

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

www.ejpmr.com

Research Article ISSN 2394-3211 EJPMR

PHENOTYPIC DETECTION OF METALLO-β-LACTAMASE AND CARBAPENEMASE AMONG IMIPENEM RESISTANT ACINETOBACTER BAUMANNII

Chaudhary Anish* and Routray Abhisek

*Department of Microbiology, Chitwan Medical College, Chitwan, Nepal. Department of Microbiology, SRM Medical College Hospital and Research center, Kattankulathur, Kanchipuram, India.

*Corresponding Author: Chaudhary Anish

Department of Microbiology, Chitwan Medical College, Chitwan, Nepal.

Article Received on 23/07/2018

Article Revised on 13/08/2018

Article Accepted on 02/09/2018

ABSTRACT

Background: Carbapenems are the emperical and last resort of treatment used for Gram negative bacilli including Acinetobacter spp. However; an increase in carbapenem resistance among A. baumannii due to Ambler class B metallo-beta-lactamases (MBL) or class D OXA carbapenamases in recent years is of global concern. So this study was undertaken to detect antimicrobial susceptibility pattern and the presence of carbapenemase and metallo- β lactamase among the carbapenemase resistant clinical isolates of Acinetobacter baumannii by phenotypic method. Material and Methods: A total of 130 non duplicate clinical isolates of A. baumannii from various clinical specimens were included in this study. Antimicrobial susceptibility test was carried out for all 130 isolates by Kirby Bauer disk diffusion method. Carbapenemase and metallo- β-lactamase production was tested among 76 imipenem resistant isolates of A. baumannii by modified Hodge test and combined disk test respectively. Result: In our study, resistance pattern of A. baumannii was as follows: ampicillin (91.53%), amikacin (63.07%), ceftazidime (73.07%), ciprofloxacin (73.84%), co-trimoxazole (60%), gentamicin (59.23%), imipenem (58.46%), ofloxacin (64.61%), and Piperacillin/Tazobactam(50%). Colistin and tigecycline are 93.84% and 100% sensitive respectively by disk diffusion method. Among 76 imipenem resistant isolates carbapenemase and MBL was detected in 54 (71.05%) isolates and 15 (19.73%) isolates respectively.

KEYWORDS: Acinetobacter baumannii, Carbapenemase, Metallo-B-lactamase, Modified Hodge Test.

Increasing isolation of multidrug-resistant Acinetobacter baumannii (MDR-Ab) has been reported worldwide, and it is now one of the most difficult nosocomially acquired gram-negative pathogens to control and treat.^[1-3] Its ability to survive under a wide range of environmental conditions makes it a frequent cause of outbreaks of infection and an endemic health care associated pathogen.^[4] It has emerged as a major cause of healthcare-associated infections including pneumonia, urinary tract infection, and septicemia.^[5] Carbapenems were the remaining choice of drug to treat these superbug in late 90s, but carbapenem resistant clones have already been emerged.^[6] The efficacy of carbapenems against multidrug-resistant Acinetobacter spp. has been undermined by the emergence of Ambler class B and class D carbapenemase-hydrolyzing β-lactamases.^[7]

Carbapenem resistance in A. baumannii is due to a variety of combined mechanisms such as hydrolysis by beta-lactamases, alterations in the outer membrane protein and penicillin-binding proteins and increased activity of efflux pumps. Acquired resistance to carbapenems, mediated by the Ambler class D betalactamases or OXA type carbapenamases and Ambler class B metallo-β- lactamases are of greatest concern as they are encoded by genes which are transmissible and account for most of the resistance to carbapenems.^[8, 9] MDR- A. baumannii is usually treated with broadantibiotics. including spectrum carbapenems. Carbapenems such as imipenem and meropenem are of the antibiotics of last resort for such infection, and resistance against them is considered an alarming situation.^[10, 11]

Thus this study was undertaken to know the antimicrobial susceptibility pattern of A. baumannii and to evaluate carbapenemase and MBL production among the imipenem resistant isolates of A. baumannii.

MATERIALS AND METHODS

A total of 130 clinical isolates of A. baumannii were collected from various patients from SRM Medical College Hospital, Kattankulathur, Tamil Nadu from from Dec 2013 to April 2015. The isolates were obtained from different specimens including tracheal aspirate, wound, blood, urine, abscess, and CSF. The isolates were

identified by colony morphology on Mac Conkey agar, Gram stain, catalase test, oxidase test, oxidative and fermentative properties, citrate test, growth at 44^{0} C, production of acid from lactose 1% and 10% and utilization of malonate and aspartic acid.

