ejpmr, 2018,5(12), 356-359

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

www.ejpmr.com

Research Article ISSN 2394-3211 EJPMR

UV SPECTROPHOTOMETRIC DETERMINATION OF CANDESARTAN CILEXETIL IN BULK DRUG

Parbati Kirtania Roy*, Nasema Begum and Mohd. Amrin Sultana

Department of Quality Assurance, Sultan-Ul-Uloom College of Pharmacy, Banjara Hills, Hyderabad - 500 034. Telangana State, India.

*Corresponding Author: Parbati Kirtania Roy

Department of Quality Assurance, Sultan-Ul-Uloom College of Pharmacy, Banjara Hills, Hyderabad - 500 034. Telangana State, India.

```
Article Received on 17/10/2018
```

Article Revised on 07/11/2018

Article Accepted on 28/11/2018

ABSTRACT

Candesartan Cilexetil (Candesartan) is a medication utilized for the treatment of Hypertension. It is in a class of medication containing angiotensin receptor blocker (ARB). The main objective of the present work is to determine a simple, precise and cost effective UV Spectrophotometric The wavelength of Candesartan Cilexetil using UV Spectrophotometric was detected at 246nm in Acetonitrile and it obeys Beer's law in a concentration range of 4- 24μ g/ml with a correlation coefficient of 0.999. This method was validated for linearity, accuracy, precision, limit of detection, limit of quantification. The %RSD was found to be <2.0% in all cases and all the validation parameters were found to be within the limits. The proposed methods were suitable for the quantitative determination of Candesartan Cilexetil in bulk drug.

KEYWORDS: Candesartan Cilexetil, UV Spectrophotometer, Acetonitrile, Validation.

INTRODUCTION

Uv Spectrophotometer

UV/Visible Spectrophotometer is an important instrument in analytical chemistry. This technique deals with the study of interaction between electromagnetic radiation and matter.^[1] This method is widely used in pharmaceutical analysis for quantitative, qualitative and structural analysis of a substance in solution.^[2,3,6]

Beer-Lambert's law is the quantitative law which governs spectrophotometric analysis.

Beer-Lambert's law: When a beam of monochromatic light is permitted to pass through a translucent cell containing absorbing medium or material then it is directly proportional to the concentration of the material and the path length of the light through the solution.^[4] Scientifically it is expressed as,

Where,

A = Absorbance or optical density a = Absorptivity (litre.gm⁻¹.cm⁻¹) c = Concentration (gm.lt⁻¹) t = Path length or thickness (1cm)

CANDESARTAN CILEXETIL

Candesartan cilexetil (candesartan) is a medication utilized for treating hypertension. It is an angiotensive receptor blocker (ARB) prodrug which swiftly converts to candesartan (active metabolite), through absorption from the gastrointestinal tract.^[7]

Candesartan Cilexetil, chemically, 1cyclohexyloxycarbonyloxyethyl2-ethoxy-3-[[4-[2-(2Htetrazol-5-yl) phenyl] methyl] benzimidazole-4carboxylate. It is also used to treat Congestive Heart Failure, First Line Agent to Delay Progression of Diabetic Nephropathy.^[8] It is fine white powder and freely Soluble in Methanol, Acetonitrile and Acetone. Several methods have been developed for determination of candesartan cilexetil in pharmaceutical preparation by UV Spectrophotometry, HPTLC and HPLC.^[9,10] The proposed methods were validated in accordance with USP and as per ICH guidelines.

MATERIALS AND METHODS

Materials: Candesartan cilexetil was procured as a gift sample from Mylan Laboratories, Hyderabad, India. Acetonitrile (Qualigens) was used.

Instruments^[5]: UV Spectrophotometer (Shimadzu, Pharmaspec1700), Digital pH meter and Digital weighing balance (MettlerToledo), Volumetric flask, Pipettes and burettes, Beakers (Borosil), Digital ultra sonicator (Fast clean).

VALIDATION

- 1. Solvent used: Acetonitrile
- 2. **Preparation of standard stock solution:** Pure candesartan cilexetil 10mg was accurately weighed and dissolved in 6ml of Acetonitrile in 10ml clean, dry volumetric flask and allowed to sonicate. Finally make up the volume with Acetonitrile.

Selection of Analytical Wavelength

From the standard stock solution, a mixture of dilutions ranging between 4-24µg/ml were prepared and scanned within the wavelength range of 400-200nm on spectrum mode, using diluent as blank. Candesartan Cilexetil shows λ_{max} at 246nm.

Selection of Analytical Concentration Range and Preparation of Calibration Curve

Appropriate aliquots were pipette out from the standard stock solution into a sequence of 10ml volumetric flask. The volume was made up to the mark with acetonitrile to get a set of solutions having the concentrations $4.8,12,16,20,24\mu$ g/ml and the absorbance was determined for the above concentrations at 246nm. A calibration curve was plotted against concentration. The drug obeys Beer-Lambert's law in the concentration range of $4-24\mu$ g/ml and the correlation coefficient was determined.

