

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

<u>www.ejpmr.com</u>

Research Article ISSN 2394-3211 EJPMR

SERUM HOMOCYSTEINE AND VITAMIN B₁₂ IN METFORMIN TREATED TYPE 2 DIABETIC SUBJECTS

Zain Amar*¹, Sanober Jamali², Saad Abdul Quddus³, Burhan Memon⁴ and Hiba Jamali⁵

¹Medical Officer Affiliation: Jijal Maau Hospital, Hyderabad, Sindh, Pakistan.
²Medical Officer Affiliation: Shafay Hospital Qasimabad, Hyderabad, Sindh.
³Medical Officer Affiliation: Basic Health Unit, AMI KAZI, Qasimabad, Hyderabad, Sindh.
⁴Medical Officer Affiliation: Civil Hospital Matiari, Sindh, Pakistan.
⁵Medical Student Isra University Faculty of Medicine and Allied Medical Sciences, Hyderabad, Sindh.

*Corresponding Author: Zain Amar

Medical Officer Affiliation: Jijal Maau Hospital, Hyderabad, Sindh, Pakistan.

Article Received on 09/06/2018

Article Revised on 30/06/2018

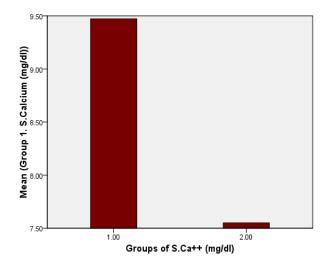
Article Accepted on 20/07/2018

ABSTRACT

Objective: To analyze serum homocysteine and vitamin B_{12} in type 2 diabetics taking metformin therapy. **Study Design:** Cross sectional study design. **Study setting & Duration:** Department of Medicine, Liaquat University Hospital Jamshoro/Hyderabad from august 2017 to March 2018. **Subjects and Methods:** A sample of 100 volunteers; 50 controls (type 2 diabetics) and 50 cases (type 2 diabetics taking metformin), was selected according to selection criteria. Venous blood samples were collected under aseptic conditions. Random blood glucose, glycated Hb A (HbA1c), serum homocysteine and vitamin B_{12} were detected. Data was analyzed on SPSS ver 22.0 (IBM, Incorporation, USA) at 95% Confidence interval ($P \le 0.05$). **Results:** Elevated serum homocysteine was noted 48% in cases compared to 6% in controls (P=0.0001). Vitamin B_{12} deficiency in controls was noted as 38% versus 64% in cases taking metformin therapy (P=0.0001). Serum homocysteine and Vitamin B_{12} in controls and cases was noted as $6.71\pm2.82 \mu$ M/L and $15.35\pm11.97 \mu$ M/L & 239.54 \pm 61.72 pg/dl and 197.40 \pm 76.23 pg/dl respectively (P=0.0001). Vitamin B_{12} shows negative correlation of vitamin B12 with serum homocysteine (r= -0.629, P= 0.0001). Conclusion: The present study reports vitamin B12 deficiency in 64% and elevated homocysteine in 48% type 2 diabetics taking metformin therapy.

KEYWORDS: Homocysteine, Vitamin B₁₂, Metformin, Type 2 Diabetics.

INTRODUCTION


Prevalence of Diabetes mellitus (DM) is reported as 7.7% in rural areas and 10.6% in urban areas in Pakistan. Total diabetic population is reported as 7.2 million approximately.^[1] Metformin is an orally taken biguanides anti-diabetic drugs widely used throughout the World for the type 2 DM (T2DM). Approximately, 120 million diabetics are prescribed metformin globally.^[2] Metformin is in use since past 60 years. It is prescribed as a first line oral anti-diabetic drug. Extensively prescription is due to its proven therapeutic efficacy and cost effetiveness.^[3] However, its use is associated with adverse drug effects such as vitamins deficiencies in particular the Vitamin B₁₂ (cobalamin deficiency). Cobalamin deficiency is one of few but serious side effects of metformin therapy because this vitamin catalyzes vital biochemical reactions and is essential for the nerve integrity. Vitamin B_{12} is one of highly overlooked side effects. This is denied owing to the high therapeutic efficacy of metformin.^[4] Health providers deny vitamin B12 levels in metformin treated diabetics putting the patients at increased risk of neuropathy. Vitamin B12 is an important cause of

