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INTRODUCTION    

Approximately 2.2 million deaths caused by diarrheal 

disease are recorded annually worldwide and most of 

these cases are attributed to contaminated food and 

water.
[1]

 Although the vast majority of cases are mild, a 

significant number of cases are fatal and a high incidence 

of acute infections and chronic sequel can lead to billions 

of dollars in medical costs, loss of productivity
[2] 

and 

frequent recalls.
[3]

 The importance of food safety is not 

only a problem in developing countries, but also in 

developed countries, which have advanced food chain 

monitoring systems.
[4]

 Food-borne diseases continue to 

be a matter of major concern worldwide despite 

important developments in safety to reducing the 

incidence of certain pathogens in foods through better 

farm practices and food regulations.
[5]

 In the United 

States food-borne diseases have been estimated to cause 

76 million illnesses, 323,000 hospitalizations, and over 

5,000 deaths annually.
[6]

 The food production can be 

very complex with various stages which may allow 

routes of exposure, meaning that pathogen control is 

critical in the ―farm to fork‖ food production 

continuum.
[7]

 In developing countries, a significant 

proportion of the annual budget of both governments and 

development partners is spent confronting food-borne 

diseases, food safety must be recognized and addressed. 

Minimizing the consumption of unsafe food, may help to 

ensure the good health of the population and may play a 

vital role in the economic progress of developing 

countries. Diarrhea is the most common illness 

experienced by international travelers in developing 

tropical and semitropical regions.
[8]

 The outbreak of the 

lethal strain of Escherichia coli in Europe in 2011 

highlighted the limits of our present understanding of the 

evolutionary trends of new pathogens
[9]

 This guideline 

provides bacterial infectious disease and technical 

information on enteropathogens most commonly 

encountered in clinical practice; however, there are many 

additional bacteria that have been associated with 

gastroenteritis. Limited information is available for the 

majority of these and they are reviewed elsewhere. 

Several of these agents have clinical importance and high 

enough frequency to mention here (Table 1). 

 

BACTERIAL PATHOGENS 

Aeromonas species: over 26 different species of 

Aeromonas have been described as a cause to date, but 

the vast majority of these are of limited clinical or public 

health significance. Aeromonas spp. are ubiquitous in 

aquatic habitats and concentrations peak when water 

temperatures rise substantially during the summer 

months. Consumable products such as poultry, lamb, 
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veal, pork and ground beef can harbor Aeromonas spp. 

Consumption of contaminated foods or potable water or 

accidental ingestion of untreated water during recreation 

are the most common sources of infection. In humans, 

Aeromonas spp. are not considered to be normal 

gastrointestinal flora and the estimated human intestinal 

carrier/colonization rate is extremely low in healthy 

persons.  

 

Most authoritative documents list Aeromonas spp. as 

accepted enteropathogens, although there still are no 

bona fide outbreaks of gastroenteritis attributable to this 

genus.
[11,12] 

The incidence of Aeromonas-associated 

gastroenteritis on a global basis varies dramatically in 

association with geographic and socioeconomic factors. 

In developing countries where sanitary conditions are 

substandard, the reported incidence of Aeromonas 

diarrhea can be high, ranging from approximately 4% to 

22%.
[13–16]

 In industrialized countries, regardless of 

patient population and sample size, Aeromonas-

associated gastroenteritis has been reported at 

frequencies of 0% to 10%.
[17,18]

  

 

Aeromonas diarrhea presents as either an acute watery 

diarrhea (enteritis) or as a more invasive bloody form 

resembling dysentery or enterocolitis.
[17]

 The secretory 

form is much more common than the dysenteric variety. 

A third, extremely rare variation of Aeromonas 

gastroenteritis presents as a cholera-like illness with 

profound watery diarrhea. Most intestinal infections 

associated with Aeromonas spp. are self-limiting, 

although chronic diarrhea exceeding for 1 year has been 

described.
[19,20]

 

 

Several potential serious complications can result 

secondary to Aeromonas gastroenteritis, including 

ulcerative colitis, pan colitis, segmental colitis, or 

inflammatory bowel disease.
[17]

 In a few instances, cases 

of hemolytic-uremic syndrome (HUS) associated with 

Aeromonas hydrophila or Aeromonas veronii biovar 

sobria have been reported in infants and adults
[21]

 Some 

Aeromonas spp. have been shown to carry the Shiga 

toxin (Stx) genes 1 and 2
[22]

 and development of (HUS) 

in patients infected with Aeromonas spp. may be 

attributable to this virulence factor. The most serious 

complication of Aeromonas gastroenteritis is 

translocation from the gut into the circulatory system, 

producing frank septicemia.
[23]

 This situation typically 

exists in persons with underlying conditions, including 

hepatic cirrhosis or malignancies of the circulatory 

systems. Attributable fatality rates due to Aeromonas 

sepsis range from 32% to 45%.
[17]

 

 

Bacillus cereus: B. cereus is ubiquitous in the 

environment, being found in decaying organic matter, 

soil, freshwater and salt water, vegetables and the 

intestinal tracts of invertebrates.
[24]

 The spores are 

hydrophobic in nature, resistant to heat, freezing and 

drying and can survive after gamma radiation and 

pasteurization processes.
[25,26,27]

 B. cereus spores can 

germinate in foods that are not promptly cooled and 

refrigerated after meals or in food heated for prolonged 

periods at temperatures below 60°C. Outbreak 

surveillance data from 2009 and 2010 documented 427 

illnesses associated with 25 outbreaks in the United 

States due to B. cereus.
[28]

  

 

There are two distinct syndromes associated with 

Bacillus cereus food poisoning: an emetic syndrome and 

a diarrheal syndrome. The emetic syndrome is due to 

intoxication by a preformed toxin ingested in food. The 

emetic toxin, called cereulide, it is a plasmid-encoded 

peptide that is resistant to heat, proteolysis and acid. As 

such, the toxin is not destroyed by gastric acids or 

proteolytic enzymes in the intestinal tract or by food 

reheating.
[29]

 Cereulide is responsible for symptoms of 

nausea and which appear within 1/2 to 6 h after ingestion 

vomiting.
[25,29,30]

 These symptoms are similar to those 

seen with Staphylococcus aureus enterotoxins. 

Symptoms usually resolve within 6 to 24 h, but rare case 

reports have documented fulminant hepatic failure and 

death associated with emetic B. cereus.
[31–34]

 The emetic 

toxin is most often found in starchy foods, such as fried 

rice, pastry and noodles.
[35]

 

 

The diarrheal syndrome is characterized by abdominal 

cramps, pain and watery diarrhea within 8 to 16 h of 

ingestion of food that contains viable vegetative cells or 

spores of B. cereus. The symptoms of this diarrheal 

illness are similar to those seen with Clostridium 

perfringens food poisoning, Symptoms typically resolve 

with 12 to 24 h.
[35]

 Although rare, fatalities have 

occurred with B. cereus diarrheal disease.
[29]

 In the 

diarrhea syndrome, the three pore-forming enterotoxins 

are expressed by the vegetative cells in the small 

intestine, which damage the ileal epithelial cell 

membranes. The 3 enterotoxins are hemolysin BL 

(HBL), nonhemolytic enterotoxin (NHE) and cytotoxin 

K.
[25,35]

  

 

Individuals at increased risk of B. cereus diarrheal 

disease include those with lowered stomach acidity, such 

as is seen in patients with achlorhydria or the elderly.
[36]

 

B. cereus has been isolated from the stools of 0 to 43% 

healthy children and adults, at various concentrations. 

However, these cases represent transient colonization, 

most likely obtained from low-level exposure from the 

environment.
[24,37,38]

  

 

Campylobacter Species 

Campylobacter is one of the leading causes of bacterial 

diarrhea worldwide.
[39]

 Food Net estimates that 1.3 

million persons in the United States are affected each 

year by Campylobacter infections.
[40]

 The true incidence 

may be up to 35 times higher due to undiagnosed or 

unreported cases.
[41]

 Geographic variation in rates of 

campylobacteriosis has been consistently observed in the 

United States between 1996 and 2006, with the mean 

annual rate of culture-confirmed campylobacteriosis 

being 5-fold higher in California (34 cases per 100,000 
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population) than in other states.
[42]

 The reason for this 

difference is unclear, but does not appear to be 

associated with increased physician visits, laboratory test 

ordering, or exposure to risk factors among patients in 

California compared to other states.  

 

Campylobacter inhabits the intestinal tracts of food 

animals, such as poultry, cattle, swine and sheep and 

domestic pets, including cats and dogs. The organism 

rarely causes disease in animals but is shed in the feces. 

Meat typically becomes contaminated with animal feces 

harboring Campylobacter spp. during slaughtering. 

Transmission of the organism is typically foodborne, by 

ingestion of undercooked contaminated meat and meat 

products or contaminated dairy products. In addition, 

waterborne infections occur, via consumption of 

contaminated water and ice. Contact with infected 

animals, particularly cats and puppies, has also been 

shown to be a route of transmission. The typical 

incubation period for Campylobacter is 2 to 5 days, but it 

may be up to 10 days.
[43]

 Most cases of Campylobacter 

enteritis are sporadic, but the incidence increases starting 

in March and throughout the summer months. Outbreaks 

associated with Campylobacter have been due to 

consumption of raw milk or well water contaminated 

with effluent from livestock operations.
[44–46]

 Higher 

rates of Campylobacter enteritis are seen in those <4 

years of age and 15 to 44 years of age.
[47]

 Travelers to 

developing countries are also at increased risk of 

Campylobacter enteritis.  

 

Campylobacter jejuni subsp. jejuni and Campylobacter 

coli are the most common Campylobacter species 

associated with diarrheal illness. C. jejuni is responsible 

for >90% of cases.
[43,48]

 Campylobacter upsaliensis, 

which was first isolated from dogs with diarrhea, has 

also been shown to cause human disease. The incidence 

of C. upsaliensis among patients with diarrhea may be 

underappreciated, as the organism cannot grow on the 

selective media typically used to recover Campylobacter 

in clinical laboratories.
[49–51]

 Other Campylobacter spp. 

associated with gastroenteritis include Campylobacter 

fetus subsp. fetus, Campylobacter lari, Campylobacter 

concisus, Campylobacter jejuni subsp. doylei and 

Campylobacter hyointestinalis.
[48,52]

  

 

C. jejuni and C. coli cause indistinguishable 

infections.
[48]

 Before the onset of diarrhea, a febrile 

period with malaise, abdominal pain and myalgia occurs 

in about 50% of symptomatic patients.
[43]

 Diarrhea is 

characterized by loose watery stools, with or without 

blood. Blood and fecal white cells may be present. 