Antibiotic susceptibility test was performed by using Kirby Bauer disk diffusion method as per Clinical Laboratory Standards institute (CLSI) guidelines 2014.^[12] Pseudomonas aeruginosa ATCC 27853 was used as control strain.

The antibiotics tested were ampicillin (10 μ g), amikacin (30 μ g), ceftazidime (30 μ g), Ceftazidime /Clavulanic acid (30/10 μ g), meropenem (10 μ g), ciprofloxacin (5 μ g), co-trimoxazole (25 μ g), gentamicin (10 μ g), imipenem (10 μ g), cefepime (30 μ g), ofloxacin (5 μ g), Piperacillin/Tazobactam (100/10 μ g), colistin (10 μ g) and tigecycline (5 μ g) from Himedia Laboratories (Mumbai, Maharashtra, India).

Detection of Carbapenemase

The carbapenem resistant isolates were tested for carbapenemase production by modified Hodge test as per CLSI guidelines. First 0.5 Mc Farland standard of *Escherichia coli* ATCC 25922 was prepared and carpet culture done on well dried Mueller Hinton agar. An imipenem disc was placed at the center of the plate after 5 minutes. Test organism was heavily streaked in a straight line from edge of imipenem disk towards the edge of the plate. Four test isolates were inoculated in each plate at an angle of 90⁰ to each other. Then the plates were incubated at 37° C for 24 hours. *Klebsiella pneumoniae* ATCC 1705 was used as quality control for carbapenemase production.

Positive test showed a clover leaf like indentation of *E. coli* 25922 along test organism growth streak within the disk diffusion zone. No clover leaf like pattern near to test organism was regarded as negative.

Figure 1: Modified Hodge Test for Detection of Carbapenemase.

Metallo-β-lactamase Screening

All the isolastes of *A. baumannii* showing resistance to imipenem, meropenem, etrapenem and third generation cephalosporin by Kirby Bauer disk diffusion method as per CLSI guidelines were considered screening positive and taken for evaluation of metallo- β -lactamase.

Detection of Metallo-β-lactamase

Imipenem - EDTA combined disk synergy test was employed for evaluation of metallo- β -lactamase. 0.5 Mc Farland standard of test organism was prepared and inoculated on well dried Mueller Hinton agar plate by carpet culture method. Two imipenem disks (10 μ g) and two ceftazidime disk were taken and placed on the Mueller Hinton agar plate. 10 μ l of EDTA solution was added to one of imipenem and ceftazidime disks to obtain a desired concentration of 750 μ g. The plates were incubated at 37^oC for 16-18 hours. Zone of inhibition was measured for all for disks and an increase in zone of inhibition of 7 mm or more around imipenem+EDTA or ceftazidime+EDTA compared to imipenem or ceftazidime disks without EDTA was considered as MBL positive.

Figure 2: Imipenem-EDTA Comined Disk Synergy test.

RESULT

In a total of 7685 specimens collected for culture; a total of 565 Non-fermenting Gram negative bacilli were isolated. Out of which 130 *Acinetobacter baumannii*

strains were isolated from patients admitted and attending SRM Medical College Hospital during the study period.

Acinetobacter baumannii	130
Non-fermentors other than Acinetobacter baumannii	435
Total number of non-fermentors	565

Figure 3: Percentage of Acinetobacter baumannii and other Non-fermentors.

DISTRIBUTION OF ACINETOBACTER BAUMANNII BY GENDER

Out of 130 *Actinetobacter baumannii* isolates, 80 were from male patients and 50 were from female patients with a male:female ratio of 4:2.5.

