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1. INTRODUCTION 
A process drift is an unintended, unexplained or 

unexpected trend of measured process parameter(s) 

and/or resulting product attribute(s) away from its 

intended target value in a time- ordered analysis over the 

lifetime of a process or product. Process drift is the 

consequence of variation in a variety of process inputs, 

including raw materials, manufacturing personnel, and 

machine (man-machine) interactions or processing 

conditions. When robust systems are not implemented 

and capable tools are not used to prevent process drift, 

resulting manufacturing problems may include: low 

product yield, batch delays, ingredient and packaging 

variability, batch failures, product quality-related clinical 

failures, investigations, recalls, product seizures, 

injunctions, and consent decrees.
[1]

 The use of tools and 

approaches such as process analytical technologies 

(PATs), QbD, in vitro–in vivo correlation (IVIVC), and 

more thorough excipient characterization should improve 

the robustness of the finished products and minimize or 

prevent unintended drift in the quality of the affected 

commercial drug products.
[2]

 

 

Many studies on the influence of the powder’s 

mechanical characteristics on the performance of the 

tablet have been performed in the past.
[3-14]

 Optimization 

technique is an ideal tool for preparing better quality of 

dosage forms. This technique is widely used for 

developing optimal dosage forms and a better process of 

manufacture.
[15]

 

 

Optimization was considered as an economical and 

efficient method which helps understand the relationship 

between independent and dependent variables. 

Optimization has been gaining popularity in 

pharmaceutical research, day by day, since the best 

results can be obtained in a limited number of 

experiments.
[16]

 

 

Direct compression involves simple blending of active 

pharmaceutical ingredient (API) with other ingredients 

and direct compaction of the resultant mixture. In 

contrast to direct compression, wet granulation not only 

increases the cycle time, but also has certain limits 

imposed by thermolability and moisture sensitivity of 

the active ingredient. The unnecessary exposure of any 
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drug to moisture and heat remains unjustified. Low 

dilution potential (30%-40% of the drug in the 

formulation) and the segregation due to the difference in 

density between API and excipients.
[17] 

 

The use of matrix technology has been a commercial 

success and the pharmaceutical marketplace witnessed a 

large number of novel drug delivery systems based on 

them. Matrix polymers help to opportunely modulate 

and modify the drug release from modified drug 

delivery systems.
[18,19]

 Isoniazid (INH) is known to be 

one of the most efficacious anti-TB drugs and is 

recommended by WHO. It possesses many advantages 

such as high selectivity towards Mycobacterium 

tuberculosis, excellent bacteriostatic capacity, low price 

and good patient compliance.
[20]

 Isoniazid here was 

selected as a model drug in the study. 

 

In pharmaceutical industries, manufacturers of generic 

tablets are usually focused on the optimization of the 

excipient mixture composition to obtain a product that 

meet established standards. Several tablet compositions 

of extended and fast release have been established using 

statistical design to optimize excipient proportions. 

However tablet properties do not only depend on the 

excipient percentage in the solid dosage. Various process 

variables like compression and granulation i.e., 

compaction force, compression velocity, tableting 

temperature, impeller speed and blending time can also 

have influences.
[21,22]

 

 

2. MATERIALS AND METHODS 

2.1 Formulation of Directly compressed matrix 

tablets of INH 

The matrix tablets of INH were made as per the set 

specification as mentioned in Table 1. All the ingredients 

were sifted through # 40 sieve and Physical mixing of 

Isoniazid and PMC K100M was done geometrically. It 

was combined with dibasic calcium phosphate and 

Colloidal silicon oxide (Aerosil). Lubricant Magnesium 

stearate was mixed and powder blend formed. The 

blend was compressed by direct compression method 

using D- tooling (12.5 mm punch size). The tablets were 

scored.
[23,24]

 Three batches I, II and III of Isoniazid 

matrix tablets were formulated using varying 

combinations of the polymer HPMC K100M and Dibasic 

calcium phosphate as shown in Table 2. The amount of 

API, Colloidal silicon oxide and magnesium stearate was 

kept constant. 

