ejpmr, 2017,4(1), 462-467

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

www.ejpmr.com

<u>Research Article</u> ISSN 2394-3211 EJPMR

# ALUMINIUM SULPHATE IN PEG AS A GREEN RECYCLABLE HOMOGENEOUS CATALYTIC SYSTEM TO SYNTHESIS OF AMIDOALKYL NAPHTHOL

Bhata R. Chaudhari<sup>\*</sup>

\*Dept. of Chemistry, JET's Z.B. Patil College, Dhule -424002(MS), India.

\*Corresponding Author: Dr. Bhata R. Chaudhari Dept. of Chemistry, JET's Z.B. Patil College, Dhule -424002(MS), India.

Article Received on 14/11/2016

Article Revised on 05/12/2016

Article Accepted on 27/12/2016

# ABSTRACT

Aluminium sulphate as a catalyst in PEG as a reaction solvent is found to be an attractive, environmentally benign and highly efficient catalytic system for the one-pot multicomponent reaction of aromatic aldehyde,  $\beta$ -naphthol and amide to form the corresponding amidoalkyl naphthol. The procedure is simple, rapid and high yielding. Moreover, the catalyst exhibited a remarkable reactivity and is reusable in PEG-400 as a solvent. The Aluminium sulphate in PEG-400 can be reused upto four times without significant loss in yields and selectivity of the product. The remarkable features of this new one pot C-C and C-N bond forming reaction procedure are high conversations, operationally simple and eco-friendly and economically inexpensive method.

**KEYWORDS:** Multicomponent reaction, amidoalkyl naphthol, β-Naphthol, Aldehyde, Aluminium sulphate, PEG-400.

# INTRODUCTION

One-pot multicomponent reactions have attracted considerable attention in recent years. MCRs are furnished the desired product in a single operation without need to isolate any intermediates during the processes. This reaction reduces the reaction time considerably increase the yield of the products than ordinary multistep methods, save an energy input<sup>[1-3]</sup>. They have merits over two components reaction in several aspects including the simplicity of a one pot procedures, good yield, possible structural variation and building up complex molecules. Biginelli<sup>[4,5]</sup>, Ugi<sup>[6]</sup>, Passerini<sup>[7,8]</sup> and Mannich<sup>[9,10]</sup> are some examples of MCRs. In addition the implementation of several transformations in a single manipulation is highly compatible with the goals of sustainable and green chemistry.

Compounds having 1,3-amino-oxygenated functional groups are widely used in many biologically important natural products, potent drugs including a number of nucleoside antibiotics and HIV protease inhibitors such as ritonavir and lipinavir<sup>[11,12]</sup>. It is noteworthy that 1-amidoalkyl-2-naphthol can be easily hydrolyzed to important biologically active 1-aminoalkyl-2-naphthol derivatives. These compound shows biological activities like hypotensive and bradycardic effects<sup>[13-15]</sup>.

Traditionally, these compounds have been synthesized by one-pot multicomponent condensation reaction of  $\beta$ naphthol, aryl-aldehyde and amide in presence of different catalysts such as *p*-toulene sulphonic acid<sup>[16]</sup>,  $Yb(OTf)_{3}^{[24]},$  $Sr(OTf)_{2}^{[25]},$ K-10<sup>[23]</sup>, InCl<sub>3</sub><sup>[26]</sup>. TMSCl/NaI<sup>[27]</sup>, 2,4,6,-trichloro-1,3,5-triazine<sup>[28]</sup>. polyphosphate ester<sup>[29]</sup>,  $Bi(NO_3)_3.5H_2O^{[30]}$ ,  $Bi(OTf)_3^{[31]}$ . However these procedures have some drawbacks of green chemistry such as high reaction temperature, prolonged reaction time, low yield, recovery and reusability of catalysts etc. The recovery and reusability of the catalyst is also a major problem. Therefore the demand for green and eco-friendly procedure that uses reusable catalyst necessitated us to develop an alternative method for the synthesis of amidoalkyl naphthol.