Abdominal cramping can mimic pain associated with 

acute appendicitis. In most cases, the diarrhea is self-

limited, resolving within a week without antimicrobial 

therapy. However, relapse occurs in 5 to 10% of 

untreated patients.
[43]

 Extra intestinal Campylobacter 

infections such as bacteremia, urinary tract infections, 

cholecystitis, hepatitis, pancreatitis, nephritis, meningitis, 

abortion and neonatal sepsis have also been reported.
[53]

 

Campylobacter bacteremia is typically uncommon, but it 

occurs more frequently in patients with HIV infection, 

malignancy and liver disease.
[54]

 Bacteremia and extra 

intestinal infections are also more common in neonates 

and the elderly.
[55]

 

 

Autoimmune complications, such as reactive arthritis and 

Guillain-Barré syndrome (GBS), can occur post-

Campylobacter infection.
[56]

 GBS is an acute paralytic 

disease of the peripheral nervous system and is seen in 

approximately 0.1% of Campylobacter cases. 

Lipooligosaccharides of C. jejuni, which mimic human 

ganglioside, elicit autoantibodies that then react with 

peripheral nerve targets.
[56]

 The onset of GBS usually 

occurs within 2 to 21 days of the diarrheal illness.
[59]

 

Reactive arthritis affects 2 to 4% of patients post 

campylobacteriosis and is characterized by pain and joint 

swelling that lasts for several weeks to a year.
[48]

 In 5% 

of cases, arthritis is chronic or relapsing.
[57]

 Symptoms 

typically begin 3 to 40 days postdiarrhea and most 

commonly affect the knees.
[58]

  

 

Clostridium difficile 

Clostridium difficile is an obligately anaerobic, spore-

forming Gram-positive rod. The spores of C. difficile are 

resistant to stomach acid, heat and many commercial 

disinfectants used in hospitals.
[60]

 Following ingestion, 

exposure of the spores to bile salts in the small intestine 

triggers germination.
[61]

 Pathogenic strains of C. difficile 

harbor a pathogenicity locus (PaLoc) that encodes the 

organism's two main virulence factors: toxin A, an 

enterotoxin (encoded by tcdA) and toxin B, a highly 

potent cytotoxin (encoded by tcdB).
[62]

 The individual 

role of these two toxins in disease are controversial. 

Clinical isolates of C. difficile that do not express toxin A 

have been isolated from symptomatic patients
[63,64]

, albeit 

rarely, whereas toxin B-deficient strains have not. Both 

toxin A- and toxin B-deficient mutants remain capable of 

causing disease in hamsters, although both are attenuated 

compared to the wild-type strain.
[65]

 

 

C. difficile can readily be found in soil, and the intestinal 

tracts of animals and humans. Colonization rates are as 

high as 50% in healthy infants and children <1 year of 

age whereas 3% to 5% of healthy adults are 

colonized.
[66,67]

 Much higher rates of colonization, 10 to 

50%, are seen in high-risk populations, such as 

hospitalized patients and long-term-care facility 

residents. Previous antimicrobial use and previous C. 

difficile infection (CDI) are predictors of colonization in 

these populations.
[68,70]

 C. difficile is acquired through 

the ingestion of spores via the fecal-oral route or through 

exposure to spores in the environment. A recent study 

demonstrated that only a third of CDI cases could be 

linked by whole-genome sequencing of isolates to a 

symptomatic patient, whereas the remainder of cases 

were attributed to exposure from the environment or 

asymptomatic carriers.
[71]

  

 

http://cmr.asm.org/content/28/1/3.full#ref-42
http://cmr.asm.org/content/28/1/3.full#ref-43
http://cmr.asm.org/content/28/1/3.full#ref-44
http://cmr.asm.org/content/28/1/3.full#ref-44
http://cmr.asm.org/content/28/1/3.full#ref-46
http://cmr.asm.org/content/28/1/3.full#ref-47
http://cmr.asm.org/content/28/1/3.full#ref-43
http://cmr.asm.org/content/28/1/3.full#ref-48
http://cmr.asm.org/content/28/1/3.full#ref-49
http://cmr.asm.org/content/28/1/3.full#ref-49
http://cmr.asm.org/content/28/1/3.full#ref-51
http://cmr.asm.org/content/28/1/3.full#ref-48
http://cmr.asm.org/content/28/1/3.full#ref-52
http://cmr.asm.org/content/28/1/3.full#ref-48
http://cmr.asm.org/content/28/1/3.full#ref-43
http://cmr.asm.org/content/28/1/3.full#ref-43
http://cmr.asm.org/content/28/1/3.full#ref-53
http://cmr.asm.org/content/28/1/3.full#ref-54
http://cmr.asm.org/content/28/1/3.full#ref-55
http://cmr.asm.org/content/28/1/3.full#ref-56
http://cmr.asm.org/content/28/1/3.full#ref-56
http://cmr.asm.org/content/28/1/3.full#ref-59
http://cmr.asm.org/content/28/1/3.full#ref-48
http://cmr.asm.org/content/28/1/3.full#ref-57
http://cmr.asm.org/content/28/1/3.full#ref-58
http://cmr.asm.org/content/28/1/3.full#ref-60
http://cmr.asm.org/content/28/1/3.full#ref-61
http://cmr.asm.org/content/28/1/3.full#ref-62
http://cmr.asm.org/content/28/1/3.full#ref-63
http://cmr.asm.org/content/28/1/3.full#ref-64
http://cmr.asm.org/content/28/1/3.full#ref-65
http://cmr.asm.org/content/28/1/3.full#ref-66
http://cmr.asm.org/content/28/1/3.full#ref-67
http://cmr.asm.org/content/28/1/3.full#ref-68
http://cmr.asm.org/content/28/1/3.full#ref-68
http://cmr.asm.org/content/28/1/3.full#ref-70
http://cmr.asm.org/content/28/1/3.full#ref-71


Eman.                                                                              European Journal of Pharmaceutical and Medical Research 

 

www.ejpmr.com 

 

12 

C. difficile is the primary pathogen associated with 

antibiotic-associated colitis.
[72,73]

 In the United States, the 

rate of CDI increased 4-fold between 1993 and 2009 but 

leveled off at 110 per 100,000 hospital stays in 2009.
[74]

 

By far the highest rate of CDI is among patients aged 65 

and older, with over 1,000 cases per 100,000 

hospitalizations in 2009 reported for this age group.
[74]

 

 

In 2005, the NAP1/027/B1 strain emerged in Canada, 

Europe and the United States, concomitant with a 

significant rise in morbidity and mortality associated 

with CDI over those in previous years.
[75,76]

 At the time, 

this change in severity of CDI was attributed to the 

―hypervirulent‖ nature of the NAP1/027/B1 strain, this 

strain has since become the predominant strain in many 

locations and it continues to be associated with high 

mortality and relapse rates.
[77]

 Early studies pointed to 

heightened toxin expression
[78]

, more efficient 

sporulation
[79,80]

, expression of the binary toxin and 

fluoroquinolone resistance
[75]

 as reasons for the 

epidemiological success of this strain. However, some 

studies questioned the relevance of the NAP1/027/B1 

strain type in disease severity
[81,82]

 and it has since been 

confirmed that not all NAP1/027/B1 strains express 

larger quantities of toxin than historical strains.
[83]

  

 

The range of symptoms associated with infection with 

toxigenic C. difficile includes asymptomatic carriage, 

mild to moderate diarrhea and pseudomembranous colitis 

(PMC). Patients may present with a brief, self-limiting 

diarrhea or with profuse watery diarrhea similar to that in 

cholera.
[84]

 Fever, abdominal cramping and leukocytosis 

can be seen in individuals with more severe diarrhea. 

Persons with PMC present with abdominal pain, fever, 

marked leukocytosis and severe diarrhea that may be 

bloody. Poor prognostic indicators include a rapid 

increase in the peripheral white blood count with an 

increase in band forms and a sudden absence of 

diarrhea.
[85]

 

 

The most common conditions associated with CDI are 

dehydration and electrolyte disorders, which may affect 

up to 92% of patients. Less frequent conditions 

associated with CDI include septicemia, 

hypoalbuminemia, renal failure, septic shock, ascites and 

peritonitis. The more severe complications of CDI 

include intestinal perforation and toxic megacolon. 

While these severe complications are only observed in 

0.1% to 3% of all CDI cases.
[74,86,87]

, the mortality 

associated with toxic megacolon is high, ranging from 

38% to 80%.
[86,88]

  

 

Recurrence of CDI is seen in 10% to 20% of cases after 

initial symptom resolution (89). Recurrent infections are 

attributable to both relapse (i.e., spores that are not killed 

by antimicrobial therapy, which can then germinate once 

therapy is completed) and reinfection with a new 

strain.
[90–93]

 However, it is important to note that patients 

who are asymptomatically colonized with C. difficile are 

at decreased risk for CDI, although the reason for this 

remains unclear.
[94]

 

 

Exposure to antimicrobial agents and exposure to health 

care facilities are hallmark risk factors for CDI. While 

almost all antimicrobial agents have been associated with 

CDI, the most common are penicillins, second- and 

third-generation cephalosporins, clindamycin and 

fluoroquinolones.
[84,95]

 As stated previously, advanced 

aged (>65 years) is also an important risk factor for CDI; 

this age group has over 10-fold the number of CDI 

hospitalizations than the general population in the United 

States.
[74]

 Other, less well-defined risk factors for CDI 

include use of gastric acid suppressors, stool softeners, 

laxatives and/or enemas, chemotherapy and 

gastrointestinal surgery.
[96]

 

 

Clostridium perfringens 

Clostridium perfringens is ubiquitous in the environment 

and can be found in the feces of humans and animals. 

Food poisoning with C. perfringens requires ingestion of 

a high burden of vegetative cells, usually 10
8
. The typical 

mechanism for this is food contaminated with C. 

perfringens that is improperly cooked, stored and 

reheated. Spores that survived the initial heating 

processes germinate and proliferate during a slow 

cooling of food or when the food is insufficiently 

reheated. Following ingestion, the organism sporulates 

upon entry into the small intestine, which is concomitant 

with expression of an enterotoxin that is responsible for 

patient symptoms. C. perfringens serotype A is the most 

common serotype associated with food poisoning and 

diarrhea.
[97,98]

 

 

From 2009 to 2010, there were 60 confirmed C. 

perfringens foodborne outbreaks and 3,225 reported 

illnesses, making C. perfringens the second most 

common cause of bacterial foodborne disease in the 

United States in this time period.
[28]

 Symptoms most 

often associated with C. perfringens food poisoning are 

watery diarrhea, severe abdominal cramping and pain 

and vomiting. The onset of symptoms ranges from 8 to 

24 h after the ingestion of contaminated food. It is self-

limiting and symptoms resolve within 24 h.  