macrocytic megaloblastic anemia and bone marrow cell maturation arrest.^[5] This is because the vitamin B12 is vital for the nuclear maturation of rapidly proliferating cells. Vitamin B12 is involved in one carbon methylation reactions of DNA biosynthesis and cell metabolism. Hence DNA disruption, altered cell metabolism and cell maturation are hallmarks of its deficiency. This may lead to clinical consequences that become grave in severe deficiency states. Inside the cell, vitamin B₁₂ is converted into 2 active co-enzymes; the SAC (S adenosyl cobalamin) in mitochondria and MC (methylcobalamin) in the cytoplasm. SAC and MC play role in the homeostasis of homocysteine (HC) and methyl malonic acid (MMA) in the cells, tissues, and blood.^[6] HC and MMA are sensitive markers of vitamin B12 deficiency. HC and MMA indicate vitamin B12 deficiency better than the vitamin B12 blood levels.^[7] Sensitivity of HC and MMA is reported as 99.8% for diagnosing vitamin B-12 deficiency.^[8] Diabetes mellitus is increasing in Pakistan and metformin is widely prescribed anti diabetic drug. However, the screening of vitamin B_{12} levels is highly neglected issue that remains undiagnosed due to asymptomatic course.^[1,9] The present prospective study was conducted to determine serum homocysteine and vitamin B_{12} in type 2 diabetics taking metformin therapy reporting at a tertiary care hospital of Sindh.

SUBJECTS AND METHODS

The present cross sectional study was conducted at the Department of Medicine, Liaquat University Hospital Jamshoro/Hyderabad from august 2017 to March 2018. Written study approval was taken from the ethical review committee of the institute. A sample of 50 controls (type 2 diabetics) and 50 cases (type 2 diabetics taking metformin) was selected according to selection criteria. Controls comprised 38 male and 12 female while cases comprised of 36 male and 14 female subjects. Inclusion criteria were: diagnosed type 2 diabetics of >5 years duration, age 30- 50 years, both genders, metformin for \geq 6 months and metformin dose of 1-2 grams a day. Type 2 diabetics suffering from concomitant major systemic disease such as chronic viral hepatitis, liver cirrhosis, cardiac failure, chronic inflammatory diseases. pulmonary tuberculosis and malabsorption syndromes were excluded. Strict vegetarians, pregnant female, and subjects taking multivitamin pill therapy, H2 blockers and Proton pump inhibitors were also excluded. Medical officers were negotiated for help for proper screening of patients according to the inclusion and exclusion criteria. Complete biodata, duration of Diabetes, metformin therapy, and multivitamin pills. Diabetic volunteers were communicated by the concerned researcher and medical officers of medical wards and outpatient departments. 50 diabetic volunteer cases (taking metformin therapy) were selected according to inclusion criteria. And 50 diabetic controls - not taking metformin were selected. Controls were age and gender matched. A pre- structured predesigned clinical proforma was designed for data collection. Proforma was available for the filling of biodata, clinical findings such as age and gender, random blood glucose, glycated Hb A (HbA1c), serum homocysteine and vitamin B₁₂. Participants were informed of the study purpose. They were informed that the study will cause no harm to them. Volunteers were asked to sign the consent form. Confidentiality of data was secured. Volunteers were asked for blood sampling from ante cubital fossa after proper aseptic measures. Prepared alcohol swabs were used for area to be cleaned for venepuncture. Disposable BD syringes were used for blood sampling. 5 ml of blood was collected in EDTA and gel tubes. Blood glucose was estimated by glucose oxidase method and HbA1c by colorimetric method on Hitachi Chemistry analyzer. Serum homocysteine and vitamin B12 were detected by ELISA assay kits. Serum homocysteine <15µM/L was taken as normal. Elevated serum homocysteine was defined as >15µM/L. Normal, borderline, deficiency and severe deficiency of vitamin B_{12} were taken at >240pg/ml, 170-240 pg/ml, <170 pg/ml and <100 pg/ml respectively.^[10] Statistical analysis was performed on SPSS 22.0 (for windows release). Normal Gaussian distribution of continuous variables

was detected by Shapiro-Wilk test. Student's t-test was used for the continuous variable (age, serum homocysteine, Vitamin B₁₂) analysis and Chi-square test analysed the categorical variables (gender and Vitamin B₁₂ categories). Correlation was analyzed of vitamin B12 with serum homocysteine, random blood sugar and HbA1c. Data was analyzed at 95% Confidence interval ($P \le 0.05$).