 

Three new batches IV, V and VI were formulated keeping 

the amount of dibasic calcium phosphate constant with 87 

mg/ tablet in all three batches as given in Table 2. 

Variation in the amount of HPMC was made to study the 

effect of concentration of HPMC polymer on drug 

release. The concentration of all other excipients was 

kept constant in all the three batches. Powder blend 

was analyzed for all the batches prior tablet 

compression. The Carr’s compressibility index and 

Hausner’s ratio was calculated for the powder blend and 

the evaluation of tablets was performed as per IP 

2007.
[25]

 

 

2.2 Design of Experiment 
The DOE trials were carried out to see the influence of 

different variables on the formulation development. In 

this study, Concentration of Dibasic calcium phosphate 

and Compression force were taken as Independent 

variables and In-vitro drug release and Content 

uniformity of tablets were considered as dependent 

variables. The study was designed using Minitab 17 

software.
[1,26] 

A 3
2  

factorial design was used for the 

application of DOE. Total nine batches were formulated 

as given in Table 3. 

 

2.3 Release Studies 
Dissolution studies were performed in two dissolution 

media, 0.1 N hydrochloric acid followed by Phosphate 

buffer pH 6.8 using Basket type USP Dissolution 

apparatus at 50 RPM. Dissolution in acidic media was 

for 2 hrs subsequently for 1 hr by replacing dissolution 

media with buffer. Five ml aliquot was withdrawn and 

replaced with fresh media each time. UV readings were 

taken at 263 nm (λmax of Isoniazid) and concentrations 

of Isoniazid were calculated in each aliquot. In-vitro 

drug release study performed for 24 hours.
[27,28] 

 

3. RESULTS AND DISCUSSION 

3.1 Evaluation of Powder blend and Isoniazid matrix 

tablets 
All batches were first analyzed for powder flow 

properties as per USP 2016 (NF 37) and tablet 

evaluation as per IP 2014. Evaluation of powder blend 

is necessary to understand its flow properties and 

compressibility which will play a vital role during tablet 

compression.
[29] 

 

Comparison of the obtained values of Carr’s index and 

Hausner’s ratio for batches I, II and III to that specified 

in USP 2016 (NF 37) showed that all three batches had 

very poor to fair flow properties.
[28]

 Batches IV, V and 

VI revealed fair flow as shown in the Table 4. All tablets 

were white in color, showed no chipping or cracking and 

resulted in good aesthetic appeal with defined content 

uniformity range and acceptable weight uniformity. In-

vitro drug release study was performed on all batches, 

however batch II showed a consistent drug release for 26 

hours and zero burst release as shown in Fig 1. Thus, 

batch II was chosen for further optimization using DoE 

trials. 

 

3.2 DOE trials 
All batches for DOE trials were evaluated for their 

powder flow properties before tablet compression. 

Further tablet evaluation was performed on all the 

batches and the results are mentioned in Table 5 and 6. 

 

Tablets obtained from all batches had good aesthetic 

appeal with desired hardness levels. Even though the 

values of % friability decreased with an increase in 
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hardness from 7 to 11, all batches passed the friability 

test. From the above table it can be seen that all the 

batches confirmed with the uniformity of weight test and 

had acceptable content uniformity. 

 

Batch VII, VIII and IX showed less than 45% drug 

release in the first 2 hours. This is attributed to the low 

amount (69.6 mg/tablet) of DCP in the formulation. 

 

Batch X with DCP concentration 87 mg/tablet showed 

48% drug release in first 2 hours followed by 99% at the 

end on 24 hours. The hardness of batch X was 7 kg/cm2. 

In contrast to this, batches XI and XII released a total of 

89% and 87% of API. 

 

As depicted in fig 3, only batches XIII, XIV and XV 

showed 50 % and more drug release as a consequence of 

difference in compression force varying from 7, 8 and 9 

kg/cm2 respectively with a constant amount of Dibasic 

calcium phosphate. Increase in tablet hardness resulted 

in slower drug release from the formulation thus 

prolonging the duration of release. 

 

Pareto charts as shown in Fig 4 (A & B) revealed that 

the concentration of dibasic calcium phosphate does not 

significantly affected both drug release and % friability. 