 

A rare type of food poisoning called enteritis necroticans 

or ―pig-bel‖ is associated with the ingestion of food, 

usually pork, heavily contaminated with C. perfringens 

serotype C. This organism produces a beta toxin that 

causes intestinal wall necrosis. Pig-bel has a mortality 

rate of 40% and primarily affects malnourished persons, 

especially children.
[99]

 C. perfringens has also been 

linked to antibiotic-associated diarrhea that does not 

cause pseudomembranous colitis.
[73,100]

 

 

Escherichia coli 

Escherichia coli was initially considered to only be a 

commensal residing in the gastrointestinal tract. 

However, several pathogenic variants (pathotypes) are 

now recognized and associated with diarrheal diseases 
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(Fig 1). Although E. coli is easy to identify to species 

level, it is extremely difficult to recognize strains 

belonging to different pathotypes of diarrheagenic E. 

coli, as these are defined by the expression of one or 

more group-specific virulence factors. The six major 

diarrheagenic pathotypes described to date are 

enteropathogenic was; E. coli, Shiga toxin-producing E. 

coli (STEC), enteroinvasive E. coli (EIEC), 

enterotoxigenic E. coli enteroaggregative E. coli and 

adherent invasive E. coli.
[101]

 Of these, only (STEC) is 

routinely identified by most clinical and public health 

laboratories and it will be the focus of the discussion 

here. (STEC) is defined by the presence of a Shiga toxin 

1 (Stx1) and/or Shiga toxin 2 (Stx2) gene. Historically, 

these isolates were called enterohemorrhagic E. coli 

(EHEC) or verocytotoxin-producing E. coli (VTEC). 

(STEC) includes both O157 and non-O157 serotypes of 

E. coli.  

 

Ruminants, such as cattle, are the major reservoir for 

(STEC). Poor sanitation, fecal runoff into rivers and 

streams, and inadequate control measures in the meat and 

food processing industries have all led to the recovery of 

(STEC) from virtually any consumable product. 

Infection with (STEC) occurs following consumption of 

these contaminated products. Infections occur 

predominantly in the summer months but can be 

observed year-round.
[102]

 By analyzing the genome of E. 

coil O157, scientists have determined that in the presence 

of certain genes host animals tend to shed much higher 

quantities of the bacteria than normal. Researchers have 

used genomics to show that has shown that these so-

called ―super-shedding ―genes are also present in the 

strains of E. coli O157 that cause outbreaks in the 

humans; this finding supports the use of vaccination in 

cows (102,114). The incidence of (STEC) infections in 

the United States is monitored by FoodNet. In 2012, the 

incidence of O157 (STEC) was 1.12 per 100,000 

population and the incidence of non-O157 (STEC) was 

1.16 per 100,000.
[103]

 Among the non-O157 (STEC) 

strains, O26, O103, O111, O121, O45 and O145 are the 

most common serotypes isolated in the United States.
[104] 

                                                                               

 

 

The incidence of (STEC) is much higher in developing 

countries such as Argentina, India and Saudi Arabia but 

formal surveillance data are not available for these 

countries. Shiga toxin-producing E. coli (STEC) disease 

presents as enteritis that may quickly progress to 

hemorrhagic colitis. The toxin acts on the lining of the 

blood vessels, the vascular endothelium. The B subunits 

of the toxin bind to a component of the cell membrane 

known as glycolipid globotriaosylceramide (Gb3).
 

Binding of the subunit B to Gb3 causes induction of 

narrow tubular membrane invaginations, which drives 

formation of inward membrane tubules for the bacterial 

uptake into the cell. These tubules are essential for 

uptake into the host cell.
 
 When the protein is inside the 

cell, the A subunit interacts with the ribosomes to 

inactivate them. The A subunit of Shiga toxin is an N-

glycosidase that modifies the RNA component of the 

ribosome to inactivate it and so bring a halt to protein 

synthesis leading to the death of the cell (figure 2). The 

vascular endothelium has to continually renew itself, so 

this killing of cells leads to a breakdown of the lining and 

to hemorrhage. The first response is commonly a bloody 

diarrhea. This is because Shiga toxin is usually taken in 

with contaminated food or water. 

 

 
 

The toxin is effective against small blood vessels, such 

as found in the digestive tract, the kidney, and lungs, but 

not against large vessels such as the arteries or major 

veins. A specific target for the toxin appears to the 

vascular endothelium of the glomerulus. This is the 

filtering structure that is a key to the function of the 

kidney. Destroying these structures leads to kidney 

failure and the development of the often deadly and 

frequently debilitating hemolytic uremic syndrome. Food 

poisoning with Shiga toxin often also has effects on the 

lungs and the nervous system.
[107]

 The chief symptoms 

included bloody diarrhea, abdominal pain, nausea and 

vomiting.
[108]

 Importantly, not all (STEC) infections are 

associated with bloody diarrhea
[109,110]

 and so laboratory 
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algorithms that only test bloody specimens for (STEC) 

are no longer considered standard of care. The most 

common and serious complication of (STEC) infection is 

the development of hemolytic-uremic syndrome (HUS), 

which typically presents 5 to 13 days after the onset of 

diarrhea.
[110]

 (HUS) is life-threatening and consists of the 

triad of renal failure, microangiopathic hemolytic anemia 

and thrombocytopenia. The mortality rate connected with 

(HUS) is 3% to 5%.
[111]

 It has been estimated that 61% of 

all (HUS) cases are related to (STEC) infection.
[111]

 

(HUS) has been observed more frequently in O157 (11% 

of cases) versus non-O157 (1% of cases) (STEC) 

infections.
[104]

 Approximately 15% of children <10 years 

of age develop (HUS) following (STEC) infection. 

However, in the recent outbreak of O104 (STEC) in 

Germany, 22% of children developed (HUS).
[112–114]

 It 

should be noted that this outbreak was caused by an 

atypical (STEC) strain that harbored enteroaggregative 

E. coli virulence factors in addition to the Shiga toxins. 

(HUS) occurs much less frequently among adults and is 

associated predominantly with advanced age (>75 

years).
[115]

 Increased rates of (HUS) have been more 

frequently associated with Stx2-expressing (STEC) 

strains. Exposure to antibiotics also increases the risk of 

(HUS) in children.
[114]

 However, recent data 

demonstrated that treatment with ciprofloxacin reduced 

the risk of (HUS) in patients infected with the 2011 

German O104 (STEC) strain.
[116]

 These data are 

supported by a recent meta-analysis of studies between 

1980 and 2011.
[117]

 Despite this, the decision to treat a 

patient with (STEC) infection with antimicrobials 

remains controversial. In addition, use of antimotility 

agents has been associated with longer duration of 

bloody diarrhea, as well as progression to (HUS).
[118]

 

 

Escherichia albertii 

E. albertii was described as a new species in the genus 

Escherichia in 2003.
[224]

 Most of the initial strains were 

misidentified as Hafnia alvei prior to the establishment 

of E. albertii as a species and were isolated from fecal 

samples from Bangladeshi children experiencing 

diarrheal illnesses. Subsequent evidence suggests that E. 

albertii is isolated fairly frequently from patients with 

diarrheal disease.
[225,226]

 The organism harbors known 

enteropathogenic virulence factors are the presence of 

genes of the locus of enterocyte effacement (LEE), 

which contains the intimin gene (eae).
[227,228]

 and has 

been associated with a major outbreak of gastroenteritis 

involving 48 persons.
[229]

  

 

E. albertii grows well on routine enteric agars, is 

frequently misidentified biochemically as, Salmonella, 

Citrobacter, or inactive E. coli strains
[230]

 and may not be 

included in the databases of commercial identification 

systems. The important phenotypic features 

distinguishing E. albertii from E. coli include a negative 

indole reaction and inability to ferment lactose, d-

sorbitol and d-xylose.
[224]

 Phylogenetic studies indicate 

that Shigella boydii type 13, already known not to belong 

to the true shigellae, is, in fact, a member of the species 

E. albertii.
[227]

 In the 10th edition of the Manual of 

Clinical Microbiology, the species is broken down into 

two biogroups. Biogroup 1 represents the original E. 

albertii strains and biogroup 2 represents isolates 

formerly referred to as S. boydii 13. E. albertii can be 

identified by 16S rRNA gene sequencing and by matrix-

assisted laser desorption ionization–time of flight mass 

spectrometry (MALDI-TOF MS). 

 

Listeria monocytogenes 

The genus Listeria is composed of six species, of which 

Listeria monocytogenes is the common human pathogen, 

causing intestinal as well as extra intestinal infections. L. 

monocytogenes is a common environmental inhabitant of 

soil, vegetation, and animals.
[119]

 Because Listeria spp. 

can survive under acidic and salt-enhanced conditions in 

foods and can grow at refrigeration temperatures (4°C), 

they have the capacity to survive and multiply in large 

numbers in a variety of refrigerated foods.
[119,120]

 A high 

percentage (32%) of foods recalled by the FDA involve 

L. monocytogenes.
[121]

 The major risk factor associated 

with L. monocytogenes gastroenteritis is the 

consumption of foods heavily contaminated (10
7
 to 10

9
 

CFU/g or ml) with this bacteria.
[122]

 The incidence of L. 

monocytogenes gastroenteritis is unknown, but the 

Surveillance data from the CDC and other sources, 

including Food Net, have focused on invasive listeriosis 

(bacteremia and central nervous system infection) as a 

consequence of foodborne infection. In 2011, the 

incidence of invasive listeriosis was 0.31 per 100,000 

population. Many patients with invasive listeriosis have a 

history of gastrointestinal symptoms that consist of 

diarrhea, nausea, vomiting and fever. This, coupled with 

reports of L. monocytogenes outbreaks of gastroenteritis, 

suggests that L. monocytogenes may be an infrequent 

cause of gastroenteritis in patients with negative bacterial 

stool cultures.
[122,123]

 One 2015 Canadian study found the 

maximum incidence of L. monocytogenes-associated 

diarrhea to vary from 0.2% to 0.5%, depending upon the 

population studied.
[123]