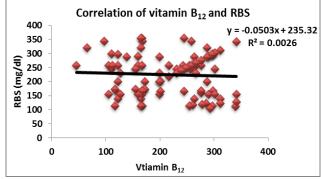
RESULTS

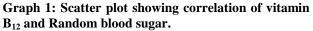
Mean \pm SD age of controls and cases was noted as 47.64±7.76 and 47.50±7.58 years respectively (P=0.79). Male and female were noted as 76% and 24% in controls and 72% and 28% in cases respectively (P=0.91). HbA1c and Random blood sugar (RBS) show bad glycemic status in both controls and cases as shown in table I. Serum homocysteine was noted as 6.71±2.82 µM/L in controls and 15.35±11.97 µM/L in cases (P=0.0001). Vitamin B12 deficiency was noted in cases 197.40±76.23 pg/dl compared to 239.54±61.72 pg/dl in controls (P=0.0001) (Table I). Vitamin B12 categories and serum homocysteine levels are shown in table II and III. Pearson's correlation shows negative correlation of vitamin B12 with serum homocysteine (r= -0.629, P= 0.0001) as shown in table IV and scatter plot 1. Vitamin B12 showed statistically non- significant correlation with RBS (P=0.611) and HbA1c (P=0.0861) (Scatter plots 1 and 2). Vitamin B12 deficiency in controls was noted as 38% versus 64% in cases taking metformin therapy (table II). Elevated serum homocysteine was noted 48% in cases compared to 6% in controls (table III).

Table I: Comparative findings of study subjects (n=100).

	Controls	Cases	P-value	
Male	38 (76%)	36 (72%)	0.91	
Female	12 (24%)	14 (28%)	0.91	
Age (years)	47.64±7.76	47.50±7.58	0.79	
HbA1c (%)	10.48 ± 3.57	10.16±3.26	0.921	
RBS (mg/dl)	204.18±74.29	244.58±61.32	0.076	
Homocysteine (µM/L)	6.71±2.82	15.35 ± 11.97	0.0001	
Vitamin B ₁₂ (pg/dl)	239.54±61.72	197.40±76.23	0.0001	

Table II: Frequency of Vitamin B₁₂ in study subjects (n=100).


Vitamin B ₁₂ levels	Controls	Cases	P-value
Normal (>240 pg/ml)	31 (62%)	18 (36%)	
Borderline deficiency (170-240 pg/dl)	8 (16%)	8 (16%)	
Deficiency (<170 pg/dl)	11 (22%)	21 (42%)	0.023
Severe deficiency (<100 pg/dl)	0 (%)	3 (%)	
Total	50	50	


Table III: Frequency of serum homocysteine in study subjects (n=100).

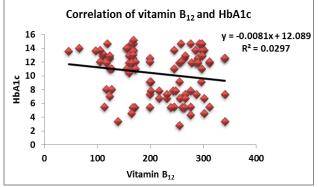
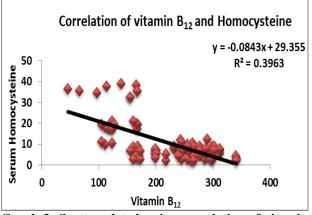

Serum Hcy levels	Controls	Cases	P-value
Normal Hcy levels (<15µM/L)	47 (54%)	26 (52%)	
Elevated Hcy levels (>15µM/L)	3 (6%)	24 (48%)	0.0001
Total	50	50	

Table IV: Correlation of vitamin B12 in study subjects (n=100).


	RBS (mg/dl)	HbA1c (%)	Hcy* (µM/L)	
Pearson Correlation	-0.05	-0.172	-0.629**	
P- value	0.611	0.0861	0.0001	
**Correlation is significant at the 0.01 level (2-tailed), *Hcy - homocysteine				

Graph 2: Scatter plot showing correlation of vitamin B_{12} and HbA1c.

Graph 3: Scatter plot showing correlation of vitamin B₁₂ and Homocysteine.