AGE WISE DISTRIBUTION OF A CINETOBACTER BAUMANNII

Age in Years	No. of Patients
0-10	1
11-20	8
21-30	9
31-40	18
41-50	19
51-60	31
61-70	33
71-80	9
81-90	2

Antibiotics	Percentage of isolates sensitive to the drug (number)	Percentage of isolates intermediate to the drug (number)	Percentage of isolates resistance to the drug (number)
Ampicillin (10µg)	6.92% (9)	1.53% (2)	91.53% (119)
Amikacin (30 µg)	36.92% (48)		63.07% (82)
Ceftazidime (30 µg)	15.38% (20)	11.53% (15)	73.07% (95)
Ceftazidime /Clavulanic acid (30/10 µg)	20% (26)	3.07% (4)	76.93% (100)
Cefotaxime (30 µg)	13.07% (17)	4.61% (6)	82.3% (107)
Cefepime (30 µg)	30.76% (40)	2.30% (3)	66.92% (87)
Ciprofloxacin (5µg)	25.38% (33)	0.76% (1)	73.84% (96)
Colistin (10 µg)	93.84% (122)		6.15% (8)
Co-trimoxazole (25 µg)	20.76% (27)	19.23% (25)	60% (78)
Gentamicin (10µg)	34.61% (45)	6.15% (8)	59.23% (77)
Imipenem (10µg)	38.46% (50)	3.07% (4)	58.46% (76)
Meropenem (10µg)	36.15% (47)	3.84% (5)	60% (78)
Ofloxacin (5µg)	33.84% (44)	1.53% (2)	64.61% (84)
Piperacillin/Tazobactam (100/10 µg)	46.15% (60)	3.84% (5)	50% (65)
Tigecycline (5µg)	100% (130)		

RESISTANCE PATTERN OF ACINETOBACTER BAUMANNII BY KIRBY BAUER DISC DIFFUSION METHOD

DOUBLE DISC SYNERGY TEST FOR DETECTION OF ΜΕΤΑLLO-β LACTAMASE (MBL)

Out of 76 Imipenem resistant isolates, only 15 (19.73%) gave positive MBL production by Imipenem-EDTA Double Disk Synergy Test.

COMPARISION OF CARBAPENEMASE PRODUCTION IN IMIPENEM RESISTANT IN STRAINS Out of 76 imipenem resistance strains, 54 (71.05%) were carbapenemase producer.

IMIPENEM RESISTANCE (n= 76)					
CARBAPENEMASE	ΜΕΤΑLLΟ-β LACTAMASE	DRODUCTION OF ROTH			
PRODUCTION ONLY	PRODUCTION ONLY	PRODUCTION OF BOTH			
44 (57.89%)	5 (6.57%)	10 (13.51%)			

Distribution of Metallo-β-lactamase isolates

Mean age of patient from which MBL was isolated was found to be 56.66 (range 0-80 years). Highest number of cases were from age group 51-60 years 5 (33.33%), followed by age group 61-70 years 4 (26.66%), 31-40 years 3 (20%), 41-50 years 2 (13.33%) and 71-80 years 1 (6.66%) respectively.

Of 15 MBL isolates, 8 were from male and 7 were from female which was not stastically significant (p>0.05) when compared to gender distriution of MBL negative

isolates; whereas ward wise distribution showed 8 isolates were from intensive care unit (ICU), 4 from general ward, 2 from surgical ward and 1 from nephrology ward respectively. MBL isolates were isolated predominantly from endotracheal tip 7 (46.66%), sputum 4(26.66%), pus 3 (20%) and urine 1 (6.66%) respectively.

DISCUSSION

Acinetobacter baumannii is one of the most common causative agents of nosocomial infections in hospitals. Ability to survive for an extended period of time in hospital environment and development of resistance to multiple drug agents possess a great challange in management of *A. baumannii* infections. Besides *A. baumannii* causes serious infection, especially in immune supressed hosts, patients in ICUs and those with critical disorders.^[13, 14]

130 isolates of *Acinetobacter baumannii* was isolated from various clinical samples in the present study. More isolates of *A. baumannii* were obtained from males (62%) than females (38%).

Sen B. et al. also found that the incidence was higher in males (66.96%) than that of females (33.04%) which is similar to our study. In another study done by Nahid H Ahmed, Kamaldeen Baba et al. the results were also similar to our study.

In our study, lowest incidence was of age group (0-10) and (71-80) years old group whereas the highest incidence was of age group (61-70), followed by (51-60) and (41-50). Similar results were seen in study done by Nahid H Ahmed et al. where highest incidence was seen in age group 31-59. In another study of Harit Jabbar Fahad, the lowest incidence was of age range (71-80) year old group whereas the highest incidence was of age range (31-40) year old group.