Recyclable catalysts have gained much importance in recent years due to economic and environmental considerations<sup>[32,33]</sup>. These catalysts are generally cheap, very reactive, environmentally benign, easy to handle, diminish reaction times, uncomplicated work up and reusability of the catalyst.

On the other hand, the development of green and clean synthetic methods, those involving solvent-free or the use of different solvents, like as water, ionic liquids and polyethylene glycol (PEG), has increased in recent years<sup>[34-38]</sup>. Solvent play a critical role in mixing of the reaction components to allow molecular interaction. Despite several advantages, the solvent-free methods are restricted to systems where at least one of the reagent is liquid at room temperature, whereas the use of ionic liquids, especially imidazolium systems with  $PF_6$  and

BF<sub>4</sub> anions have some drawbacks such as the high cost and liberation of hazardous HF during recycling and ionic liquids safety is still debated and the reactions in water do not give good yields because of the hydrophobic nature of the organic reactants. Thus, the use of PEG and other alternative non-volatile solvents has been shown as an attractive way to cleaner organic synthesis. Recently polyethylene glycol is found to be an interesting recyclable and eco-friendly solvent system in synthetic chemistry for various organic transformations with unique properties such as thermal stability, commercial availability and immiscibility with a number of organic solvents. In general PEG is cheap, non-toxic and fully non-halogenated. Green synthetic methods are the main concern of the present century and current synthetic efforts are focussed to achieve this goal. Certainly there is an increasing pressure on chemist to replace toxic catalyst and volatile solvents. Now a days PEG is finding widely used in organic synthesis as it is a well-known green solvent.[39-48]

Due to the low cost and easy handling of Aluminium sulphate  $(Al_2(SO_4)_3.18H_2O)$  and the green nature of recyclable PEG encouraged us to combine them together and used their utility for the synthesis of amidoalkyl naphthol.

In continuation of our work on the development of useful synthetic methodologies for the C-C and C-N bond formation<sup>[43-47]</sup> by using an efficient and environmental benign catalyst. Herein, we are reporting the multicomponent reaction of  $\beta$ -naphthol, aromatic aldehyde and amide using aluminium sulphate in PEG-400 as catalyst for the preparation of amidoalkyl naphthol in good to excellent yield (**Scheme 1**). However, literature survey reveals that, no such recyclable aluminium sulphate in PEG as a homogeneous catalytic system has been explored for the amidoalkyl naphthol synthesis. It has various advantages such as low toxicity, low price, experimental simplicity and ease of handling.



Scheme-1: Synthesis of 1-amidoalkyl-2-naphthols.

#### **RESULTS AND DISCUSSIONS**

At the onset of the research, we made a conscious effort to develop a catalytic system that would address the limitations of the previously reported 1-amidoalkyl-2naphthols synthesis reaction. During preliminary studies, benzaldehyde and acetamide was chosen as a model system for the reaction with  $\beta$ -naphthol. Benzaldehyde was treated with equimolar amount of β-naphthol and acetamide in the presence of aluminium sulphate in various solvent to afford amidoalkyl naphthol. A series of experiments were performed to optimize various reaction parameters such as the catalyst loading, solvent, temperature and time (Tables 1). Initially we screened catalyst loadings ranging from 0 to 15 mol%; the yield improved as the amount of aluminium sulphate catalyst increased from 0 to 10 mol% and became almost steady when the amount of catalyst was further increased beyond this (Table 1, entries 1-4). Only trace product was detected in absence of catalyst. We further studied various solvents such as 1,2-dichloroethane, ethanol, methanol, acetonitrile, water and poly-ethylene glycol (PEG-400)(Table 1, entries 3, 5-9). Among the solvents

examined, PEG-400 was found to be the best, providing excellent yields of the desired product 4a. On the other hand, the yields of these reactions did not exceed more than 16%, in absence of solvent, even after long reactions times (Table 1, entry 10). A study of the effects of the temperature (Table 1, entries 3, 11-14) showed that the yield of 4a increased with increasing reaction temperature from 60 to 80°C. But there was the slight decreased in yield when the temperature was further increased to 90°C (Table 1, entries 14). Thus 80°C is the optimum temperature. The reaction time was optimised at 16 hours (Table 1, entries 3, 15 and 16). In these reactions no corrosive substances were used and no waste formation was observed. The experimental procedure for these reactions was remarkably simple and required no toxic organic solvent or inert atmosphere. We found that the transformations could be accomplished by exposing a mixture of  $\beta$ -naphthol (1) mmol), benzaldehyde (1 mmol), acetamide (1 mmol) and aluminium sulphate (10 mol%) in 4 mL PEG-400 at 80°C for 16h.