DISCUSSION

The present cross sectional is first time reporting on the frequency of serum homocysteine and vitamin B_{12} deficiency in type 2 diabetics taking metformin therapy. The mean \pm SD age of controls and cases was noted as 47.64 \pm 7.76 and 47.50 \pm 7.58 years respectively. Male and female were noted as 76% and 24% in controls and 72% and 28% in cases respectively. These findings are in agreement with previous studies.^[11-13] Vitamin B_{12} deficiency in controls was noted as 38% versus 64% in cases taking metformin therapy. Elevated serum homocysteine was noted 48% in cases compared to 6%

in controls. These findings are consistent with previous studies,^[13,14] but inconsistent to a recent study.^[15] Adnan et al, ^[15] has reported vitamin B_{12} deficiency in 29.66% of type diabetic subjects taking metformin therapy. The reason of this discrepancy could be different study population. Pearson's correlation shows negative correlation of vitamin B₁₂ with serum homocysteine (r= -0.629, P= 0.0001) (table IV and scatter plot 1). Vitamin B₁₂ showed statistically non- significant correlation with RBS (P=0.611) and HbA1c (P=0.0861) (Scatter plots 1 and 2). These findings are concordant to a recent study.^[16] The findings of present study are comparable to previous studies, however the underlying mechanism of how metformin causes vitamin B₁₂ deficiency is not well established.^[17-19] Hence the topic is debatable and needs rigorous research on the exact mechanism of how vitamin B_{12} deficiency is created by the metformin therapy. Jager et al, $^{\left[20\right] }$ reported high frequency of vitamin B₁₂ deficiency in their randomized clinical trial conducted over 4.3 years duration. They reported 19% drop in vitamin B_{12} levels per year (P<0.001). Another previous study^[21] reported long term metformin therapy is associated with vitamin B₁₂ deficiency with elevated serum homocysteine. They suggested multivitamin supplements for type 2 diabetics taking metformin. The finding of vitamin B₁₂ deficiency and elevated serum homocysteine are in agreement with above study. The findings of elevated serum homocysteine and vitamin B_{12} deficiency are supported by a previous study.^[22] Cassinadane et al,^[16] reported low vitamin B_{12} in metformin treated type 2 diabetics and negative correlation with elevated serum homocysteine. These findings are in full agreement with present study. The present study reports negative correlation of vitamin B_{12} with serum homocysteine (r= -0.629, P= 0.0001). In present study the serum homocysteine was noted as 6.71±2.82 µM/L in controls compared to 15.35±11.97 μ M/L in cases (P=0.0001). Vitamin B₁₂ in cases was noted as 197.40±76.23 pg/dl compared to 239.54±61.72 pg/dl in controls (P=0.0001), the findings corroborate with a recent study by Raizada et al.^[23] They,^[23] reported serum Vitamin B_{12} levels in metformin group as 267.7 ± 194.4 pmol/l versus no metformin group as 275.1 \pm 197.2 pmol/l. These findings are in keeping with present study. The evidence based findings of present study show elevated serum homocysteine and low vitamin B₁₂ in metformin treated type 2 diabetics. The limitations of present study are; first- small sample size, second- short duration of metformin therapy, third- peculiar ethnicity. However, the strength of study is because of prospective study design and inclusion and exclusion criteria, hence further research is advised to explore the true burden of problem of vitamin B₁₂ deficiency and elevated serum homocysteine in type 2 diabetics taking metformin therapy.

CONCLUSION

The present study reports vitamin B_{12} deficiency in 64% and elevated homocysteine in 48% type 2 diabetics taking metformin therapy. Vitamin B_{12} shows negative

correlation with serum homocysteine. Clinical practitioners must pay attention to serum vitamin B_{12} and homocysteine levels in metformin treated type 2 diabetics.