Resistance pattern of *Acinetobacter baumannii* showed 91.53%, 63.07%, 73.07%, 73.84%, 60%, 59.23%, 58.46%, 64.61%, and 50% to ampicillin, amikacin, ceftazidime, ciprofloxacin, co-trimoxazole, gentamicin, imipenem, ofloxacin and Piperacillin/Tazobactam. Colistin and tigecycline were 93.84% and 100% sensitive respectively by disk diffusion method.

In study of Ahmed S. Attia, Wael M. Tawakkol, the resistance level to other antibiotics was 100% for each of meropenem, ceftazidime, cefepime, ciprofloxacin, and piperacillin/tazobactam, and 80% or more to amikacin, aztreonam, gentamicin, and tobramycin which was higher than our study.

Resistance pattern to ampicillin, amikacin, ceftazidime, ciprofloxacin, gentamicin, imipenem, and Piperacillin/Tazobactam was 100%, 50%, 66.7%, 83.3%, 40%, 73.3% and 70% in study done by Nermin H. Ibrahim.

In study done by Abhisek Routray, high level of resistance was seen for ampicillin 94%, cefepime - 83.07%, amikacin-76.3%, gentamycin-81.53%, ciprofloxacin-78.46%, imipenem-64.61% and colistin-3.1%. Resistance rate was slightly higher for ampicillin, amikacin, cefepime and ciprofloxacin than our study. While resistance to imipenem and colistin was lower than our study.

Resistance to ampicillin-sulbactam was least. 36.1% isolates were resistant to imipenem, 66.6% to ceftazidime, 72.2% to ciprofloxacin, 80.5% to amikacin and 84.7% to piperacillin in study done by Nachiket D. Vaze, Christopher L. Emery.

Nahar et al. has reported even 100% resistance to amoxicillin, ceftriaxone, ceftazidime, cefuroxime, and aztreonam in biofilm forming Acinetobacter species which was higher than in our study.

Jeetendra Gurung et al. all isolates were resistant to ticarcillin, ticarcillin/clavulanic acid, Ceftazidime and trimethoprim/sulfamethoxazole. Twenty-seven (27) isolates were resistant to ciprofloxacin, 27 to amikacin, 20 to Gentamycin, 15 to imipenem, 10 to tobramycin and finally all isolates were susceptible to colistin.

In study of R Srinivasa Rao, R Uma Karthika et al. *A. baumannii* isolates showed 100% resistance to imipenem, 89% resistance to cephotaxime, 80% to amikacin and 73% to ciprofloxacin. Resistance to imipenem and cefotaxime was higher than out study while resistance to ciprofloxacin was similar to our study.

Out of 76 imipenem resistant isolates 15 (19.73%) were MBL producer and 54 (71.05%) carbapenemase producer in our study. However MBL production and carbapenemase production was lower 13.3% and 26.6% respectively in study done by Anu Madanan Sunu Kumari.

Of 116 *A. baumannii*, the modified Hodge test was positive for 113 (97.4%) of isolates and the metallo-betalactamase screening test with EDTA was positive in 92 (79.3%) isolates in study done by Amudhan SM. In another study done by Anurag Paysi and Manu Chaudhary, MBL production was 66.8%.

Out of 21 meropenem resistant strains 14/21 (66.66%) were found to be carbapenemase positive. 21.42% (3/14) were found to be MBL producers phenotypically in study done by Sivasankari S, Senthamarai, Anitha.C.

Mojtaba Moosavian et al. among imipenem resistant *A. baumannii* isolates, 53 (53%) showed carbapenemase production by MHT.

96.30%, 94.7%, 80% and 100% were MBL positive by CDST-IPM in study reported by Nirav P. Pandya et al., Galani et al., Picao et al. and Franklin et al. respectively.

High degree of resistance was shown by MBL positive isolates to all β -lactam antibiotics, aminoglycosides, tetracycline, and fluoroquinolones. However they remain sensitive to tigecycline (100%) and colistin (60%).

This study shows that MHT and combined disk synergy test could be used in clinical laboratories for monitoring emergence of carbapenemase and Metallo- β -lactamase in *A. baumannii*, especially MDR isolates.

CONCLUSION

The early detection of MBL and other carbapenemase is of utmost importance in deciding the most appropriate therapeutic regimen for treatment of carbapenem resistant non-fermenters, the reduction of mortality rates for patients with MBL and carbapenemase producing isolates and also to check the intrahospital dissemination of such strains. Imipenem-EDTA combined disk test (CDST-IPM) and modified Hodge test is the most sensitive method for detection of MBL production in Gram negative bacilli. Intravenous colistin with rifampin and imipenem is recommended for the treatment of carbapenem resistant isolates lacking metallobetalactamase where as the combination of colistin and rifampicin (with or without tigecyclin) was recommended for treatment of metallobetalactamase producing imipenem resistant isolates (Maragakis Ll, Perl et al.2008) (Perez F et al 2007).