# Table 1. Optimization of reaction parameters<sup>a</sup>



| Entry | Mol % of<br>catalyst | Solvent            | Temp. (°C) | Time (h.) | Yield (%) <sup>b</sup> |
|-------|----------------------|--------------------|------------|-----------|------------------------|
| 1     |                      | PEG                | 80         | 20        | 8                      |
| 2     | 5                    | PEG                | 80         | 16        | 78                     |
| 3     | 10                   | PEG                | 80         | 16        | 92                     |
| 4     | 15                   | PEG                | 80         | 16        | 92                     |
| 5     | 10                   | 1,2-dichloroethane | 80         | 16        | 64                     |
| 6     | 10                   | ethanol            | 80         | 16        | 58                     |
| 7     | 10                   | methanol           | 80         | 16        | 52                     |
| 8     | 10                   | acetonitrile       | 80         | 16        | 66                     |
| 9     | 10                   | water              | 80         | 16        | 26                     |
| 10    | 10                   |                    | 80         | 20        | 16                     |
| 11    | 10                   | PEG                | rt         | 16        | 36                     |
| 12    | 10                   | PEG                | 60         | 16        | 64                     |
| 13    | 10                   | PEG                | 70         | 16        | 82                     |
| 14    | 10                   | PEG                | 90         | 16        | 88                     |
| 15    | 10                   | PEG                | 80         | 14        | 76                     |
| 16    | 10                   | PEG                | 80         | 18        | 92                     |

<sup>a</sup>Reaction conditions: β-naphthol (1 mmol), Benzaldehyde (1 mmol), acetamide (1.1 mmol), aluminium sulphate (catalyst), solvent (4 mL). <sup>b</sup>Isolated yield.

Having optimized reaction conditions in hand, we explored the substrate scope of the aluminium sulphate in PEG-400 catalyzed various aryl aldehydes containing different functional groups were investigated (Table 2). Products containing electron-donating as well as electron withdrawing groups were obtained. Gratifyingly a variety of common functional groups such as alkyl, ether, halo, nitro and amino were tolerated regardless of the *meta-* or *para-*position. However *ortho* substituted aryl aldehyde gave lower yields of product, possibly due to steric hindrance.

# Table 2: Aluminium sulphate in PEG-400 catalysed one-pot multicomponent synthesis of substituted amidoalkyl naphthols.<sup>a</sup>



| Entry | R                   | $\mathbf{R}^{1}$ | Product    | Yield (%) <sup>b</sup> | M.P. (°C),(Reported) <sup>(ref.)</sup> |
|-------|---------------------|------------------|------------|------------------------|----------------------------------------|
| 1     | Н                   | -CH <sub>3</sub> | 4a         | 92                     | 238-240 (241-243) <sup>17</sup>        |
| 2     | 2-C1                | -CH <sub>3</sub> | 4b         | 76                     | 210-212 (213-215) <sup>21</sup>        |
| 3     | 4-C1                | -CH <sub>3</sub> | <b>4</b> c | 92                     | 232-234 (237-238) <sup>20</sup>        |
| 4     | 4-0 CH <sub>3</sub> | -CH <sub>3</sub> | <b>4d</b>  | 84                     | $182-184(183-185)^{21}$                |
| 5     | 4- CH <sub>3</sub>  | -CH <sub>3</sub> | <b>4e</b>  | 90                     | 222-224 (224-225) <sup>20</sup>        |
| 6     | 3-NO <sub>2</sub>   | -CH <sub>3</sub> | <b>4f</b>  | 86                     | 240-242 (256-258) <sup>20</sup>        |
| 7     | $4-NO_2$            | -CH <sub>3</sub> | 4g         | 90                     | 242-244 (237-238) <sup>20</sup>        |
| 8     | Н                   | $-C_6H_5$        | <b>4</b> h | 91                     | 234-236 (238-240) <sup>20</sup>        |
| 9     | 4-Cl                | $-C_6H_5$        | <b>4</b> i | 88                     | $168-170(168-170)^{20}$                |

