

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

www.ejpmr.com

Research Article
ISSN 2394-3211
EJPMR

ALLIUM SATIVUM INDUCED PROTEIN CHANGES IN THE HAEMOLYMPH OF CALLOSOBRUCHUS CHINENSIS (COLEOPTERA: BRUCHIDAE)

Dr. M. Madhavi*

Department of Zoology, Nizam College, Osmania University, Hyderabad -500 001, Telangana, India.

*Corresponding Author: Dr. M. Madhavi

Department of Zoology, Nizam College, Osmania University, Hyderabad -500 001, Telangana, India.

Article Received on 10/10/2017

Article Revised on 30/10/2017

Article Accepted on 20/11/2017

ABSTRACT

Callosobruchus chinensis is a Serious pest to agricultural crop produces infesting cereals, and many other food products, thus causing heavy damage to the food stuffs and useless for human consumption. Hence an attempt was made to control the stored products pest by using medicinal plant extract Allium sativum. The protein content in the Haemolymph increased gradually in the larvae, pupae and the adults of *C. chinensis*, whereas in the Allium sativum treated resultant larvae there was a prominent decrease in the protein content when compared with the controls.

KEYWORDS: Allium sativum, *Callosbruchus chinensis*, haemolymph, larvae, pupae.

INTRODUCTION

Proteins are the first biological factors making their development. manifestation during During metamorphosis of an insect, process like destruction of certain larval tissue and rejuvenation and remoulding of various tissues into adult. One is bound to take place involving synthesis and consumption of the macro molecules as well (Venugopal and Dinesh Kumar 1997). The Fat body tissue plays a key role in storage proteins. Storage proteins increased during successive stages of development (Kanost et al., 1990; Rajathi et al. 2010). Proteins are synthesized in the fat body and released into the haemolymph to be incorporated later into various organ including ovaries (Vallae1993).

Garlic (*Allium sativum Linn.*), is used as a common spice, condiment, flavoring and folk medicine. Medicinal properties of garlic have attracted the attention of plant physiologists and chemists. Garlic is a perennial plant and currently the biggest selling herb on the face of the planet. The work is investigated in the real bioactive constituents of garlic (Amagase, H. 2006). The fat body protein content of *C. chinensis*, were studied in the Allium sativum treated instars.

MATERIALS AND METHODS

A rich standard culture of this insect was maintained in the laboratory on normal dietary medium composed of coarsely ground pulses, green gram inside a glass container at $26\pm1^{\circ}$ C temperature and $65\pm5\%$ Relative humidity.

1. Preparation of crude bulb extract of Allium Sativum(AS).

Fresh bulbs of A.Sativum were shade dried for a week and pulverized. The material was cold extracted in different solvents of Petroleum ether, Methanol, diethyl ether and acetone separately at room temperature for 24hrs and the extract was evaporated to dryness under reduced pressure. The extract was weighed, re-dissolved in a known volume of acetone for making different concentrations of the extract. Preliminary studies showed that the methanol extract to be most effective among all the three solvents. Hence the follow up study were conducted using methanol extracts.

Freshly moulted IV and V instar larvae were treated on the abdominal region with $1\mu g/larva$ of AS dissolved in $2\mu l$ of acetone with the help of Hamilton micro syringe. 50 larvae were treated each time and the experiments were replicated 5 times. Controls were treated with $2\mu l$ of acetone. After treatments a suitable time gap of 5 minutes was given and they were transferred into diet. The treated larvae were observed daily to note the changes. Fat body is dissected and rinsed free of haemolymph with Ringers solution. 10% homogenate was prepared for the estimation of proteins and the protein was estimated by the method of Lowry $\it et~al~1951$.

Statistical Analysis of the Data: The experimental data was analyzed statistically, mean and standard Deviation was calculated. The Haemolymph proteins was estimated in the control of IV instar larva, V instar larva, pupa and Adult.

RESULTS

Estimation in control insects Haemolymph proteins

IV instar larva

The protein content of the haemolymph of *Callosobruchus chinensis* was estimated in the IV instar larva; from the 1st to the 7th day. A gradual increase in protein content was observed. On the 1st day of the IV instar 1.025±0.028 mg/ml of proteins was recorded in haemolymph. The value recorded on the 4th day was 1.250±0.031 mg/ml which further increased to 2.0620±0.035mg/ml on the 7th day of the IV instar (Graph 1).

V instar

The 1^{st} day of the V instar showed a value of 2.075 ± 0.0353 mg of protein /ml. It increased to 2.625 ± 0.0369 mg/ml on the 6^{th} day. It futher increased to 2.9375 ± 0.0375 mg/ml on the 9^{th} day and is slowly declined to 2.350 ± 0.034 mg of protein /ml on the 10^{th} day (Graph1).