Controlling antibiotic use, particularly aminoglycosides, cephalosporins, may be an important component of strategies to limit the spread of Carbapenem-resistant Acinetobacter spp.

REFERENCES

- 1. Rahal JJ, Urban C. Acinetobacter. SeminRespir Crit Care Med 2000; 21: 341–8.
- Gales AC, Jones RN, Forward KR, et al. Emerging importance of multidrug- resistant Acinetobacter species and Stenotrophomonas maltophilia as pathogens in seriously ill patients: geographic patterns, epidemiological features, and trends in the SENTRY antimicrobial surveillance program (1997–1999). Clin Infect Dis 2001; 32(Suppl 2): 104–13.
- Wisplinghoff H, Edmond MB, Pfaller MA, et al. Nosocomial bloodstream infections caused by Acinetobacter species in United States hospitals: clinical features, molecular epidemiology, and antimicrobial susceptibility. Clin Infect Dis 2000; 31: 690–7.
- Maragakis LL, Perl TM. Acinetobacterbaumannii: Epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis 2008; 46: 1254-63.

- 5. Kempf M, Rolain JM. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: clinical impact and therapeutic options. Int J Antimicrob Agents 2012; 39: 105–14.
- Zarrilli R, Crispino M, Bagattini M, Barretta E, Di Popolo A, Triassi M, Villari P. Molecular epidemiology of sequential outbreaks of Acinetobacterbaumannii in an intensive care unit shows the emergence of carbapenem resistance. J ClinMicrobiol 2004; 42: 946–953.
- Livermore DM. The impact of carbapenemases on antimicrobial developmentand therapy. CurrOpinInvestig Drugs 2002; 3: 218–24.7.
- 8. Peleg AY, Seifert H, Paterson DL. Acinetobacterbaumannii: Emergence of a successful pathogen. ClinMicrobiol Rev 2008; 21: 538-82.
- Rasmussen JW, Høiby N. OXA-type carbapenemases. J AntimicrobChemother 2006; 57: 373-83.
- J. M. Cisneros, J. Rodriguez-Bano, F. Fernandez-Cuenca, et al., "Risk-Factors for the Acquisition of Imipenem- Resistant Acinetobacterbaumannii in Spain: A Nation- wide Study," Clinical Microbiology and Infection, 2005; 11(11): 874-879.
- Y. S. Park, H. Lee, K. S. Lee, et al., "Extensively Drug- Resistant Acinetobacterbaumannii: Risk Factors for Ac- quisition and Prevalent OXA-Type Carbapenemases: A Multicentre Study," International Journal of Antimicro- bial Agents, 2010; 36(5): 430-435.
- CLSI. 2014. Performance standards for antimicrobial susceptibility testing; 24th informational supplement. CLSI document M100-S24. Clinical and Laboratory Standards Institute, Wayne, PA.
- 13. Bergogne-Berezin E, Towner K. Acinetobacterspp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996; 9(2): 148-65.
- 14. Afzal Shah M, Woodford N, Livermore DM. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D β -lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2001; 45(2): 583-8.
- Sen B., Lewandowski K., Vaze N., Emery C., Hamilton R., Brooks A. and Joshi S. Characterization of carbapenem-resistant MDR Acinetobacter baumannii isolated from Philadelphia, PA (United States). Infect. Dis. 2012; 827: 534-540.
- 16. Ahmed Nahid H; Baba, Kamaldeen, Clay, Cornelis, Lekalakala, Ruth; Hoosen, Awart A. In vitro activity of tigecycline against clinical isolates of carbapenem resistant Acinetobacter baumannii complex in Pretoria, South Africa. BMC Research Notes; 2012; 5(1): 215.
- 17. Nadheema Hammood Hussein, Harith Jaar Fahad Al-Mathkhury and Majeed Arsheed Saaf. Imipenem-Resistant Acinetobacter baumannii isolated from

patients and hospitals environment in Baghdad. Iraqui Journal of Science, 2013; 54(4): 803-812.