| 10 | 4-0 CH <sub>3</sub> | $-C_6H_5$ | 4j | 82 | $202-204 (206-208)^{20}$        |
|----|---------------------|-----------|----|----|---------------------------------|
| 11 | 4- CH <sub>3</sub>  | $-C_6H_5$ | 4k | 90 | $214-216(214-215)^{20}$         |
| 12 | 3-NO <sub>2</sub>   | $-C_6H_5$ | 41 | 84 | 240-242 (242-243) <sup>20</sup> |
| 13 | 4-NO <sub>2</sub>   | $-C_6H_5$ | 4m | 88 | $228-230(228-229)^{20}$         |

<sup>a</sup>Reaction condition:  $\beta$ -naphthol (1 mmol), aldehyde (1 mmol), amide (1.1 mmol), aluminium sulphate (10 mol%) and PEG-400 (4 ml) at 80°C for 16 hr. <sup>b</sup>Isolated yield.

Additionally, a reuse study of the aluminium sulphate in PEG-400 system was carried out for the reaction of 1a, 2 with 3a to obtain 4a. After stirring at 80°C for 16 hours, the reaction mixture was extracted with ethyl acetate (3 x 10 mL). The upper organic phase was removed, the solvent evaporated and the product 4a was isolated. The remaining inferior phase containing a mixture of

aluminium sulphate in PEG-400 was dried under vacuum and directly reused for further reactions simply by adding more reagents **1a**, **2** and **3a**. Product **4a** was obtained in 92%, 86%, 78% and 72% yields after successive cycles showing a good level of efficiency (Scheme 2).



Scheme-2: Recycle study of the catalytic system.

#### **Experimental Section**

All the chemicals were used without any additional purification. Some selected products were characterized using <sup>1</sup>H-NMR on 300MHz spectrophotometer and <sup>13</sup>C-NMR on 75MHz spectrophotometer in DMSO-d<sub>6</sub> as solvent and recorded in ppm relative to the TMS as an internal standard. IR spectra were recorded on a Perkin-Elmer spectrum on FTIR spectrophotometer using KBr pellets. TLC was performed on 0.25mm. E. Merck precoated silica gel plates (60 F254). All compounds are already well known in the literature. Melting points were determined in open capillary tubes and are uncorrected.

# **General Reaction Procedure**

A mixture of aromatics aldehyde (1 mmol),  $\beta$ -napthol (1 mmol), amide (1.1 mmol) and aluminium sulphate (10 mol%) in PEG-400 (4 ml) at rt was stirred for the 16h. The progress of the reaction was monitored by TLC. On completion of the reaction was diluted with ethyl acetate (20 ml). Then separate the above ethyl acetate layer, concentrated and poured in chilled water, solid obtained was filtered and purified by recrystallisation by using EtOH-H<sub>2</sub>O (1:1) and the pure products were obtained (82- 92% yields). The lower layer of the PEG and catalyst was recovered and recycled without affecting the yield of the products.

The NMR spectral data of some selected compounds are summarized below.

1) [(2-Hydroxy naphthalene-1-yl)-phenylmethyl]acetamide; (Table 2, entry 1) : <sup>1</sup>H-NMR (300 MHz, DMSO-d<sub>6</sub>) :-  $\delta$  10.06 (s, 1H), 8.62 (d, 2H), 7.82 (s, 1H), 7.77 (d, 2H), 7.36-7.22 (m, 4H), 7.19-7.11 (m, 4H), 1.98 (s, 1H). <sup>13</sup>C-NMR (75 MHz, DMSO-d<sub>6</sub>):-  $\delta$  169.84, 153.58, 143.00, 132.76, 129.72, 129.01, 128.90, 128.46, 126.80, 126.57, 126.47, 123.70, 122.88, 119.25, 118.89, 48.26, 23.09.

