

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

<u>www.ejpmr.com</u>

Research Article ISSN 2394-3211 EJPMR

ANALYTICAL SEPARATION AND CHARACTERISATION OF DEGRADATION PRODUCTS METHOD FOR THE ESTIMATION OF IMPURITIES IN FLUOROMETHOLONE IN PARENTERAL DOSAGE FORM

Mohd Shafi^{*1}, Dr. Osman Ahmed¹ and Dr. Anas Rasheed²

¹Department of Pharmaceutical Analysis, Deccan School of Pharmacy, Hyderabad. ²Chief Scientific Officer, Gaelib Medications Private Limited, Hyderabad.

*Corresponding Author: Mohd Shafi

Department of Pharmaceutical Analysis, Deccan School of Pharmacy, Hyderabad.

Article Received on 23/05/2018

Article Revised on 13/06/2018

Article Accepted on 03/07/2018

ABSTRACT

A short selective, precise, accurate and sensitive LC-MS/MSⁿ method was developed for the quantitative determination of process-related impurities and degradation products of Fluorometholone in pharmaceutical parenteral dosage formulations. During the study, the degradation products of Fluorometholone were well-resolved from Fluorometholone and its impurities and the mass balances were found to be satisfactory in all the stress conditions, thus proving capability of the method. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection and quantification, accuracy, precision, ruggedness, and robustness. During the stability analysis of the drug product, three unknown impurities were detected by the above method. The flow rate was 1.5 ml/min and effluent was monitored at 240nm. Retention time was found to be 5.205 ± 0.012 min. The LOD and LOQ values for were found to be 0.3245 (µg/ml) and 0.983 (µg/ml)respectively.

KEYWORDS: Fluorometholone, LC-MS/MSⁿ, Validation, stability indicating method, degradation products.

1. INTRODUCTION

Fluorometholone, (1R,2S,8S,10S,11S,14R,15S,17S)-14acetyl-1-fluoro-14,17-dihydroxy-2,8, 15-

trimethyltetracyclo[8.7.0.0²,⁷.0¹¹,1⁵]heptadeca-3,6-dien-5-one (Fig. 1). Fluorometholone glucocorticoid employed, usually as eye drops, in the treatment of allergic and inflammatory conditions of the eye. It has also been used topically in the treatment of various skin disorders. The analytical data are a prerequisite for correct interpretation of any dosage form. The objective of UPLC method development and validation of Fluorometholone in parenteral dosage form procedure is to provide information about potency. The validation of a specific method must be demonstrated through laboratory experiments by routinely analysing samples.

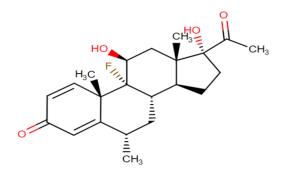


Fig. 1: Structure of Flurometholone.

As per the stringent regulatory requirements recommended by the ICH and regulatory agencies, it is mandatory and important to identify and structurally characterize any impurity formed during production and stability testing, exceeding the identification threshold. Various analytical instruments and advanced hyphenated techniques are routinely used to carry out the impurity profile study.

The present work aims with the developed method to separate the degradation product by preparative UPLC and subjected to ESI-MS/MS. The present study describes the separation of different impurities of Fluorometholone, as well as the development and validation of a RP-UPLC method for the estimation of degradation and process-related impurities of Fluorometholone. These studies were performed in accordance with established ICH guidelines.

2. EXPERIMENTAL Materials

Flurometholone (99.50% purity) used as analytical standard was procured from Gaelib Medications (Hyderabad). UPLC grade methanol, Acetonitrile (HPLC grade) was purchased from Qualigens fine chemicals, Mumbai, India. Distilled, 0.45 μ m filtered water used for UPLC quantification and preparation of buffer. Buffers and all other chemicals were analytical grade. The

column oven and Water 2996 wavelength absorbance

detector (PDA) was employed throughout the analysis.