- Fouad M, Attia AS, Tawakkol WM, Hashem AM. Emergence of carbapenem-resistant Acinetobacter baumannii harbouring the OXA-23 carbapenemase in intensive care units of Egyptian hospitals. Int J Infect Dis. 2013 Dec; 17(12): e1252-4.
- Nermin H. Ibrahim, Ali M. Somily, Rasha H. Bassyouni and Amani Zain El-Aabedien. Comparative Study Assessing the Effect of Tigecycline and Moxifloxacin in prevention of Acinetobacterbaumannii biofilm. Life Science Journal, 2012; 9(3).
- Routray Abhisek, M.S. Anu and MadhavanRadha. Colistin Resistance in Acinetobacter lwoffii. Int J Pharm ioSci 2013 july; 4(3): (B)429-434.
- 21. Nachiket D. Vaze, Cristopher L. Emery, Richard J. Hamilton, Ari D. Brooks, Suresh G. Josh Patient Demographics and Characteristics of Infection with Carapenem-Resistant Acinetobacter baumannii in a teaching hospital from United States.
- 22. Azizun Nahar, Shaheda Anwar, Md. rUHUL Amin Miah. Association of Biofilm formation with Antimicrobial Resistance Among Acinetobacter Species in A tertiary Care Hospital in Bangladesh. J MEDICINE 2013; 14: 28-32.
- 23. Gurung J., Khyriem A. ., Banik A., Lyngdoh W. V., Choudhary B., and Bhattacharyya P., Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit. Indian J. Crit. Care Med. 2013; 17: 214-218.
- 24. Rao R S, Karthika R U, Singh S P, Shashikala P, Kanungo R, Jayachandran S, Prashanth K. Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii. Indian J Med Microbiol 2008; 26: 333-7.
- 25. MS Anu, Routray Abhisek, Yadav Deepti, Madhavan Radha. Imipenem Resistance and biofilm production in Acinetobacter. Drug invention today 5 (2013)256 e258.
- Amudhan SM, Sekar U, Arunagiri K, Sekar. OXA beta-lactamase-mediated carbapenem resistance in Acinetobacter baumannii. Indian J Med Microbiol. 2011; 29(3): 269-74.
- Chaudhary M., Payasi A. Rising Antimicrobial Resistance of Pseudomonas aeruginosa Isolated from Clinical Specimens in India. J Proteomics bioinform 2013; 6: 005-009.
- Sivasankari S., Senthamari, Anitha C., ApuraSastry, Sandhyahatt, Kumudhavathi M.S., Amshavadhami S.K. Phenotypic Detection of Carbapenem Resistance In Clinical Isolates Of Acinetobacter baumannii in Kanchipurum. 2014.
- MoosavianM., Shams N., Sirous M. Detection of Carbapenemases Emerging in Acinetobacter baumannii Clinical Isolates by Modified Hodge Test. J Med Microbiol Infec Dis, 2014; 2(4): 163-166.

- 30. Pandya, Nirav&Oza, Sweta& Mehta, Sanjay & Kikani, Kunjan & J Joshi, Pratima. Evaluation of various methods for detection of metallo-βlactamase (MBL) production in gram negative bacilli. International Journal of Biological & Medical Research. 2011; 2: 775-777.
- Galani I, Rekatsina PD, Hatzaki D, Plachouras D, Souli M, Giamarellou H. Evaluation of different laboratory tests for the detection of metallo-βlactamase production in Enterobacteriaceae. J AntimicrobChemother. 2008; 61: 548-53.
- 32. Picao RC, Andrade SS, Nicoletti AG, Campana EH, Moraes GC, Mendes RE, et al. Metallo-β-lactamase Detection: Comparative Evaluation of Double Disk Synergy versus Combined Disk Tests for IMP-, GIM-, SIM-, SPM-, or VIM Producing Isolates. J ClinMicrobiol. 2008; 46(6): 2028-37.
- Franklin C, Liolios L, Peleg AY. Phenotypic Detection of Carbapenem Susceptible Metallo-βlactamase-Producing Gram-Negative Bacilli in the Clinical Laboratory. J ClinMicrobiol. 2006; 44(9): 3139-44.
- 34. Maragakis LL, Perl TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis. 2008; 46: 1254-1263.
- 35. Perez, F., A. M. Hujer, K. M. Hujer, B. K. Decker, P. N. Rather, and R. A. Bonomo. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2007; 51: 3471-3484.