 On rare occasions, Listeria 

ivanovii has been reported to cause diarrhea in severely 

immunosuppressed individuals.
[124]

  

 

The typical incubation period for gastrointestinal 

infection is 24 h; however, it can range from 6 h to as 

long as 10 days.
[120]

 Once symptoms begin, diarrhea lasts 

for 1 to 3 days. In a study of cases of gastroenteritis 

linked to outbreaks, attack rates ranged from 50% to 

90% and the median number of stools/day was 12 (range, 

3 to 50).
[122]

 The syndrome is typically characterized by a 

febrile illness with diarrhea, headache and 

arthralgia/myalgia. Other, less frequently encountered 

complications include abdominal pain, nausea, vomiting, 

dizziness, lymphadenopathy and presence of a rash.
[12,122]

 

Fever, which occurs in 60% to 100% of infected persons, 

is a cardinal feature associated with L. monocytogenes 

diarrhea. The most serious complication of listeriosis is 

invasive disease, including septicemia and meningitis. 
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L. monocytogenes has tropism for the brain and as a 

result can cause encephalitis, rhombencephalitis (brain 

stem encephalitis), and brain abscess. The case fatality 

rate for most cases of listeriosis with comorbidities has 

been reported to be between 20% and 40%.
[125]

  

 

Reputed risk factors associated with acquiring L. 

monocytogenes gastroenteritis include gastric acidity, 

use of antacids, use of H2 receptor antagonists, and use 

of laxatives.
[119,122,126]

 In addition, those with 

inflammatory bowel disease (IBD) and Crohn's disease 

may have a more frequent incidence of Listeria diarrhea 

(as opposed to Campylobacter or Salmonella).
[123,126]

  

 

Plesiomonas shigelloides 

Plesiomonas shigelloides is the sole oxidase-positive 

member of the Enterobacteriaceae family. While P. 

shigelloides has been associated with diarrheal disease in 

numerous reports, a definitive causal relationship with P. 

shigelloides has yet to be established through volunteer 

or animal studies.
[127]

 

 

P. shigelloides is found in aquatic environments and has 

been isolated from both cold-blooded and warm-blooded 

animals. In humans, there has been a reported prevalence 

rate of 0.01% to 5.5% in asymptomatic 

individuals.
[128,129]

 Transmission occurs primarily 

through the consumption of seafood, such as oysters and 

shellfish, or water that has been contaminated with 

sewage. Most cases of P. shigelloides diarrheal illness 

are sporadic; however, there have been reported 

outbreaks associated with the organism.
[130–132]

 

Coinfection with P. shigelloides and other 

enteropathogens has been reported
[132,133]

 and some 

evidence suggests that P. shigelloides causes diarrhea 

only as a coinfecting pathogen, rather than on its 

own.
[133]

 Both secretory and dysentery-type diarrhea 

have been reported with P. shigelloides infections.
[130,134]

 

Most infections are characterized by self-limiting 

diarrhea with blood or mucus, abdominal cramps, 

vomiting and fever.
[130]

 While most diarrheal episodes 

are described as acute, there have been reported chronic 

cases lasting over 2 weeks.
[135]

  

 

Salmonella Species 

Salmonella, a member of the family Enterobacteriaceae, 

is a facultatively anaerobic Gram-negative rod. 

Salmonella taxonomy is a complicated matter, with two 

species in the genus: Salmonella enterica and Salmonella 

bongori. Salmonella enterica has six subspecies (S. 

enterica subsp. enterica, S. enterica subsp. salamae, S. 

enterica subsp. arizonae, S. enterica subsp. diarizonae, 

S. enterica subsp. indica and S. enterica subsp. 

houtenae). Because of the diversity of the genus, several 

isolates may be difficult to identify due to atypical 

biochemical reactions, that can be further serotyped 

using the Kauffmann-White-Le Minor scheme, based on 

the properties of their somatic (O), flagellar (H) and 

capsular polysaccharide (Vi) antigens. There are over 

2,500 serotypes of S. enterica.
[136,137]

  

Salmonella colonizes the intestinal tracts of vertebrates. 

Some serotypes, including Salmonella enterica subsp. 

enterica serotype Typhi (Salmonella Typhi), are only 

found in human hosts. The majority of Salmonella cases 

occur as the result of ingesting contaminated food or 

water. Salmonella can also be acquired by contact with 

domestic animals and their food products, farm animals 

or animals in petting zoo and exotic pets like turtles, 

hedgehogs and iguanas.
[138–142]

 Salmonella can also be 

transmitted from person to person via the oral-fecal 

route.  

 

The incidence of Salmonella infections in the United 

States in 2011 was 1,645 per 100,000 population
[143]

, 

with higher rates in late summer and early fall. 

Worldwide, there are an estimated 94 million cases of 

nontyphoidal Salmonella gastroenteritis and about 

155,000 deaths.
[144]

 In developing countries and the 

Indian subcontinent in particular, typhoidal isolates cause 

the majority of disease and are associated with an 

estimated 21.6 million annual cases and 216,500 

deaths.
[145]

 In sub-Saharan Africa, nontyphoidal 

Salmonella, predominantly the Salmonella Typhimurium 

ST313 strain, are a significant cause of bloodstream 

infections in both children and adults.
[146,147]

 In the 

United States, the most common serotypes reported are 

Salmonella Enteritidis, Salmonella Typhimurium and 

Salmonella Newport.
[143]

 In Saudi Arabia, the most 

common serotypes reported are Salmonella Typhimurium 

and Salmonella Enteritidis.
[148]

 

 

Nontyphoidal salmonellosis consists of diarrhea, nausea, 

headache, and abdominal cramps, which last for 4 to 7 

days. Fever may be present and usually resolves in 24 to 

48 h. The disease is typically limited to the lamina 

propria of the small intestine and antimicrobial therapy is 

not indicated. Extraintestinal manifestations, such as 

bacteremia, septic arthritis, urinary tract infections and 

osteomyelitis, are seen in 5% of cases.
[153]

 Some 

individuals may become asymptomatic carriers of the 

organism and shedding occurs for several weeks to a few 

months. The established genetic and pathogenic 

differences among S. enterica serotypes, particularly 

Typhi and nontyphoidal serotypes NTS, warrant further 

characterization of salmonella cytolethal distending toxin 

S-CDT among different NTS serotypes.
[150]

 

 

Typhoid fever is caused by Salmonella Typhi and a 

similar syndrome is caused by Salmonella Paratyphi A, 

Salmonella paratyphi C (strain RKS4594) gene ccdB and 

tartrate-negative variants of Salmonella Paratyphi B. In 

typhoid, the organism disseminates from the lamina 

propria to the reticuloendothelial system in infected 

phagocytes via lymphatic and hematogenous routes. 

Fever, malaise, anorexia, headaches and vomiting are 

common symptoms of typhoid and typically start 1 to 3 

weeks after infection. Patients may have diarrhea 

following ingestion of the organism, but many do not. 

Rose spots, which are blanching maculopapular lesions 2 

to 4 mm in diameter, are seen in 5 to 30% of cases. A 
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complication of untreated typhoid fever is the erosion of 

the blood vessels in the Peyer's patches, which can lead 

to intestinal hemorrhage.
[145]

 The organism persists in the 

mesenteric lymph nodes, gallbladder and bone marrow 

for years. Five to 10 percent of patients will have a 

relapse of infection, typically 2 to 3 weeks following 

resolution of symptoms and Up to 10% of asymptomatic 

patients will become carriers and 1 to 4% of these will 

shed for more than 1 year.
[154]

  

 

The severity of Salmonella disease depends on the 

inoculating dose
[155]

, infecting serotype
[151]

 and 

predisposing host factors. Children under 1 year of age 

have the highest incidence of Salmonella in the United 

States
[143]

 Because Salmonella must survive the gastric 

acid barrier in order to gain access to the small intestine 

where it causes disease, patients with decreased gastric 

acid production, from advanced age, gastrectomy, or H2 

receptor antagonists, are at increased risk of infection. 

Individuals with impaired cellular immunity (e.g., AIDS) 

or altered phagocyte function (e.g., sickle cell anemia) 

are at increased risk for both invasive nontyphoid 

Salmonella infections and typhoid.
[156,157]

 However, these 

individuals do not appear to have more severe typhoid 

infections should they become infected.
[158,159]

 In the 

United States, nearly all cases of typhoid and 

paratyphoid fever are in returning travelers and 

immigrants.
[160]

  

 

Shigella Species 
Shigella species are host adapted to humans but have 

been documented in rare instances from dogs and 

primates.
[161]

 They can be acquired from ingestion of a 

variety of foods or water contaminated with human 

feces, or by laboratory workers. The four species of 

Shigella are Shigella dysenteriae, Shigella flexneri, 

Shigella boydii and Shigella sonnei. Transmission by 

person-to-person contact is common for Shigella spp. 

because of a low infectious dose of 10 to 100 

organisms.
[161]

 Between 2009 and 2010, Shigella 

accounted for 508/8,523 (2%) of reported illnesses 

associated with foodborne outbreaks.
[28]

 The incidence of 

Shigella infections reported by FoodNet in the United 

States in 2011 was 3.24 per 100,000 and ranged from 

0.99 to 6.78 per 100,000, depending on the region.
[143]

  

 

Shigellosis and dysentery are diseases associated 

primarily with poor hygiene and lack of access to 

medical care. Approximately 150 million cases are 

reported annually in developing countries, in contrast to 

1.5 million cases in industrialized nations. Of 

importance, one multicenter study found that half of 

patients with culture-negative, bloody stools were 

positive by PCR for Shigella, suggesting that the actual 

incidence of Shigella is grossly underestimated.
[162]

 

Shigellosis symptoms range from watery diarrhea to 

mucoid and/or bloody stools, which can be accompanied 

by fever, malaise and abdominal pain. In one study of 

1,114 culture-confirmed patients followed for 14 days or 

longer, 29%
[241]

 reported diarrhea persisting for ≥14 

days.
[162]

 The Shiga toxin (Stx), also called the verotoxin, 

is produced by Shigella dysenteriae. Factors associated 

with persistence were age, fever, mucoid diarrhea, 

vomiting and abdominal pain. Headache and nuchal 

rigidity are common, with 95% and 39% of patients 

reporting these symptoms, respectively.
[161]

 S. 

dysenteriae type1 is responsible for classic dysentery, 

which is manifested by fever, abdominal cramping and 

bloody stool. Sepsis occurs primarily in malnourished 

pediatric patients in developing countries and is most 

commonly caused by S. flexneri, long-term carriage (>1 

year) occurs but is rare.
[163,164]

  

 

Meningitis, pneumonia and urinary tract infections 

(UTIs) are rare complications of shigellosis and are most 

commonly seen with S. flexneri and S. sonnei.
[165–167]

 

Notably, 40% of UTIs are asymptomatic and 35% are 

culture negative.
[167]

 Reactive arthritis has been reported 

in 1 to 3% of cases from outbreak data.
[161]

 The onset of 

reactive arthritis occurs within 3 weeks of 

gastrointestinal symptoms, with the duration of 

symptoms ranging from a few days to a few months; 

only S. flexneri has been associated with reactive 

arthritis.  