Whereas, compression force applied during tablet 

manufacturing significantly affected the drug release and 

% friability. There was not much impact of amount of 

DCP and compression force on drug release and % 

friability but the amount of DCP had a significant 

impact on the Content uniformity of the tablets as 

revealed in Fig 4 (C). Compression force had less 

significant impact on content uniformity of the tablets. A 

combination of DCP concentration and compression 

force had the least role to play in content uniformity of 

the tablets. 

 

Contour plots display the 3-dimensional relationship in 

two dimensions, with x- and y- factors (predictors) 

plotted on the x- and y-scales and response values 

represented by contours. A contour plot is like a 

topographical map in which x-, y-, and z-values are 

plotted instead of longitude, latitude, and elevation. Fig 5 

(A) revealed that design space to obtain a 100% drug 

release for dibasic calcium phosphate was found 

between 90 to 105 mg/tablet. Design space for 

Compression force was between 7 to 7.4 kg/cm2. As 

shown in Fig 5 (B), design space to obtain % friability in 

permissible limits for dibasic calcium phosphate was 

found between 90 to 105 mg/tablet. Design space for 

compression force was between 10 to 11 kg/cm2. As 

shown in Figure 5 (C), design space to obtain content 

uniformity in permissible limits for dibasic calcium 

phosphate was found between 73 to 84 mg/tablet. Design 

space for Compression force was between 7.2 to 7.5 

kg/cm2. 

 

In the present study, HPMC concentration was kept 

constant considering its suitability with dibasic calcium 

phosphate in making directly compressible matrix tablets. 

Dibasic calcium phosphate concentration and 

compression has significant effect on the friability and 

release property of the matrix tablets. Design of 

experiment helped in designing and optimization process 

and also to understand the process drift. The Critical 

limits developed through these kind of studies would 

lead to a robust process for manufacturing directly 

compressible matrix tablets.
[30,31]

 

 

Table No 1: Specifications of INH matrix tablets. 

S. No: Elements of INH Tablet Target 

1 Dosage form Tablet 

2 Dosage design Sustained release matrix tablet 

3 Route of administration Oral 

4 Dosage strength 300 mg 

5 Therapeutic moiety/ delivery Swelling, gelling and drug release 

6 Appearance White, scored 

7 Weight of the tablet Average weight ± 5% 

8 Diameter of the tablet 12.5 mm ± 0.12 mm 

9 Dissolution time 24 hours 

 

Table No 2: Formulation trials of INH tablets (Batches I to VI). 

 Quantity (mg/tablet) used per batch 

  Batch I Batch II Batch III Batch IV Batch V Batch VI 

Ingredients  

Batch size 

100 

tablets 

100 

tablets 

100 

tablets 

      

Isoniazid (B.No:14344/INH) 300 300 300 300 300 300 

HPMC K100M 200 250 300 200 250 300 

Dibasic calcium phosphate 137 87 37 87 87 87 

Colloidal silicon oxide 6.5 6.5 6.5 6.5 6.5 6.5 

Magnesium stearate 6.5 6.5 6.5 6.5 6.5 6.5 

Total weight (mg/ tab) 650 650 650 600 650 700 
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Table No 3: Formulation of DOE trials Batch VII to Batch XV. 

 
Quantity (mg/tablet) used per batch 

 
B-VII B-VIII B-IX B- X B-XI B- XII B-XIII B-XIV B- XV 

Ingredients 
 

Batch size 

(No. of tablets) 

150 150 150 150 150 150 150 150 150 

Isoniazid (B.No:14344/INH) 300 300 300 300 300 300 300 300 300 

HPMC K100M 300 300 300 300 300 300 300 300 300 

Dibasic calcium phosphate 69.6 69.6 69.6 87 87 87 104.4 104.4 104.4 

Colloidal silicon oxide 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 

Magnesium stearate 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 

Total weight (mg/ tab) 682.6 682.6 682.6 700 700 700 717.4 717.4 717.4 

Compressionforce(kg/cm2) 7 9 11 7 9 11 7 9 11 

 

Table 4: Flow properties of powder blend of INH tablets (Batches I to VI). 