Pupa

It was observed that the protein content of haemolymph showed a steady decline. The recorded value on the $1^{\rm st}$ day was 1.984 ± 0.032 mg of protein /ml of haemolymph. Then, it steadily decreased to 0.985 ± 0.023 mg/ml on the $7^{\rm th}$ day (Graph 1).

Adult

The freshly emerged adult recorded a value of 0.724 ± 0.024 mg/ml of haemolymph proteins. The value decreased to 0.321 ± 0.019 mg/ml on the 2^{nd} day. There was a steady decrease and the last day of the adult recorded a value of 0.19 ± 0.0154 mg/ml of haemolymph proteins (Graph 1).

Estimation of Haemolymph proteins in the larvae of *Callosobruchus chinensis* treated with bulb extract of *Allium sativum*.

Treated Insects Haemolymph Proteins

IV instar larva

The effect of crude bulb extract of *Alluim sativum* on *Callosobuchus chinensis* larvae showed a decrease in haemolymph proteins when compared to the control.

The haemolymph proteins started increasing from the 3^{rd} day. The recorded value was 1.03 ± 0.0281 mg/ml. The value recorde on the 5^{th} day was 1.058 ± 0.0284 mg/ml as compared to 1.642mg/ml in control. The protein content on the 7^{th} day was 1.12 ± 0.0289 mg/ml (Graph 1).

V instar

The haemolymph protein content steadily increased till the 9th day of the larva. The 1st day of larva showed 1.124±0.0284mg/ml of protein content. The protein content increased to 1.324±0.02951mg/ml on the 5th day of the V instar. It reached the maximum on the 9th

day, 1.381 ± 0.032 mg/ml and decreased to 0.9254 ± 0.029 mg/ml on the last day of the V instar (Graph 1).

Pupa

There was a steady decrease in the protein content of the pupa. The value recorded on the 1^{st} day was 0.921 ± 0.0281 mg/ml. It decreased to 0.201 ± 0.0185 mg/ml on the last day of the pupa (Graph 1).

Adult

The treated resultant adults' showed a decrease in haemolymph proteins when compared to control adults. The recorded value was 0.183 ± 0.0189 mg/ml on the 1st day and 0.11 ± 0.014 mg/ml on the 2nd day and 0.095 ± 0.099 mg/ml on last day (Graph 1).

Haemolymph proteins. Estimation in control insects.

V instar

The haemolymph proteins of the V instar of *Callosobruchus chienesis* estimated from the 1st day of the instar to the 10th day. On the 1st day of the larva the protein content recorded was 2.075±0.034 mg/ml. There was a slow increase in the haemolymph content, the values being 2.565±0.037 mg/ml on the 5th day and 2.9375±0.0373 mg/ml on the 9th day. There was a decrease on the 10th day and the values recorded were 2.350±0.036 mg/ml (Graph 2).

Pupa

The recorded value on the 1st day of the pupa was 1.984±0.031 mg/ml. The haemolymph protein content steadily decreased and observed value on the 7th day was 0.985±0.027 mg/ml (Graph 2).

Adult

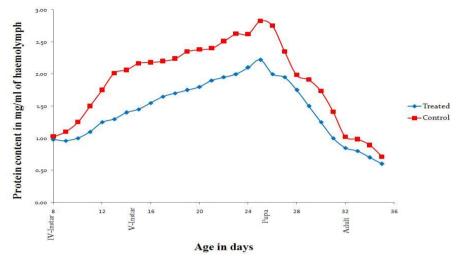
The haemolymph protein content of the adult on the 1^{st} day was 0.724 ± 0.0269 mg/ml. The protein values recorded showed steady decrease and it was 0.19 ± 0.013 mg/ml on the 5^{th} day (Graph 2).

Estimation of protein in treated resultant *Callosobruchus chinensis* larva.

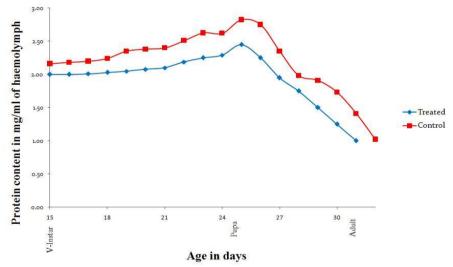
Estimation in the treated insects

V instar

V instar treated with crude bulb extract and the resultant pupa and adult showed a decrease in protein content as compared to the control. The recorded value of haemolymph protein on the $1^{\rm st}$ day was 2.075 ± 0.034 mg/ml. The $6^{\rm th}$ day recorded a value of 2.399 ± 0.036 mg/ml and it decreased to 2.041 ± 0.0315 mg/ml on the last day of the V instar (Graph 2).