2) [(2-Hydroxy naphthalene-1-yl)-phenylmethyl]benzamide; (Table 2, entry 8) : <sup>1</sup>H-NMR (300 MHz, DMSO-d<sub>6</sub>) :-  $\delta$  10.39 (s, 1H), 9.04 (d, J = 8.4 Hz, 2H), 8.10 (d, J = 8.4 Hz, 1H), 7.885- 7.793 (m, 4H), 7.577-7.446 (m, 5H), 7.34-7.21 (m, 7H). <sup>13</sup>C-NMR (75 MHz, DMSO-d<sub>6</sub>):-  $\delta$  166.24, 153.64, 142.45, 134.77, 132.77, 131.92, 129.85, 129.09, 128.99, 128.84, 128.67, 127.59, 127.25, 127.03, 126.89, 123.17, 119.13, 118.78, 49.69.

#### CONCLUSIONS

In conclusion we have developed an efficient  $Al_2(SO_4)_3.18H_2O$  catalysed, green method for the synthesis of amidoalkyl naphthol by using PEG-400 as the solvent. The mild reaction conditions, operational simplicity, volatile-solvent free conversion, application of a nontoxic and recyclable catalytic system, high yields and rapid formation of the products are the notable advantages of this method. These remarkable characteristics made this new protocol economically and eco-friendly attractive, inexpensive and offering the

possibility of perform the reaction in the absence of toxic and volatile organic solvents.

# ACKNOWLEDGEMENTS

The author is thankful to Hon'ble Principal and Head of Department of Chemistry, JET's Z. B. Patil College, Dhule for providing the laboratory facilities.

# REFERENCES

- 1. Zhu J, Bienayme H. Multicomponent reactions; Wiley-VCH: Weinheim, 2005.
- Domling A; Ugi I., Multicomponent Reactions with Isocyanides, Angew. Chem. Int. Ed. 2000; 39: 3168-3210.
- Domling A., Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry, Chem. Rev. 2006; 106: 17-89.
- Gohain M; Prajapati D; Sandhu JS. A novel Cucatalysed three-component one-pot synthesis of dihydropyrimidin-2 (1H)-ones using microwaves under solvent-free conditions, Synlett, 2003; 235-238.
- Bose AK; Pednekar S; Ganguly SH; Chakrabarty G; Manhas MS., A simplified green chemistry approach to the Biginelli reaction using Ô Grindstone Chemistry, Tetrahedron Lett. 2004; 45: 8351-8353.
- Ross GF; Herdtweck E; Ugi I. Stereoselective U-4CRs with 1-amino-5-desoxy-5-thio-2,3,4-Oisobutanoyl-β-d-xylopyranose—an effective and selectively removable chiral auxiliary, Tetrahedron, 2002; 58: 6127-6133.
- Kobayashi K; Matoba T; Susumu I; Takashi M; Morikawa O; H Konishi. Chem. Lett. 1998; 551-554.
- Bossio R; Marcos CF; Marcaccini S; Pepino R. A facial synthesis of β-lactone based on isocynide chemistry, Tetrahedron Lett. 1997; 38: 2519-2520.
- Akiyama T; Matsuda K; Fuchibe K. HCl-catalyzed Stereoselective Mannich Reaction in H<sub>2</sub>O-SDS Sysmtem, Synlett, 2005; 322-324.
- Zhao G., Jiang, T., Gao H., Han, B., Huang, J., & Sun, D. (2004). Mannich reaction using acidic ionic liquids as catalysts and solvents. Green Chemistry, 6(2): 75-77.
- 11. Knapp S, Synthesis of Complex Nucleoside Antibiotics, Chem. Rev., 1995; 95: 1859-1876.
- 12. Seebach D; Matthews JL. J. Chem. Soc. Chem. Commun. 1997; 2015-2022.
- Dingermann T; Steinhilber D; Folkers G. In molecular Biology in Medicinal Chemistry; Wiley-VCH, 2004.
- Shen AY; Tsai CT; Chen CL. Synthesis and cardiovascular evaluation of N-substituted 1aminomethyl-2-naphthols, Eur. J. Med. Chem. 1999; 34: 877-882.
- 15. Shen AY; Chen CL; Lin CI. Electrophysiological basis for the bradycardic effects of 1-(1-pyrrolidinylmethyl)-2-naphthol in rodents., Chin. J. Physiol. 1992; 35: 45-54.