 

(HUS) is the most serious complication of shigellosis, 

occurs in ∼13% of cases of S. dysenteriae type 1. 

Shigellosis and is attributable to the expression of Stx1 

by this organism.
[168]

 However, in rare cases, non-S. 

dysenteriae species of Shigella have been isolated from 

children with (HUS), S. dysenteriae type 1 (HUS) is seen 

mainly in children <5 years old in Asia and Africa.
[168,169]

  

 

Staphylococcus aureus 

S. aureus food poisoning is an intoxication caused by the 

ingestion of preformed, heat-stable enterotoxin 

Staphylococcus aureus produces a wide variety of toxins 

including staphylococcal enterotoxins (SEs; SEA to SEE, 

SEG to SEI, SER to SET) with demonstrated emetic 

activity and staphylococcal-like (SEl) proteins, which are 

not emetic in a primate model (SElL and SElQ) or have 

yet to be tested (SElJ, SElK, SElM to SElP, SElU, 

SElU2 and SElV). SEs and SEls have been traditionally 

subdivided into classical (SEA to SEE) and new (SEG to 

SElU2) types. All possess superantigenic activity and are 

encoded by accessory genetic elements, including 

plasmids, prophages, pathogenicity islands, vSa genomic 

islands, or by genes located next to the staphylococcal 

cassette chromosome (SCC) implicated in methicillin 

resistance. SEs are a major cause of food poisoning, 

which typically occurs after ingestion of different foods,/ 

there are 21 known staphylococcal enterotoxins, but 

phage-encoded staphylococcal enterotoxin A is the most 

frequently reported cause of S. aureus food poisoning 

worldwide.
[170–172]

 Coagulase-negative staphylococci 

(CoNS) can also acquire enterotoxins, but the reported 

cases or outbreaks of CoNS food poisoning have been 

limited.
[173,174]

 S. aureus is ubiquitous in the environment 

and colonizes the skin and mucous membranes of many 

mammals and birds.
[175]

 In humans, the anterior nares is 
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the most commonly colonized site and the organism is 

shed on to healthy skin.
[176]

 The rate of persistent 

carriage of S. aureus is reported to be 10 to 35% and the 

rate of intermittent colonization ranges from 20 to 

75%.
[176,177]

 For those individuals harboring S. aureus, 

the organism can be transferred from their hands while 

preparing food. S. aureus is most commonly found in 

foods such as cream-filled pastries, cream pies and 

sandwich fillings. However, food products involved in S. 

aureus food poisoning differ widely from one country to 

another.
[175]

 The CDC estimates that there are 

approximately 241,000 cases of foodborne illnesses in 

the United States caused by S. aureus annually.  

 

A rapid onset of symptoms is characteristic of S. aureus 

food poisoning. General malaise, nausea, vomiting, 

stomach cramps and diarrhea can occur within 30 min of 

ingestion of the contaminated food. The typical 

incubation period is 2 to 7 h, with symptoms resolving in 

about 12 h.
[11]

 Patients with staphylococcal food 

poisoning are not febrile. In most cases, medical 

treatment is not required. However, hospitalization for 

the severity of symptoms may be seen in 10% of those 

with S. aureus food poisoning.
[178]

 Severe dehydration 

may be seen in young children and elderly patients.
[178]

  

 

S. aureus food poisoning requires consumption of food 

or beverages harboring the staphylococcal enterotoxins. 

Unsafe food handling practices, including neglecting to 

wash hands prior to handling food and to promptly 

refrigerate prepared foods, are the primary reason for 

intoxication.  

 

Vibrio and Vibrio-Like Species 

The genus Vibrio is currently comprised of over 60 

species. A number of other species traditionally 

associated with this genus have been recently reclassified 

into phylogenetically related neighboring clades, 

including Grimontia hollisae (Vibrio hollisae). Of the 

more than 60 Vibrio or Vibrio-like species that have 

been described, only a few these taxa have been 

consistently associated with bacterial gastroenteritis, 

with the two major species being Vibrio cholerae and 

Vibrio parahaemolyticus. Less frequent, but still of 

concern, are Vibrio mimicus, Vibrio fluvialis, Vibrio 

vulnificus, and G. hollisae.  

 

Vibrio and vibrio-related bacteria are widely distributed 

in saltwater environments with salt concentrations of 17 

to 37 ppt. Freshwater habitats with low salt 

concentrations (<0.5 ppt) can harbor nonhalophilic 

Vibrio spp. such as V. cholerae and V. mimicus. Because 

of their intimate association with the marine 

environment, Vibrio spp. can be found in many 

inhabitants of this macroecosystem, including shellfish 

such as oysters, clams, shrimp and scallops.  

The preeminent pathogen of this group is V. cholerae, 

which can cause sporadic, epidemic and pandemic 

cholera. The WHO estimates that over 1.4 billion 

persons worldwide are at risk of developing cholera each 

year, with an estimated 2.8 million cases occurring 

annually and with over 130,000 deaths.
[179,180]

 Today, the 

highest incidence of cholera is found in Africa and the 

southern regions of Asia. Two serogroups of V. cholerae, 

O1 (El Tor biotype) and O139, are responsible for the 

ongoing pandemic of cholera disease.  

 

Cholera is not common in the United States, but the 

incidence of vibriosis (V. parahaemolyticus, V. vulnificus 

and V. alginolyticus) is increasing. There are an 

estimated 80,000 illnesses with 500 hospitalizations and 

100 deaths each year due to Vibrio illnesses in the 

United States, based upon data submitted through the 

Cholera and Other Vibrio Illness Surveillance (COVIS) 

system and Food Net.
[181,182]

 These cases include not only 

patients with diarrhea but also those with primary 

septicemia, wound infections and otitis externa caused 

by Vibrio spp. The annual incidence of vibriosis in the 

United States has increased from 0.09 to 0.15 per 

100,000 population in 1996 to 0.28 to 0.42 per 100,000 

in 2010, with the highest incidence in coastal areas.
[181]

 

 

V. parahaemolyticus is responsible for many outbreaks 

of food-associated gastroenteritis worldwide. In Japan, it 

has been one of the most important causes of foodborne 

diarrhea since the 1960s.
[183]

 This species has also been 

responsible for the global spread of a pandemic clone, 

O3:K6, causing gastroenteritis in such diverse locales as 

North, Central and South America, the Indian 

subcontinent, parts of Africa and Europe and Indonesia 

from 1996 through 2004.
[184]

 Other clonal strains, such as 

O4:K12, have caused more restricted outbreaks of 

disease, such as on the west coast of the United 

States.
[185]

 V. mimicus has been reported to cause at least 

two outbreaks of diarrheal disease.
[186,187]

 The number of 

studies and case reports worldwide describing 

gastrointestinal infections cause by V. fluvial is seems to 

be increasing as well, In the United States, V. fluvialis is 

typically the third most common Vibrio species 

associated with gastroenteritis, following V. 

parahaemolyticus and non-O1, non-O139 V. 

cholera.
[188,189]

  

 

The chief clinical features of cholera are an afebrile, 

painless, watery diarrhea associated with V. cholerae O1 

El Tor infection, accompanied by multiple bowel 

movements over a short period of time. Incubation 

periods for cholera typically span from 18 h to 5 days, 

asymptomatic colonization is relatively common in areas 

of endemicity due to constant exposure to the infecting 

agent under unsanitary conditions. For symptomatic 

persons, clinical presentations of cholera range from a 

mild to moderate diarrhea to a more fulminant form 

termed cholera gravis.
[190]

 Cholera gravis is characterized 

by the release of large volumes of water (500 to 1,000 

ml/h), which rapidly leads to severe dehydration, shock 

and death over a short period of time if left untreated. 

The more severe forms of cholera are associated with 

pandemic strains bearing the O1 serogroup that carry a 

series of virulence genes, the two most important of 
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which are those for cholera toxin and toxin-coregulated 

pilus.
[191]

 Cholera toxin is typically only found in O1 El 

Tor or the epidemic O139 Bengal strains, although other 

serogroups (O75 and O141) occasionally harbor these 

elements as well and produce cholera-like disease.  

 

Gastroenteritis caused by non-O1, non-O139 serogroups 

of V. cholerae is typically milder and self-limiting, since 

they normally lack the cholera toxin gene. These non-

O1, non-O139 isolates nevertheless cause the vast 

majority of V. cholerae gastrointestinal infections in the 

United States. While disease caused by these isolates is 

typically mild, fatal cases of non-O1, non-O139 V. 

cholerae can occur.
[192]

  

 

V. parahaemolyticus is the most common cause of 

Vibrio-associated diarrhea in the United States. The most 

frequent symptoms linked to V. parahaemolyticus 

enteritis include diarrhea with abdominal cramps, with 

approximately half of all infected individuals having a 

febrile illness.
[193]

 Two prominent symptoms, nausea 

(76%) and vomiting (55%), help to distinguish diarrhea 

caused by this species from other vibriosis or other 

enteritides associated with bacteria.  