Batch No: 

Parameters 

Bulk 

density (Db) 

Tapped 

density (Dt) 

Carr’s index 

[(Dt- Db)/ Dt] *100 

Flow 

character 

Hausner’s 

ratio (Dt/Db) 
Flow character 

Batch I 0.43 0.640 32.81% Very poor flow 1.48 Very poor flow 

Batch II 0.451 0.549 17.85% Fair flow 1.21 Fair flow 

Batch III 0.453 0.567 20.10% Fair flow 1.25 Fair flow 

Batch IV 0.392 0.491 20.16% Fair flow 1.252 Fair flow 

Batch V 0.405 0.499 18.83% Fair flow 1.23 Fair flow 

Batch VI 0.405 0.499 18.83% Fair flow 1.23 Fair flow 
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Table 5: Characterization of INH matrix tablets (Batches I to VI). 

S. N. Parameters Batch No 

  
Batch I Batch II Batch III Batch IV Batch V Batch VI 

1 Physical appearance 
White, smooth, no 

cracks seen 

White, smooth, no 

cracks seen 

White, smooth, no 

cracks seen 

White, smooth, 

no cracks seen 

White, smooth, no 

cracks seen 

White, smooth, no 

cracks seen 

2 Hardness (kg/cm
2
) 6 7 6.5 8 7.5 7.5 

3 Average diameter 12.59 12.58 12.59 12.56 12.57 12.57 

4 Average Thickness 4.33 4.65 4.72 3.85 mm 4.67 mm 4.87 mm 

5 Uniformity of weight 650 ±10 mg 650 ±10 mg 650 ±10 mg 600 ±20 mg 650 ± 15 mg 700 ± 15 mg 

6 % Friability 0.5% 0.48% 0.77% 0.49% 0.69% 0.48% 

7 Content uniformity 99-101% 98-100 % 98.5-100.5 % 98-100 % 99-101 % 98.5-100.5% 

 

Table 6: Characterization of INH matrix tablets (Batches VII - XV). 

S. N. Parameters Batches 

  
B-VII B-VIII B-IX B- X B-XI B- XII B-XIII B-XIV B- XV 

1 Physical appearance White White White White White White White White White 

2 Hardness (kg/cm
2
) 7 9 11 7 9 11 7 9 11 

3 Average diameter 12.60 12.6 12.58 12.57 12.57 12.56 12.60 12.63 12.61 

4 Average thickness 4.96 4.83 4.73 4.88 4.66 4.61 5.32 5.17 4.95 

5 Uniformity of weight 682.6 ± 20 682.6 ± 15 682.6 ± 20 700 ± 10 700 ± 12 700 ± 20 717.4 ± 15 717.4 ± 18 717.4 ± 20 

6 % Friability 0.71% 0.62% 0.48% 0.69% 0.53% 0.42% 0.66% 0.51% 0.30% 

7 Content uniformity 99-101% 98-100% 99.2-100% 98-101% 98-100% 98.2-100% 98-99.8% 99-100% 98-100% 
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Figure No 1: Drug release profile of INH tablets (Batches I, II, III). 

 

 
Figure No 2: Drug release profile of INH tablets (Batches IV, V, VI). 

 

 
Figure No 3: Drug release profile of INH tablets (Batches VII to XV). 
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Figure No 4: Pareto Chart A) effect of DCP amount and compression force on Drug release B) effect of DCP 

amount and compression force on % friability C) effect of DCP amount and compression on Content 

uniformity. 

 

 
Figure No 5: Contour Plot A) effect of DCP amount and compression on drug release B) effect of DCP amount 

and compression on % friability C) effect of DCP amount and compression on content uniformity. 
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4. CONCLUSION 
Formulation development encounters hundreds of 

problems due to process variables and thereby it’s a time 

consuming process. Design of experiment helped 

formulation development department significantly in 

overcoming those problems and identifying the causes. 

This study helped in understanding the correlation 

between the variables and optimizing a robust 

formulation. The concept can be applied in developing 

other formulation. 
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