics, 2012; 2(1): 16-21.
- Shedlovsky T., MacInnes D. A. and Longworth L. G, "Limiting mobilities of some mono valent ions and dissociation constant of acetic acid at 20^oC." Nature, 1932; 75: 774-775.