 

Unlike with many other enteric pathogens, secondary 

complications due to Vibrio gastroenteritis are rare. The 

principle complication that can arise from enteric 

infection is secondary spread to the bloodstream, 

producing septicemia. In the case of V. cholerae, 

virtually all such bacteremia are caused by non-O1, non-

O139 isolates.
[194]

 Other, infrequently encountered 

Vibrio species that have been demonstrated to cause 

septicemia subsequent to primary gastrointestinal 

infections include V. fluvialis and V. hollisae.
[195,196]

 

  

In the case of cholera, most infections arise in areas of 

endemicity through contaminated water and nonhygienic 

conditions which perpetuate persistence of O1. However, 

persons can also develop cholera through ingestion of 

contaminated shellfish or seafood products containing 

high concentrations of V. cholerae. For other Vibrio and 

Vibrio-like infections, the two major risk factors for 

acquiring disease are consumption of contaminated 

seafood and foreign travel. Vibrio spp. have naturally 

been recovered from many different types of seafood, 

including oysters, mussels, clams, shrimp and tilapia.
[197]

 

A large number of seafood vehicles have been implicated 

in vibriosis outbreaks associated with non-V. cholerae 

vibrios.
[186,193]

  

 

Yersinia enterocolitic and Yersinia pseudo tuber- 

culosis 

There are currently 18 species within the genus Yersinia, 

nine of which are isolated from humans. Yersinia 

enterocolitica, the most well-established enteropathogen 

of the genera, has two subspecies described, Y. 

enterocolitica subsp. enterocolitica and Y. enterocolitica 

subsp. paleartica, which can be distinguished by 

sequencing of the 16S rRNA gene.
[198]

 Y. enterocolitica 

subsp. paleartica O:3/4 is the dominant serotype 

worldwide.
[199]

 Yersinia pseudotuberculosis is also 

enteropathogenic but is more commonly associated with 

sepsis. Y. frederiksenii, Y. kristensenii, Y. intermedia, Y. 

mollarettii, Y. bercovieri, and Y. rohdei can be isolated 

from humans (including patients with diarrhea), but they 

are not believed to be pathogenic except in rare cases in 

individuals with underlying disorders.
[161,200]

 Pathogenic 

strains of Y. enterocolitica are determined by the biotype 

and serotype.  

 

Y.enterocolitica and Y.pseudotuberculosis can be isolated 

from a host of animals, birds, foods and environmental 

sources.
[201]

 Animal sources of human infections include 

hares, rodents, cats (Y. pseudotuberculosis) and dogs (Y. 

enterocolitica). Environmental sources include soil, 

water and sewage.
[161]

 Pigs are a major reservoir for both 

Y. enterocolitica, Y. pseudotuberculosis infections 

worldwide.
[201–203]

  

 

Between 1996 and 1999, FoodNet determined an annual 

incidence of Y. enterocolitica in the United States of 

1.0/100,000 persons, with the greatest rates of infection 

in blacks and Asians.
[203]

 Between 1996 and 2009, 

FoodNet active surveillance noted a decline in the 

overall annual incidence (0.5/100,000 persons) of Y. 

enterocolitica, with rates in blacks also declining from 

3.9 to 0.4 per 100,000 by 2009.
[203]

 The overall rate of Y. 

enterocolitica reported by FoodNet in 2011 was 0.34 per 

100,000.
[143]

 The high infection rate in blacks has been 

associated with homemade chitterlings (pork intestines) 

and educational efforts have been cited as a possible 

explanation for the decrease in infections in this ethnic 

group. Infection rates are highest in children.
[201]

 In the 

United States, 32% of cases occurred in children <1 year 

old and 47% in children <5 years old.
[203]

 Similar 

epidemiology is seen outside the United States; in China, 

44% of cases are reported in children <3 years of age.
[202]

 

Y. enterocolitica infections are classically documented to 

occur in the autumn and winter; however, a study of 

yersiniosis in Europe conducted over a 3-year period 

found no clear seasonal pattern.
[201,202]

 and winter trends 

in yersiniosis in high-risk populations have also 

diminished in the United States.
[203]

  

 

Y. pseudotuberculosis most commonly causes mesenteric 

adenitis, which manifests as an appendicitis-like 

syndrome with fever and right lower quadrant abdominal 

pain. Y. pseudotuberculosis can also cause severe 

septicemia.
[161]

 Symptoms associated with sepsis include 

fever, diarrhea, abdominal pain or tenderness, anorexia, 

nausea, vomiting, and malaise. Mortality rates range 

from 28% to 100% in treated and untreated cases, 

respectively.
[161]

  

 

Y. enterocolitica gastrointestinal disease ranges from 

self-limiting enteritis with diarrhea, low-grade fever and 

abdominal pain to severe disease such as terminal ileitis 

and mesenteric lymphadenitis which also mimics 

appendicitis.
[203–205]

 Onset is generally 24 to 48 h 
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following ingestion, with illness lasting between 7 and 

14 days, but symptoms may persist for up to 2 to 12 

months.
[201,205]

 Bloody stools occur in 20 to 46% of cases 

and host susceptibility, number of ingested organisms 

and serotype are determining factors for severity of 

disease.
[201]

 Severe cases may require hospitalization due 

to dehydration; in one study, 27% of 571 patients were 

hospitalized.
[205]

  

 

Sepsis is uncommon and is often associated with 

cardiovascular, dermal, or pulmonary conditions and 

abscesses. Pharyngitis, with sore throat and fever as the 

predominant symptoms, is not unusual in yersiniosis; in 

one multistate outbreak, 14 of 172 (8%) patients reported 

pharyngitis. Fulminant symptoms, including difficulty 

swallowing and breathing, may occur and require 

immediate medical attention.
[161]

 In these cases, Y. 

enterocolitica can be isolated from throat cultures.  

 

The two most common sequelae of Y. enterocolitica 

infection are reactive arthritis and erythema nodosum, an 

immunologically mediated disease resulting in 

inflammation of subcutaneous adipose tissue with 

eruption of painful nodular lesions.
[205]

 In one large study 

of 571 patients, 7% and 3% of 571 patients reported 

reactive arthritis or erythema nodosum, respectively.
[205]

 

The onset of reactive arthritis generally occurs <3 weeks 

after enteritis and the longer the duration of 

gastrointestinal symptoms, the greater the likelihood that 

reactive arthritis will develop.
[161]

 Joint inflammation 

generally subsides spontaneously after 1 to 12 months, 

but 10% of patients will develop chronic arthritis.
[206]

 

Approximately 80% of patients developing reactive 

arthritis carry the HLA-B27 allele.
[206]

 Septic arthritis is 

less commonly encountered and is not associated with 

HLA-B27.
[161]

  

 

Because some Y. enterocolitica serotypes are unable to 

synthesize siderophores (compounds that sequester iron 

from the host), patients with iron overload disease are 

more susceptible to infection.
[161,201]

 Y. enterocolitica can 

be acquired from blood transfusions, as the organism 

readily grows at lower temperatures used to store blood 

products. The development and severity of disease are 

dependent on the species of Yersinia (other than Y. 

enterocolitica) and the Y. enterocolitica bioserotype 

acquired.
[200,204,207]

   

 

Bacteroides fragilis 

Strains of B. fragilis carrying an ∼6-kb pathogenicity 

island produce a zinc metalloprotease enterotoxin that 

has been known by several different names, including B. 

fragilis toxin and fragilysin.
[208,209]

 These enterotoxigenic 

B. fragilis strains (ETBF) not only have been implicated 

as a cause of diarrheal disease in children under 5 years 

of age but more recently have been associated with 

inflammatory diarrhea in children and adults.
[210]

 A meta-

analysis of 17 studies that evaluated the association of 

ETBF with diarrheal disease found that 12 (71%) of the 

studies demonstrated a higher frequency of ETBF in 

patients with diarrhea than in controls.
[211]

 In contrast, a 

recent Indian study found no difference in the rate of 

isolation of ETBF as a sole pathogen from children with 

and without diarrhea.
[212]

 This suggests that other, 

mitigating factors may play a role in the infective process 

for ETBF.  

 

Currently, there is no easy method to detect ETBF. 

Potential B. fragilis isolates can be recovered from stool 

on Bacteroides bile esculin agar (Becton Dickinson, 

Sparks, MD) and then tested for enterotoxigenicity in 

vitro using PCR for the Bacteroides fragilis toxin gene 

(bft).
[212]

 Alternatively, the cytopathic effect (CPE) 

produced by fragilysin on HT29/C1 (human colon) cell 

lines can be evaluated.
[211]

 Both methods are employed 

only for research purposes at this time.  

 

Edwardsiella tarda 

E. tarda is one of four species currently residing in the 

genus Edwardsiella of the family Enterobacteriaceae and 

is the only species considered pathogenic for humans. A 

common inhabitant of fish, reptiles, marine animals and 

aquatic birds.
[213,214]

, E. tarda can also be recovered from 

water. Approximately 80% of reported human illnesses 

attributed to E. tarda involve infections of the 

gastrointestinal tract.
[213]

 Data from a number of studies 

suggest that E. tarda is associated with 0.3% to 1.0% 

cases of gastroenteritis.
[161,213]

 Asymptomatic carriage of 

E. tarda has been reported.
[213]

  

 

E. tarda-associated diarrhea can present in one of several 

forms, the most common of which is watery diarrhea. 

Other diarrheal syndromes linked to E. tarda include 

dysentery, chronic diarrhea and enteric fever.
[213,215]

 Risk 

factors for acquiring E. tarda diarrhea include 

consumption of contaminated fish or seafood, accidental 

ingestion of contaminated water, exposure to water from 

ornamental aquariums and handling pet turtles.
[216–221]

 

Person-to-person transmission has also been postulated 

but currently remains unsubstantiated.
[222]

 Two 

populations thought to be particularly susceptible to E. 

tarda infection are persons >50 years of age and young 

children <5 years of age.
[213,223]

   

 

Klebsiella oxytoca 

Since the late 1970s and early 1980s, K. oxytoca has 

been sporadically linked to cases of antibiotic-associated 

hemorrhagic colitis in Japan and other locations around 

the world.
[231]

 In 2006, in an elegant series of clinical 

observations and histopathological studies on six patients 

with antibiotic-associated hemorrhagic colitis (AAHC) 

convincingly established K. oxytoca as the etiological 

agent in persons negative for Clostridium difficile.
[232]

 C. 

difficile-negative patients who are at higher risk of 

developing K. oxytoca colitis include those previously 

receiving penicillins or on nonsteroidal anti-

inflammatory drugs.
[232]

 At present, confirmation of K. 

oxytoca colitis in C. difficile-negative patients requires 

detection of the species-specific K. oxytoca cytotoxin by 

detection of CPE on HEp-2, CHO, or HeLa cells.
[232–234]
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In a recent study of 5,581 stool specimens submitted for 

C. difficile testing at an acute-care health system in 

China, 2.1% of specimens harbored K. oxytoca, but only 

29.1% of these strains were cytotoxin producing.
[235]

 

 

A second highly suggested, but unproven, syndrome 

attributed to K. oxytoca is diarrhea. Although one study 

found no correlation between the presence of K. oxytoca 

and diarrhea
[236]

, a later study found a high percentage of 

cytotoxin-positive K. oxytoca isolated from patients with 

health care-associated diarrhea that did not develop into 

AAHC.
[235]

 In the latter study, a specific selective 

medium termed SCITB (Simmons citrate-inositol-

tryptophan-bile salts) was developed to recover K. 

oxytoca from stools. This medium has been shown to 

improve the recovery of K. oxytoca over that with 

MacConkey (MAC) agar by 30%.
[235]

 This medium 

could greatly aid in determining the significance of K. 

oxytoca from mild to moderate cases of diarrhea. 