The data was collected using Empower 2 software. The

column used was C18 column ($250 \times 4.6 \text{ mm id}$)—ACE Generix. A Band line sonerex sonicator was used for enhancing dissolution of the compounds. A Bandline

sonerex sonicator was used for pH adjustment.

parenteral - dosage (FML Forte 0.5 mg mL-1) labelled to contain 0.5 mg per 1 mL of container for Flurometholone. All chemicals used were of pharmaceutical or special analytical grade.

Instrumentation

Acquity, Waters UPLC system consisting of a Water 2695 binary gradient pump, an inbuilt auto sampler, a

Chromatographic Conditions

Table 1: Chromatographic Conditions of the validating method.

Parameter Value Column C18 column (250 ×4.6 mm id)—ACE Generix Mobile Phase Methanol–water (62:38 v/v) Flow rate 1.5 mL/min Run time 16 Min. Maintained at 25°C Column Temperature Injection volume 20 µL Detection wavelength 240nm Diluent Mobile Phase

Preparation of Standard Stock Solution

Stock standard solution of Fluorometholone (0.5 mg mL–1) was prepared in methanol. Two milliliters were accurately transferred from FML® eye drops to a 50-mL volumetric flask and diluted to the mark with the mobile phase to get 20 μ g mL–1 of FLU. The prepared solution was filtered through a 0.45- μ m Millipore syringe membrane filter.

Preparation of internal standard solution

Weighed accurately about 10 mg of prednisolone working standard and transfer to 20 ml volumetric flask, add 50 ml of mobile phase and sonicate to dissolve it completely and then volume was made up to the mark with mobile phase to get 20 μ g/ml of standard stock solution of working standard. Then it was ultrasonicated for 10 minutes and filtered through 0.20 μ membrane filter.

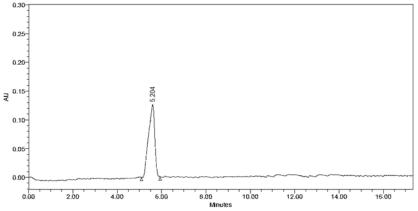


Fig. 2: Optimized chromatogram of Fluorometholone and internal standard using mobile phase of Methanolwater (62: 38 v/v).

3. RESULTS AND DISCUSSIONS

Validation

The analytical method was validated with respect to parameters such as linearity, precision, specificity and accuracy, limit of detection (LOD), limit of quantitation (LOQ) and robustness in compliance with ICH guidelines.

Linearity and Range

The linearity of an analytical procedure is the ability to obtain test results that are directly proportional to the concentration of an analyte in the sample. The calibration curve showed good linearity in the range of 20-100 μ g/mL, for Fluorometholone with correlation coefficient of 0.9964. A typical calibration curve has the regression equation of y = 336.51x + 1492.375 for Fluorometholone. Results are given in Table 2.

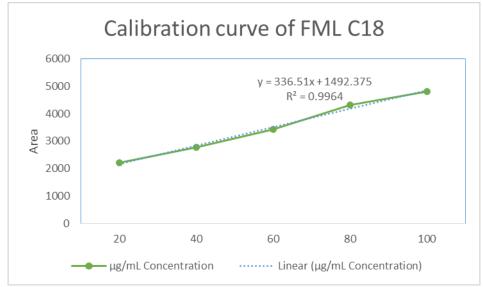


Fig. 3: Calibration curve of Fluorometholone.

Limit of Detection (LOD) and Limit of Quantitation (LOQ)

The LOD and LOQ of Fluorometholone were calculated by mathematical equation. $LOD=3.3\times$ standard deviation

 \div slope and LOQ=10×standard deviation \div slope. The LOD of Fluorometholone was found to be 0.3245 (µg/ml) and the LOQ of Fluorometholone was found to be 0.983 (µg/ml). Results are given in Table 2.

Table 2: Summary of validation parameters for the proposed method.