Precision

The prepared stock solution was consequently diluted to 12μ g/ml and the absorbance was measured at 246nm using UV spectrophotometer against blank (acetonitrile). The method was analyzed on different days and the results were tabulated.

Accuracy (Recovery Studies)

The recovery studies were carried out in triplicate form as per the test method to acquire the concentration of drug equivalent to 50%, 100%, 150%. The average % recovery was calculated.

RESULTS AND DISCUSSION Selection of Wave Length

Scan standard solution in UV spectrophotometer between 200 nm to 400 nm on spectrum mode, using diluent as a blank. Candesartan cilexetil shows λ_{max} at 246nm.

Table-1: Optical Characteristics by Candesartan Cilexetil.

Parameter	UV method
λmax (nm)	246
Beer's law range (µg/ml)	4-24
Molar Extinction Coefficient	0.02
Slope	0.027
Intercept	0.001
Correlation Coefficient	0.999
LOD(µg/ml)	0.048
LOQ(µg/ml)	0.148

Linearity

Table-2: Linearity Data of Candesartan.

S.No	Concentration (mcg/ml)	Absorbance
1	0	0
2	4	0.111
3	8	0.220
4	12	0.335
5	16	0.442
6	20	0.551
7	24	0.660

Fig. 2: Calibration Graph of Candesartan.

Linearity plot

The plot of concentration(X) versus the average peak area(Y) data of candesartan cilexetil is a straight line.

+c

Slope (m) = 0.027Intercept (Y) = 0.001Correlation coefficient (r) = 0.999

Table-4: Data Regarding Accuracy.

Table-3: Data Regarding Precision.Sample No.%As

Precision

% assay was determined.

Sample No.	/0ASSay		
SET	Intraday	Interday	
1	101.54	100.92	
2	101.54	100.61	
3	101.23	100.92	
4	101.23	100.92	
5	100.92	100.92	
Mean	101.29	100.86	
SD	0.259	0.138	
%RSD	0.255	0.136	

Precision was performed on intra-day and inter-day and

Accuracy

The recovery studies were calculated for different set of concentrations such as 50%, 100%, 150%. The average % recovery was calculated.

Concentration	Sample Added	Amount Found	% Recovery	Statistical Analysis
	8	8.07	100.87	Maan 101.04
50	8	8.11	101.38	% PSD 0 200
	8	8.07	100.87	%K3D-0.290
100	12	12.11	100.92	Mean-100.89
	12	12.10	100.83	
	12	12.11	100.92	%KSD-0.03
	16	16.25	101.56	Maan 101 25
150	16	16.22	101.37	Weall-101.55
	16	16.18	101.12	%K3D-0.217

CONCLUSION

In the present investigation, a simple, sensitive, precise and accurate UV Spectrophotometry method was developed for Candesartan Cilexetil in bulk drug. The solvent system used in this method was economical. The %RSD values were within 2.0% and the methods were found to be precise. This method can be used for the routine quantitative determination of Candesartan Cilexetil in bulk drug.

BIBLIOGRAPHY

- Willard, Hobart H, Merritt, Lynne L, Dean J R, John A. Instrumental Methods of Analysis. 5th ed., Von Nostrand Reinhold Company, University of Michigan, 1974.
- 2. Sethi PD. Quantitative analysis of drugs in pharmaceutical formulation. 3rd ed., CBS Publishers and Distributors, 1997; 1-29: 50-64.
 - 3. Sahajwalla CG. A new drug improvement. Volume 141, Marcel Dekker Inc., New York, 2004; 421-426.

- Davidson AG. Ultraviolet-visible absorption Spectrophotometry. In: Beckett AH, Stenlake JB. Practical Pharmaceutical chemistry. 4th ed., CBS Publishers and distributors, New Delhi, 2002; 275-278.
- Skoog, Douglas A, Holler, James F, Crouch, Stanley R. Principles of Instrumental Analysis. 6th ed., Belmont, CA: Thomson Brooks/Cole, 2007; 169–173.
- 6. Williams, A.D: Foye's. Principles of Medicinal Chemistry. 5th ed., 2002.
- 7. Misra P, Dubinskii, Mark A. Ultraviolet Spectroscopy and UV Lasers. New York, 2002.
- 8. Medicinenet.com/candesartan/article.htm#what_is_c andesartan,_and_how_does_it_work_(mechanism_o f_action)?
- Panchumarthy Ravisankar*, Sree Vida V, Durga Nithya P, Srinivasa Babu P. Validated UV Spectrophotometric Method for Quantitative Determination of Candesartan Cilexetil in Bulk and

Pharmaceutical Dosage Form, Scholars Research Library, 2016; 8(9): 252-257.

 Gunjan Kalyani*, Din Bandhu Dinanath Baghel, Chandrashekhar Sahu. Analytical Method Development and Validation for the Estimation of Candesartan by Derivative Spectroscopy (Fourth Order). Int. J. Pharm. Sci. Rev. Res., 2016; 38(1): 171-174.