 

Table 1: Common bacteria cuasing foodborne illness, symptoms, common food sources and there incubatin 

period. (WHO 2015)            

Microorganism 
Food–borne 

illness  
Symptoms  Common food sources  

Incubation 

period  

Staphylococcus 

aureus             
Intoxication  

Nausea, vomiting, abdominal 

cramping  

Foods contaminated by improper 

handling and holding temperatures—

meats and meat products, poultry and egg 

products, protein-based salads, sandwich 

fillings, cream-based bakery products     

1–12 hours  

Salmonella 

species  
Infection  

Abdominal cramps, diarrhea, 

fever, headache  

Foods of animal origin; other foods 

contaminated through contact with feces, 

raw animal products, or infected food 

handlers. Poultry, eggs, raw milk, meats 

are frequently contaminated.  

12–72 hours  

Escherichia 

coli group  
Infection  

Watery diarrhea, abdominal 

cramps, low-grade fever, 

nausea, malaise  

Contaminated water, undercooked 

ground beef, unpasteurized apple juice 

and cider, raw milk, alfalfa sprouts, cut 

melons  

12–72 hours  

Shigella  Infection  
Fever, abdominal pain and 

cramps, diarrhea  
Fecally contaminated foods  12–48 hours  

Campylobacter 

jejuni  
Infection  

Diarrhea, perhaps 

accompanied by fever, 

abdominal pain, nausea, 

headache, and muscle pain  

Raw chicken, other foods contaminated 

by raw chicken, unpasteurized milk, 

untreated water  

2–5 days  

Bacillus cereus  Intoxication  
Watery diarrhea and cramps, 

or nausea and vomiting  

Cooked product that is left uncovered 

_milk, meats, vegetables, fish, rice, and 

starchy foods  

0.5–15 

hours  

Clostridium  

perfringens  
Infection  

Intense abdominal cramps, 

diarrhea  

Meats, meat products, gravy, Tex-Mex 

type foods, other protein-rich foods  
8–24 hours  

Clostridium 

botulinum  
Intoxication  

Lethargy, weakness, 

dizziness, double vision, 

difficulty speaking, 

swallowing, and/or breathing; 

paralysis; possible death  

Inadequately processed, home-canned 

foods; sausages; seafood products; 

chopped bottled garlic; kapchunka; 

molona; honey  

18–36 hours  

Listeria 

Monocytogenes  
Infection  

Nausea, vomiting, diarrhea; 

may progress to headache, 

confusion, loss of balance and 

convulsions; may cause 

spontaneous abortion  

Ready-to-eat foods contaminated with 

bacteria, including raw milk, cheeses, ice 

cream, raw vegetables, fermented raw 

sausages, raw and cooked poultry, raw 

meats, and raw and smoked fish  

Unknown; 

may range 

from a few 

days to 3 

weeks  

 

Providencia alcalifaciens 
A British survey of travelers to Mediterranean countries 

between 1987 and 1988 found a significant association 

between the recovery of P. alcalifaciens and diarrheal 

disease.
[237]

 These initial findings have been 

subsequently supported by other studies describing 

individual cases of P. alcalifaciens-associated diarrhea 

and at least three outbreaks of gastrointestinal disease, 

including one large outbreak involving >270 children in 

Japan.
[238–240]

 P. alcalifaciens strains implicated in 

diarrheal disease are invasive in HEp-2 cell monolayers, 

although the type of diarrhea that they produce is 

secretory
[239,241]

; some strains additionally produce a 

cytolethal distending toxin.
[242]

 Persons most at risk of 

developing P. alcalifaciens diarrhea are those who are 

involved in foreign travel or have consumed 

contaminated foods containing the organisms.
[237,243]
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Most isolates of P. alcalifaciens recovered from 

diarrheal stools have been isolated in pure culture, as 

predominant flora, or without any other recognizable 

enteropathogens being detected.
[237,240,243]

 A selective 

medium, termed PAM (Providencia alcalifaciens 

medium), has been described for the recovery of this 

species from feces.
[244]

 This medium has subsequently 

been modified as PMXMP (polymyxin-mannitol-xylitol 

medium for Providencia) and used with success.
[242,243]

 

 

Phenotypic and molecular subtyping 

Phenotypic as well as molecular subtyping methods have 

been key tools in food safety and have played important 

roles for foodborne disease outbreak detection, 

identification of pathogen sources responsible for food 

contamination through the food chain and source 

attribution. Traditional phenotypic subtyping methods 

include most prominently serotyping as well as phage 

typing and biotyping, to name a few. The development of 

molecular and nucleic acid-based subtyping methods has 

revolutionized the field of subtyping. Molecular 

subtyping methods used for foodborne pathogens can be 

divided into banding pattern-based methods [e.g., pulse 

field gel electrophoresis (PFGE); ribotyping; repetitive 

extragenic palindromic sequence (REP)-PCR] as well as 

sequencing-based subtyping [e.g., multilocus sequence 

typing (MLST) and multiple-locus variable number 

tandem repeat analysis (MLVA)]. 

 

Importantly, many molecular subtyping methods allow 

for more sensitive discrimination than traditional 

phenotypic methods (e.g., a single Salmonella serotype 

may be differentiated into 20+ PFGE types). These 

methods often also allow for more reproducible 

subtyping compared with traditional 

methods(Figure3).
[251]

 

 

A turning point for molecular subtyping use for bacterial 

foodborne disease surveillance was the establishment of 

PulseNet in the U.S. in 1996. This network initially 

focused on subtype characterization of Escherichia coli 

O157:H7 but was subsequently expanded to other 

pathogens as shown in figure 4.
[252]

 

 

 
 

This system has also expanded internationally as 

―PulseNet International.‖ Key innovations with PulseNet 

include the development and implementation of a highly 

standardized subtyping method for bacterial pathogens, 

based on PFGE separation of whole-genomic restriction 

digests, as well as rapid Web-based exchange of the 

resulting PFGE patterns. This approach has provided 

tremendous improvements in the ability to detect 

temporally and spatially distributed foodborne disease 

outbreaks as shown in (figure5). While the tremendous 

food safety impact of PulseNet and other molecular 

subtyping methods is well recognized, there is no doubt 

that the rapidly emerging use of whole-genome 

sequencing (WGS) for foodborne pathogen subtyping 

will provide another major improvement in our ability to 

detect foodborne disease outbreaks and define pathogen 

sources throughout the food chain. Importantly, even 

though WGS provides for virtually complete 

characterization of bacterial isolates and maximum 

resolution for DNA-based characterization, data 

interpretation can and will still be challenging, 

particularly if one aims to establish whether two isolates 

that are genetically identical (or have only one or a few 

genetic differences) share a recent enough common 

ancestor to establish a cause-and-effect-type relationship. 

To illustrate, WGS of Listeria monocytogenes isolates 

obtained 12 years apart, but from foods produced in a 

single facility (as well as associated human cases) 

indicated that an L. monocytogenes strain persisted in 

this plant for 12 years without any detectable genetic 

changes in the core genome.
[253]
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This suggests that L. monocytogenes transfer from one 

location (e.g., a farm) to at least one other location (e.g., 

processing plant, retail environment) may lead to a 

situation where isolates from different potential outbreak 

sources may show virtually identical genomes that may 

complicate trace-back. This also illustrates the need for 

good epidemiological data to facilitate appropriate 

interpretation of WGS data. As the WGS revolution in 

food safety has started to gain momentum, it is essential 

for everyone involved in food safety to understand both 

the basics of this technology as well as its already 

existing and future applications and uses. While this 

article will provide an introduction to the application of 

WGS in food safety, this field is constantly changing and 

new technologies are rapidly being developed and 

improved. It is therefore essential for food safety 

professionals to ensure that they continue to stay 

informed on advances in this field, which will have 

significant impact in food safety and beyond (e.g., food 

spoilage, food authenticity and fraud detection). 

 

Whole-Genome Sequencing 

The Basics While traditional sequencing methods have 

been used to sequence the complete genomes of bacteria, 

these methods are too time consuming and expensive to 

allow for routine use of bacterial WGS (figure 5) as part 

of surveillance systems or for bacterial characterization 

and subtyping. As described in detail in a number of 

review articles.
[254,255]

 

 

The development and commercial introduction of new 

rapid-sequencing methods (often referred to as ―next-

generation sequencing‖ methods) have made it possible 

to perform routine WGS of bacterial isolates at costs and 

turnaround times that make these tools competitive with 

more traditional molecular subtyping methods. 

Development of these new genome-sequencing methods 

was initially driven by the desire to develop tools for 

sequencing of a complete human genome for less than 

$1,000. As bacterial genomes are roughly 1,000 times 

smaller than the human genome (the human genome 

contains about 3 billion base pairs, while the L. 

monocytogenes genome contains almost exactly 3 

million base pairs), it is easy to see how development of 

tools to sequence a human genome for less than $1,000 

will also yield tools that facilitate affordable bacterial 

genome sequencing. There are several commercially 

available platforms for bacterial genome sequencing that 

allow one to complete the actual sequencing of a 

bacterial genome for less than $50/isolate and with 

turnaround times, starting from a single bacterial colony, 

of fewer than 5 days. Typically, to achieve sequencing at 

costs under $50/isolate, a considerable number of 

isolates must be sequenced at the same time on a given 

instrument to achieve maximum economy of scale. 

 

WGS of a single or a few isolates typically is an order of 

magnitude more expensive. This is important, as it 

means that in-house sequencing, for example, by a food 

company or food testing lab, will only be cost effective if 

large numbers of isolates are sequenced at the same time. 

Practically, this may mean longer turnaround times, as 

labs that receive few isolates may need to batch them 

into a single run and therefore may wait until they have 

accumulated enough isolates for WGS to be cost 

effective. With the current status of WGS, in-house 

sequencing capabilities are likely to be cost effective 

only if large numbers of isolates are being sequenced, or 

if sequencing equipment is used for multiple applications 

(e.g., WGS of pathogens, starter cultures and spoilage 

organisms and metagenomic sequencing). On the other 

hand, public health laboratories involved in foodborne 

disease surveillance typically will receive enough 

isolates to make WGS cost effective, particularly since 

WGS for different pathogens can be performed in the 

same run (unlike methods like PFGE, where different 

gels may be needed for different pathogens). 