PARAMETER	FLUOROMETHOLONE
Linearity	$20 - 100 \ \mu g/ml$
Intercept (c)	1492.375
Slope (m)	336.51
Correlation coefficient	0.9964
LOD	0.3245 (µg/ml)
LOQ	0.983 (µg/ml)

Precision

The Precision of the method was studied in terms of intraday and interday precision of sample injections (20 μ g/ml). Intraday precision was investigated by injecting six replicate samples of each of the sample on the same day. The % RSD was found to be 0.11%. Interday precision was assessed by analysis of the 6 solutions on three consecutive days. The % RSD obtained was found to be 0.09%. Low % RSD values indicate that the method is precise. The results are given in table 3.

Accuracy

To study the accuracy of method, recovery studies were carried out by spiking of standard drug solution to preanalyzed sample at three different levels i.e., at 50, 100, and 150%. The resultant solutions were then reanalyzed by the proposed method. At each level of the amount, six determinations were performed. From the data obtained, the method was found to be accurate. The % recovery and %RSD were calculated and presented in Table 4.

Robustness

Small deliberate changes in chromatographic conditions such as change in temperature (\pm 2°C), flow rate (\pm 0.1ml/min) and wavelength of detection (\pm 2nm) were

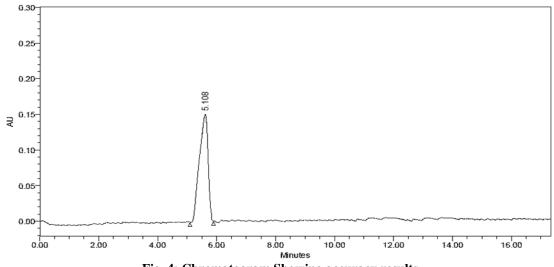

studied to determine the robustness of the method. The results were in favour of (% RSD < 2%) the developed UPLC method for the analysis of Fluorometholone. The results are given in table 5.

Table 3: Results of Precision Studies.

Replicate				
S.No.	Concentration Taken (µg/ml)	Area	%LC	
1		2246.72	98.97%	
2		2247.29	98.95%	
3	20	2252.84	98.97%	
4	20	2256.87	98.92%	
5		2266.89	98.92%	
6		2271.16	98.91%	
Average			99.94%	
Std.Dev			0.0268	
% RSD			0.03%	
Standard weight			20 mcg	
Standard potency			98.00 %	

Table 4: Results of accuracy study.

FML						
Level %	Amount added (μg/ml)	Amount found (µg/ml)	% Recovery	Mean recovery (%)	Std.Dev	% RSD
50	10.11	10.07	99.60			
100	20.30	20.25	99.75	99.65%	0.0924	0.08%
150	30.54	30.52	99.77			

	Table 5:	Results	of	Robustness	Studies.
--	----------	---------	----	------------	----------

Robustness Studies					
Parameter	Value	Peak Area	% RSD		
	Low	2247.41			
Flow Rate	Actual	2246.95	0.01%		
	Plus	2246.87			
Temperature	Low	2248.33			
	Actual	2247.98	0.04%		
	Plus	2246.59			
Wavelength	Low	2248.24			
	Actual	2247.85	0.02%		
	Plus	2247.53			

Mass Spectrometry Conditions for MS/MS

The samples (5 μ L) is injected directly into the source by the flow injection method using Acetonitrile with buffer 0.5M potassium dihydrogen orthophosphate (35: 65, v/v) as mobile phase at a flow rate of 0.3 mL/min. The mass spectra were recorded in ESI positive mode. Ultra-high purity nitrogen and helium were used as curtain and collision gas, respectively. The typical ion source conditions were: nebulizer gas, 60 psi; dry temperature, 325°C; dry gas, 5.0 mL/min; capillary voltage, 5kV; capillary current, 80.243 nA; vapourizer temperature, 400°C; dwell time, 200 ms. For the collision-induced dissociation (CID) experiments, the precursor ion was selected using the quadrapole analyzer and product ions were analyzed by the time-of-flight analyzer. HRMS data acquisition was performed by the following source conditions: capillary voltage, 5 kV; declustering potential (DP) and collision energy (CE) were -60 V and -10 V, respectively; focusing potential, 220 V; resolution 40,000 (FWHM)."