REFERENCES

- Almani SA, Memon IA, Shaikh TZ, Khoharo HK, Ujjan I. Berberine protects against metforminassociated lactic acidosis in induced diabetes mellitus. Iran J Basic Med Sci., 2017; 20: 511-515.
- Agarwal P, Mital P, Meena VK, Mital P, Nawal CL, Goyal LK. A comparative study of levels of vitamin B12 in patients of type 2 diabetes mellitus on metformin and not on metformin at tertiary care center. Int J Adv Med., 2016; 3: 759-63.
- An H and He L. Current understanding of metformin effect on the control of hyperglycemia in diabetes. J Endocrinol, 2016; 228: R97–R106.
- Akinlade KS, Agbebaku SO, Rahamon SK and Balogun WO. Vitamin B12 levels in patients with type 2 Diabetes Mellitus on Metformin. Ann Ib Postgrad Med, 2015; 13: 79–83.
- Kapil U, Bhadoria AS. Prevalence of folate, ferritin and cobalamin deficiencies amongst adolescent in India. J Family Med Prim Care, 2014; 3: 247-9.
- 6. Hunt A, Harrington D, Robinson S. Vitamin B12 deficiency. British Med J., 2014; 349: 522- 6.
- 7. Oh R, Brown DL. Vitamin B12 deficiency. Am Fam Physician, 2003; 67: 979–986.
- Savage DG, Lindenbaum J, Stabler SP and Allen RH. Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am J Med, 1994; 96: 239–246.
- Bonora E, Kiechl S, Mayr A, Zoppini G, Targher G, Bonadonna R, et al. High-Normal HbA1c Is a Strong Predictor of Type 2 Diabetes in the General Population. Diabetes Care, 2001; 34: 1038–1040.
- Nizamani GS, Memon IA, Memon A, Khoharo HK. Vitamin B12 Deficiency with Megaloblastic Anemia: An Experience at Tertiary Care Hospital of Sindh. J Liaquat Uni Med Health Sci., 2014; 13(01): 13-17.
- Hashim H, Tahir F. Frequency of vitamin B12 and folic acid deficiencies among patients of megaloblastic anaemia. Ann Pak Inst Med Sci., 2006; 2(3): 192–4.
- 12. Soofi S, Khan GN, Sadiq K, Ariff S, Habib A, Kureishy S, et al. Prevalence and possible factors associated with anaemia, and vitamin B12 and folate deficiencies in women of reproductive age in Pakistan: analysis of national-level secondary survey data. *BMJ Open.*, 2017; 7: e018007.
- Agarwal P, Mital P, Meena VK, Mital P, Nawal CL, Goyal LK. A comparative study of levels of vitamin B12 in patients of type 2 diabetes mellitus on metformin and not on metformin at tertiary care center. Int J Adv Med., 2016; 3: 759-63.
- 14. Srikanth S. Megaloblastic anemia A clinical spectrum and a hematological profile: The day-to-

day public health problem. Med J DY Patil Univ, 2016; 9: 307-10.

- 15. Khan A, Shafiq I, Hassan SM. Prevalence of Vitamin B12 Deficiency in Patients with Type II Diabetes Mellitus on Metformin: A Study from Khyber Pakhtunkhwa. Cureus, 2017; 9(8): e1577.
- Cassinadane AV, Ramaswamy R, Hussain SA, Govindarajan R, Srinivasan AR. Evaluation of Vitamin B12 status in type 2 Diabetes Mellitus Patients on Metformin therapy. Asian J Med Sci., 2018; 9(Issue 2): 9-12.
- Akinlade KS, Agbebaku SO, Rahamon SK and Balogun WO. Vitamin B₁₂ levels in patients with type 2 Diabetes Mellitus on Metformin. Ann Ib Postgrad Med, 2015; 13: 79–83.
- 18. Wile DJ, Toth C: Association of metformin, elevated homocysteine, and methylmalonic acid levels and clinically worsened diabetic peripheral neuropathy. Diabetes Care, 2010; 33: 156-61.
- 19. Liu Q, Li S, Quan H. Vitamin B12 status in metformin treated patients: Systematic review. PLoS One, 2014.
- De Jager J, Kooy A, Lehert P. Long term treatment with metformin in patients with type 2diabetes and risk of vitamin B-12 deficiency: Randomised placebo controlled trial. BMJ, 2010; 340: 2181–2181.
- 21. Ko SH, Ko SH, Ahn YB, et al.: Association of vitamin B12 deficiency and metformin use in patients with type 2 diabetes. J Korean Med Sci., 2014; 29: 965–72.
- Nervo ME: Vitamin B12 in metformin-treated diabetic patients: A cross-sectional study in Brazil. Rev Assoc Med., 2011; 57: 46–49.
- 23. Raizada N, Jyotsna VP, Sreenivas V, Tandon N. Serum vitamin B12 levels in type 2 diabetes patients on metformin compared to those never on metformin: A cross-sectional study. Indian J Endocrin Metab, 2017; 21: 424-8.