 

Advantages of WGS over Other Molecular Sub- 

typing Methods. 

While PFGE (as well as other molecular methods) has 

had tremendous positive impacts on food safety, it and 

other methods have shortcomings and challenges that can 

and will, be overcome by WGS. For example, PFGE and 

other methods have shown limited discriminatory ability 

for some highly clonal pathogen populations, such as 

specific Salmonella serovars (e.g., Enteritidis
[256]

 and 

Montevideo.
[257]

 As WGS provides significantly 

improved subtype discrimination and can discriminate 

isolates that share identical PFGE types, WGS improves 

outbreak detection. For example, more than 50 percent of 

Salmonella Enteritidis isolates show identical PFGE 

types, but WGS can further differentiate isolates that 

share this common PFGE type and t(HUS) identify 

outbreaks that would not be detected by PFGE alone or 

even a combination of PFGE and MLVA.
[256]

 PFGE also 

sometimes yields different patterns for isolates that are 

closely related. This occurs because a large part of 

bacterial genomes can rapidly change through 
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acquisition or loss of plasmids or chromosome-integrated 

prophages; typically, these types of changes yield 

isolates that differ by three or fewer bands in their PFGE 

patterns with a given enzyme. This can cause practical 

challenges: for example, when pathogen isolates from 

human patients and a food epidemiologically implicated 

as an outbreak source differ by one to three bands in 

PFGE. These types of findings complicate high-

confidence assignment of an outbreak source. WGS, on 

the other hand, can easily and rapidly determine whether 

isolates that differ by specific genetic elements or by a 

few bands in PFGE are otherwise genetically closely 

related or not, as shown in the use of WGS to clarify the 

genetic relatedness of isolates in a large listeriosis 

outbreak that occurred in Canada in 2008.
[258]

 Generally, 

WGS allows for highly improved discriminatory power 

as well as characterization of evolutionary relatedness of 

isolates, which is not possible with PFGE. In addition, 

WGS has technical advantages over PFGE and many 

other subtyping methods (figure 6). such as the potential 

for a higher level of automation, a simpler integrated 

work flow, reduced time of analysis and generation of 

highly standardized and compatible data even with 

different sequencing platforms. 

 

 
Figure 6: Circular map and genetic features of Listeria 

monocytogenes isolate 08-5578. The outer ring denotes 

genetic coordinates, and prophage and the novel 50 kbp 

Listeria genomic island (LGI1) are indicated in grey 

text. Prophage jLMC1 is not encoded within isolate 

085923. Light blue bars (2nd and 3rd rings) denote 

coding sequences on the positive and negative strands, 

respectively. Red bars (4th ring) denote those coding 

sequences present in 08-5578 but absent in the genome 

sequence of strain EGDe. Dark blue bars (5th ring) 

indicate confirmed single nucleotide polymorphisms 

between isolate 08-5578 and 08-5923. The black/grey 

and blue/green plots indicate G+C content and G+C 

skew, respectively 

 

While rapid analysis of WGS data still remains 

somewhat of a challenge and may in some situations 

represent a bottleneck, easy-to-use, high-throughput 

bioinformatics tools for bacterial WGS data. Currently, 

reliable WGS data analysis still requires a trained 

bioinformatician to select, properly run and maintain the 

necessary pipeline of different analysis tools. Typical 

bioinformatics pipelines (Genomics, 2010) can now 

provide for initial WGS-based classification of isolates in 

less than 1 hour after raw data are downloaded from the 

actual sequencing hardware. Alternative approaches, 

such as a whole-genome MLST approach, which is 

currently used by the U.S. Centers for Disease Control 

and Prevention (CDC), further simplify analyses and 

allow for initial data analyses in a matter of minutes 

(e.g., 5 minutes as communicated in a CDC 

presentation).
[259]

 These initial WGS data analyses do not 

provide detailed genomic information, such as 

identification of specific genes or prophages or plasmids, 

though; detailed and more lengthy data analyses are 

required to gain this type of additional information, 

which can provide valuable data on the genomic content 

of isolates, such as presenceof novel antibiotic resistance 

or virulence genes. Even there, rapid tools to extract and 

identify specific genes are being developed to allow for 

rapid identification of specific genomic elements and 

genes, such as antibiotic-resistance genes.
[260,261]

 

 

Use of WGS for Foodborne Disease Surveillance With 

its advantages and rapidly decreasing costs, WGS has 

been integrated into routine foodborne disease 

surveillance. While retrospective studies on the use of 

WGS for foodborne disease surveillance have been 

conducted since about 2010, routine use of WGS was 

initiated by the CDC in 2013. Specifically, all L. 

monocytogenes isolates obtained from human disease 

cases in the U.S. have been characterized by WGS since 

fall of 2013.
[262]

 Capabilities to perform WGS for this 

type of surveillance exist at some state public health 

laboratories as well as at CDC; the impact of WGS 

implementation has been seen with detection of a 

number of smaller listeriosis outbreaks.
[263]

 At least some 

of which would have likely gone undetected with sole 

use of traditional subtyping methods such as PFGE. As it 

is being implemented in not just the U.S., WGS also will 

facilitate detection of multi-country outbreaks, as 

supported by exchange of L. monocytogenes genome 

sequences between CDC and Canadian investigators, 

which showed a perfect match between the genome 

sequences for a let isolate obtained in Canada and a 

human isolate obtained in Ohio.
[264]

 While L. 

monocytogenes is a highly suitable model for initial 

implementation of WGS-based foodborne disease 

surveillance, due to both a relatively small number of 

human isolates per year and to its relatively small and 

easy-to-sequence genome, WGS also is increasingly used 

by public health and regulatory agencies to characterize 

other foodborne pathogens, in particular Salmonella. 

Importantly, U.S. government laboratories are moving to 

open release of isolate WGS data in real time, in Genome 

Trakr, even though metadata are still embargoed for a 

time. This will facilitate improved utilization of WGS 

data created for foodborne disease surveillance by groups 

other than public health laboratories. 
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WGS can also used for Source Trace-Back  

In addition to routine WGS of human clinical isolates, 

routine WGS characterization of foodborne pathogen 

isolates obtained from food and environmental samples 

collected by regulatory agencies is increasingly common 

and has been spearheaded by the U.S. Food and Drug 

Administration (FDA). At this point, it is probably 

appropriate for the food industry to assume that any 

isolate obtained from a food or environmental sample 

collected by FDA undergoes characterization by WGS 

with subsequent comparison of the genome sequence to 

available human clinical isolates. This approach has 

started to lead to the identification of human cases and 

outbreaks likely linked to a contaminated food. For 

example, in 2014, genome sequences of L. 

monocytogenes isolated from recalled Hispanic-style 

cheese produced by Oasis Brands Inc. were found to be 

highly related to sequences of L. monocytogenes isolated 

from five ill people, one each in Georgia, New York and 

Texas and two in Tennessee; all of these individuals 

reported consuming Hispanic-style soft cheese, 

suggesting that these illnesses could have been related to 

products from Oasis Brands.
[265]

 Importantly, however, 

WGS is not a magic bullet that allows for accurate and 

reliable identification of outbreaks and outbreak sources 

in the absence of appropriate food consumption history 

and epidemiological data. Continued investment in 

epidemiological data collection and analysis capabilities 

is critical to take full advantage of WGS-based subtyping 

data for foodborne pathogens. 

 

The Future of WGS in Food Safety 

The use of WGS-based characterization of foodborne 

pathogens by both public health and regulatory agencies 

will likely expand very quickly and may replace PFGE in 

the not-too-distant future. The technologies for WGS 

will also continue to develop and become increasingly 

simple, with a highly streamlined work flow that will 

facilitate more widespread application of these tools. 

With the rapid development of genome-sequencing 

technologies, food safety applications of sequencing 

beyond WGS will also rapidly grow. For example, 

metagenomic applications may have a major impact on 

food safety, particularly since these tools will allow for 

detection and identification of nonculturable and 

previously unknown pathogens, including bacteria, 

viruses and parasites, in both food specimens and clinical 

samples. With estimates that around 80 percent of 

foodborne disease cases in the U.S. are caused by 

unspecified agents, including known agents not yet 

recognized as causing foodborne illness, substances 

known to be in food but of unproven pathogenicity and 

unknown agents.
[266]

 These tools likely will reveal the 

identity of some of these agents, which will provide 

opportunities to further reduce foodborne illnesses. 

Analysis of short-read metagenomics data may not 

always provide for accurate identification of bacteria 

present, though, and may provide potentially misleading 

data. For example, short DNA pieces from a 

nonpathogen could be misidentified as representing 

pathogen DNA
[267]

, some of these issues will likely be 

overcome with new platforms that sequence larger DNA 

fragments. Industry adoption of WGS and metagenomic 

approaches for the detection and characterization of 

foodborne pathogens and disease agents may be slow 

and hampered by liability concerns. In addition to the 

potential for misidentification, metagenomics-based 

approaches may detect and sequence DNA from dead 

organisms, which are expected in any foods that undergo 

kill steps such as heat treatment. This may lead to false 

positives and associated misleading results when DNA 

from dead pathogens is detected in a properly processed 

and safe product. A key challenge will be to create a 

regulatory environment that will facilitate broad industry 

use of WGS, which will help ensure widespread 

application of these tools and consequently improve food 

safety, due to improved trace-back to contamination 

sources, for example. In the future, integration of WGS 

and other genomics-based tools with other large datasets 

(big data) will likely drive a big data paradigm shift in 

food safety, which has the potential for even larger food 

safety improvements.
[268] 

 

CONCLUSION 

We all have a role to contribute in food safety. Food 

producers, processors and consumers can use techniques 

such as hand washing and proper labelling and 

sterilization of equipment to reduce the spread of 

harmful organisms. But genomics provides the forensics 

tools we need to fully understand how a given outbreak 

started, knowledge that is crucial to learning from our 

mistakes and preventing future outbreaks. They also 

offer insight in the underlying reasons why one strain is 

more harmful and virulent than another? and can point 

the way toward new vaccines, new antibiotics and other 

new strategies - such as probiotics, medicinal plant 

extract and green metal nanoparticles to fight against 

bacterial infections. In this way, genomics can help 

everyone enjoy safer food. 
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