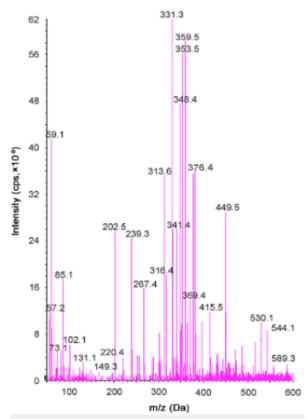


Fig. 5 MS/MSⁿ characterisation of impurities.

Elemental compositions of FML in MS/MS spectra Table No. 6: Compositions in MS/MS spectra.

Analyte	Observed ion mass (Da)	Proposed formula	Calculated mass (Da)	Error (ppm)
FML	376.42	$C_{22}H_{29}FO_4$	376.37	0.015
	415.54	$C_{24}H_{32}FO_4$	415.42	0.021
	449.51	$C_{26}H_{33}FO_4$	449.47	0.026
	530.18	$C_{28}H_{35}FO_4$	530.07	0.010
	544.13	$C_{30}H_{36}FO_4$	544.09	0.056
	589.37	$C_{32}H_{36}FO_4$	589.26	0.015

4. CONCLUSION

This research paper describes the separation and characterization of impurities in Fluorometholone pharmaceutical parenteral dosage formulations. The impurities were isolated by preparative liquid chromatography and characterized by using spectroscopic techniques. A simple and efficient RP-UPLC method development and validation were discussed. The degradated products were formed during the study and was well-resolved from Fluorometholone by the proposed RP-UPLC method. The proposed structure of Fluorometholone was characterized by MS/MSⁿ analysis and was further confirmed to be accurate mass measurements.

ACKNOWLEDGEMENT

The authors would like to acknowledge Gaelib Medications Private Limited (Hyderabad, TS) for their constant support and help throughout our research study.

5. REFERENCES

- 1. International Conference on Harmonization Guideline on Validation of Analytical Procedures (2005) Text and Methodology: Q2 (R1).
- Nguyen D.T., Guillarme D, Rudaz S, Veuthey J. L., Fast Analysis In Liquid Chromatography Using Small Particle Size And High Pressure. J Sep Sci., Aug, 2006; 29(12): 1836-48.
- 3. Katharina Sterz, Gerhard Scherer, Josef Ecker. A Simple And Robust UPLC-SRM/MS Method To Quantify Urinary Eicosanoids.J Lipid Res., 2013; 1-28.
- 4. Ashok kumar, UPLC: A preeminent technique in pharmaceutical analysis. Acta poloniae pharmaceutica– drug research, 2012; 69(30): 371-380.
- 5. Michael E Swartz, Ultra performance liquid chromatography UPLC: an introduction. Separation science redefined, 2005; 1: 8-14.

- 6. Rasheed A et al., Analytical Method Development and Validation for the Simultaneous Estimation of Aspirin, Clopidogrel Bisulphate and Atorvastatin Calcium in Tablet Dosage Form. American Journal of Pharm Tech Research, 2014.
- David A. Williams, William O. Foye, Thomas L. Lemke; Foye's principles of medicinal chemistry; 6th Ed Wolters Kluwer Health, 2008; 698-728.
- 8. Osman Ahmed, Anas Rasheed et.al; An Assay Method For The Simultaneous Estimation Of Acetaminophen And Tramadol Using Rp-Hplc Technology, Indo American Journal of Pharmaceutical Research, 2015; 5(07).
- 9. Anas Rasheed and Osman Ahmed, UPLC Method Development And Validation For The Determination Of Chlophedianol Hydrochloride In Syrup Dosage Form, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 25-31.
- Anas Rasheed and Osman Ahmed, Validation Of A Uplc Method With Diode Array Detection For The Determination Of Noscapine In Syrup Dosage Form; European Journal of Pharmaceutical and Medical Research, EJPMR, 2017; 4(6): 510-514.