Pupa

There was a steady decrease in haemolymph proteins in the treated resultant pupa stage. The value recorded on


the 1^{st} day was $1.062\pm0.029 mg/ml.$ it decreased to 0.912 ± 0.020 mg/ml on the 6^{th} day and further decreased to 0.541 ± 0.018 mg/ml on the 7^{th} day (Graph 2).

Adult

The recorded value of haemolymph proteins on the 1^{st} day was 0.12 ± 0.013 mg/ml which steadily decreased to 0.058 ± 0.0031 mg/ml on the 4^{th} day and to 0.04 ± 0.0026 mg/ml on the last day (Graph 2).

Graph.1: Quantitative changes in the protein content of the haemolymph of the IV, V instars, Pupa and Adult of the control insect and crude bulb extract of *Allium sativum* treated IV instar insect during the development of *Callosobruchus chinensis*.

Graph.2: Quantitative changes in the protein content of the haemolymph of the V instar, pupae and Adult of the control insect and crude bulb extract of Allium sativum treated V instar insect during the development of Callosobruchus chinensis.

DISCUSSION

C. chinensis V instar larva were treated with crude bulb extract of A.sativum treated resultants showed a decline in the protein content when compared to the control larvae. This may be due to the A.sativum functioning as a molting hormone analogue. As such it may interfere with neuroendocrine control of molting hormone synthesis. The protein content in the Haemolymph of C. chinensis exhibited a steady increase and the increase was markedly accelerated during the pre-pupal stage of development on the contrary, the protein concentration of the haemolymph increased gradually during larval development and reaches its highest value in the last

instar larvae but decline during the pre-pupal and early pupal stages of development. Our results are in correlation with those of (Anitha *et al.*, 2000; Banks and Malacoln, 1994) there was a gradual decline in the protein content of the treated resultant *C. chinensis* during the course of development. The disturbance in the hormonal imbalance inhibited protein synthesis in the ovary these results are in concurrence with that of the Raja *et al.* (1986). Administration of A.sativum controlled the stored product pest *C. chinensis* by influencing the moulting hormone. Thus, raising hope for its practical application in the stored grain pest management.

REFERENCES

- 1. Anitha, H.R., Raja, S.S., Renuka, S. and Manjula, C., Effect of precocene-II on the protein changes in the haemolymph, fat body and Ovaries of *Chilo partellus*, during ontogenesis. Convergence, 2000; 2(1): 18-23.
- Banks, G.A., Malacoln, G.A., Temporal pattern of RNA and Protein synthesis in the ovary of *Aedes* aegypti. J. Insects Physiol., 1994; 22: 299-397.
- 3. Dharmasri, M. G., Jayakody, J.R.A.C. and Galhena, G., Anti-inflammatory and analgesic activities of mature fresh leaves of *Vitex negundo*. J. Ethnopharmacol, 2003; 87: 199-202.
- 4. Kanost, M.R., Dawooga, J.K., Ryan, R.O, Husden M.D., Zeilger, R., 1990. Insect haemolymph proteins. Insect Physiol., 22: 299-397.
- 5. Ignacimuthu, S., Nature's ecofriendly arsenal of pesticides. Curr. Sci., 1998; 74: 1037.
- Lowry, O.H., Rosebrough, J. J., Farr, A.L., Randall, R.J., Protein measurement with the folin phenol reagent. J. Biol. Chem., 1951; 193: 263-275.
- 7. Umamaheshwari, M., Ashok Kumar, K and Somasundaram, A., Xanthine oxidase inhibitory activity of some Indian medical plants. J. Ethnopharmacol, 2007; 109(3): 547-551.
- Raja, S.S., Thakur, B., Kishen, R., and Kaur, A. Selective accumulation of haemolymph proteins by fat body during larval pupal transformation of *Chilo partellus*. Entomol. Bohemoslov, 1986; 154: 205-208.
- 9. Rajathi. A., Pandiaajan J., Krishnan, M., Effect of RH-2485 on the development, metamorphosis and synthesis of major proteins in female silkworm *Bombyx mori*. Biologia, 2010; 65(5): 903-913.
- 10. Vallae, D., Vitellogenesis in insects and other groups A review, Membr Inst. Oswald, Cruz, 1993; 88: 1-26.
- 11. Venugopal, K.J., Dinesh Kumar, Electrophoretic studies on the development profiles of protein in Haemolymph, Fat body and ovary of red cotton bug, *Dysdercus Koenigii*. Entomon, 1997; 22: 185-191.