- Khodaei MM; Khosropour AR; Moghanian H., A Simple and Efficient Procedure for the Synthesis of Amidoalkyl Naphthols by p-TSA in Solution or under Solvent-Free Conditions, Synlett, 2006; 916-920.
- Selvam NP; Perumal PT. A new synthesis of acetamido phenols promoted by Ce(SO<sub>4</sub>)<sub>2</sub>Tetrahedron Lett. 2006; 47: 7481-7483.
- Das B; K Laxminarayana; B Ravikanth; BR Rao., Iodine catalyzed preparation of amidoalkyl naphthols in solution and under solvent-free conditions, J. Mol. Cat. A: Chem. 2007; 261: 180-183.
- 19. Nagawade RR; Shinde DB. Iodine catalyzed preparation of amidoalkyl naphthols in solution and under solvent-free conditions, Mendeleev Commun. 2007; 17: 299-300.
- 20. Nandi GC; Samai S; Kumar R; Singh MS. Atomefficient and environment-friendly multicomponent synthesis of amidoalkyl naphthols catalyzed by  $P_2O_5$ , Tetrahedron Lett. 2009; 50: 7220-7222.
- Shaterian HR; Yarahmadi H; Ghashang M. Formation of diazoate intermediate upon nitrous acid and nitric oxide treatment of 2'deoxyadenosine, Bioorg. Med. Chem. Lett. 2008; 18: 788-792.
- Nagawade RR; Shinde DB. Zirconyl(IV) Chloride Catalyzed Multicomponent Reaction of β β-Naphthols: An Expeditious Synthesis of Amidoalkyl Naphthols. Acta. Chim. Slov. 2007; 54: 642-646.
- 23. Kantevari S; Vuppalapati SVN; Nagarapu L. Montmorillonite K10 catalyzed efficient synthesis of amidoalkyl naphthols under solvent free conditions, Catal. Commun. 2007; 8: 1857-1862.
- 24. Kumar A; Rao MS; Ahmad I; Khungar B. A simple and facile synthesis of amidoalkyl naphthols catalyzed by  $Yb(OTf)_3$  in ionic liquids, Can. J. Chem. 2009; 87: 714-719.
- 25. Su WK; Tang WY; JJ Li. J. Chem. Res. 2008; 3: 123-128.
- Chavan NL; Naik PN; Nayak SK; Kusurkar RS. Indium(III) Chloride: An Efficient Catalyst for the Synthesis of Amidoalkyl Naphthols, Synth. Commun. 2010; 40: 2941-2947.
- 27. Sabitha G; Arundhathi K; Sudhakar K; Shastry BS; Yadav JS., A novel three-component one-pot reaction involving  $\beta$ -naphthol, aldehydes, and urea promoted by TMSCI/NaI , J. Heterocycl. Chem. 2010; 47: 272-275.
- 28. Zang P; Zhang ZH., Preparation of amidoalkyl naphthols by a three-component reaction catalyzed by 2,4,6-trichloro-1,3,5-triazine under solvent-free conditions, Monatsh Chem. 2009; 140: 199-203.
- 29. Moghanian H; Ebrahimi S. Three component, onepot synthesis of amidoalkyl naphthols using polyphosphate ester under solvent-free conditions, Journal of Saudi Chemical Society, 2014; 18: 165-168.
- 30. Wang M; Liang Y; Zhang TT; Gao JJ. Threecomponent synthesis of amidoalkyl naphthols

catalyzed by bismuth(III) nitrate pentahydrate, Chin. Chem. Lett., 2012; 23: 65-68.

- Schneider, A. E., & Manolikakes, G. (2015). Bi (OTf) <sub>3</sub> -Catalyzed Multicomponent α-Amidoalkylation Reactions. The Journal of organic chemistry, 80(12): 6193-6212.
- 32. Anastas PT; Warner JC. Green Chemistry theory and practice; Oxford University: Oxford, 1998.
- 33. Benaglia M; Recoverable and Recyclable catalysts: John Wiley & Sons: Chichester, 2009.
- 34. Dickerson TJ; Reed NN; Janda KD. Soluble Polymers as Scaffolds for Recoverable Catalysts and Reagents, Chem. Rev. 2002; 102: 3325-3344.
- 35. Chandrasekhar S; Narasimhulu SS; Sultana NR; Reddy NR. Enantioselectivity in the catalytic hydroesterification of acenaphthylene: direct evidence of the racemization of PdII-alkyl species by a degenerate substitution equilibrium with  $Pd^0L_n$ Chem. Commun. 2003; 1716-1717.
- 36. Das B; Krishnaiah M; Balasubramanyam P; Veeranjaneyulu B, Kumar DN., A remarkably simple N-formylation of anilines using polyethylene glycol, Tetrahedron Lett. 2008; 49: 2225-2227.
- Chen J; Spear SK; Huddleston JG; Rogers RD., Polyethylene glycol and solutions of polyethylene glycol as green reaction media, Green Chem. 2005; 7: 64-82.
- Kumar R; Chaudary P; Nimesh S; Chandra R., Polyethylene glycol as a non-ionic liquid solvent for Michael addition reaction of amines to conjugated alkenes, Green Chem. 2006; 8: 356-358.
- Kumar SD, Sandhu JS. Uncatalysed Knoevenagel condensation of 3-formylchromones in green media: Polyethylene glycol - 400 (PEG-400), Indian J. chem., 2012; 51(B): 1743-1748.
- Heldebrant DJ; Jessop PG. Liquid Poly(ethylene glycol) and Supercritical Carbon Dioxide: A Benign Biphasic Solvent System for Use and Recycling of Homogeneous Catalysts, J. Amer. Chem. Soc. 2003; 125: 5600-5601.
- 41. Jain SL; Singhal S; Sain B. PEG-assisted solvent and catalyst free synthesis of 3,4dihydropyrimidinones under mild reaction conditions, Green Chem. 2007; 9: 740-741.
- 42. Namboodiri V. V., & Varma, R. S. Microwaveaccelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG). Green Chemistry, 2001; 3(3): 146-148.
- 43. Khairnar BJ; Chaudhari BR. Microwave-promoted Zirconium (IV) Chloride as an efficient, environmentally benign and recyclable homogeneous c atalytic system to synthesis of bis(indolyl)methanes, in PEG as a solvent, J. Chem. Pharm. Res. 2015; 7: 241-245.
- 44. Girase PS; Khairnar BJ; Nagarale DV; Chaudhari BR., Microwave-promoted aluminium sulphate in PEG as a green homogeneous catalytic system to synthesis of 3,4-dihydropyrimid in-2(1 H )-ones, Der Pharma Chemica, 2015; 7: 241-247.

- 45. Rajput AP., Nagarale DV, Synthesis, Characterization and Antimicrobial study of piperidine-2,6-diones derivatives, Der Pharma Chemica, 2016; 8(8): 182-186.
- Rajput AP, Nagarale DV., A Novel Synthesis of Nsubstituted Glutarimides using ZnCl<sub>2</sub> Catalyst: A green approach, *IJPC* (2016); 06(07): 181-185.
- Rajput AP., Nagarale DV., Thermal Condensation of Enaminoimine Hydrochlorides of 2,6-Dichloro-3,5diformyl (N-Substituted Phenyl)pyridines, Chem Sci Trans., 2016; 5(4): 912-917.
- Chaudhari Bhata R., World Journal of Pharmaceutical Research, Novel PVC Membrane Selective Electrodes For Determination of Salicylic Acid In Pharmaceutical Preparations, 2016; 5(12): 1341-1349.