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1. INTRODUCTION 

Diabetes, also called as diabetes mellitus, is a group of 

metabolic diseases which is characterized by high blood 

glucose level. It may be due to insufficient production of 

insulin, or inability of body to utilize the produced 

insulin or both.
[1]

 Type II diabetes is establishing itself as 

an epidemic of the 21
st
 century and is a severe and 

increasingly prevalent disease.
[2]

 

 

Type II diabetes is a major metabolic disorder affecting 

approximately 194 million people worldwide. This 

number is estimated to reach 366 million by 2030.
[3]

 

Currently used antidiabetic agents, such as PPARc 

agonists, sulphonylurea derivatives, and biguanide and a-

glucosidase inhibitors, produce beneficial effects on type 

II diabetes by effectively increasing insulin secretion or 

decreasing glucose absorption.
[4]

 

 

However, these agents are known to be associated with a 

number of side effects, including hypoglycemia, weight 

gain, gastrointestinal disorders, and lactic acidosis, all of 

which are known to decrease quality of life for type II 

diabetes patients. Under these circumstances, intensive 

efforts have been made to find better and safer oral drugs 

for type II diabetes.
[4]

 

Glucagon-like peptide-1 (GLP-1) is secreted from the gut 

in response to glucose ssabsorption following meal 

ingestion and stimulates insulin secretion from b-cells of 

the pancreas, thereby contributing to maintenance of 

postmeal glycemic control. As GLP-1 in plasma is 

rapidly degraded by the serine protease dipeptidyl 

peptidase IV (DPP-IV), inhibition of DPP-IV is 

emerging as a promising approach for treatment of T2D 

with low risk of hypoglycemia.
[5]

 

 

Actually, clinical proof of concept has already been 

established with DPP-IV inhibitors, which proved to be 

more efficient and safer than conventional antidiabetic 

agents. Based on these clinical findings, a number of 

DPP-4 inhibitors, including Sitagliptin, Vildagliptin, 

Saxagliptin, Alogliptin and Linagliptin have already been 

approved as new valuable agents for treatment of T2D.
[6-

8]
 

 

2. MATERIALS AND METHOD 

A. Dataset 

The molecular structures and biological data used in the 

molecular modeling study consisted of quinoline 

derivatives as DPP-IV inhibitors.
[9]

 Molecules in this 

series have basic structure 3H-imidazo [4, 5-c] 
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ABSTRACT 

Type II diabetes is establishing itself as an epidemic of the 21
st
 century and is a severe and increasingly prevalent 

disease. The present study successfully applied pharmacophore mapping, 3D-QSAR and molecular docking 

analysis to characterize a set of synthesized DPP-IV inhibitors. The selected series of imidazoquinoline derivatives 

included 47 compounds out of which 38 compounds were put in training set and remaining 9 compound were put 

in test set on the basis of diversity using the SYBYL X 2.1.1 software. The pharmacophore models were derived 

using GALAHAD module of SYBYL X 2.1.1 software. The optimal pharmacophore model contains nine 

pharmacophore features. The models include four hydrophobes, three hydrogen bond acceptors and two positive 

nitrogen centres. Successful CoMFA models were generated from imidazoquinoline derivatives which displayed a 

cross-validated correlation coefficient (Q
2
) of 0.526 and a non-cross related coefficient (R

2
) of 0.946. Moreover the 

contour maps derived from CoMFA models provided enough information to understand the SAR and to identify 

the structural features influencing DPP-IV inhibitory activity. The docking studies of the eight designed 

compounds were performed using the SURFLEX DOCK module of SYBYL X 2.1.1 software. The binding mode 

of designed compounds at the active site of DPP-IV enzyme (PDB ID. 4DSA) was explored and hydrogen-bonding 

interactions were observed between the inhibitor and the target.  
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quinoline-4(5H)-ones. Structure and biological activity 

of values for DPP-IV inhibitors for all molecules are 

given in the Table 1, 2 and 3. The compounds were 

divided into test and training set on the basis of diversity 

of compounds. 

 

Table 1: IC50 and pIC50 Values of Compounds 2,2a-2d.
[9]

 

N

N

N

N

NH2

R

Cl

O

 
S. NO Compound R IC50 nm pIC50 

1 2 H 418 6.3788 

2 2a Me 103 6.9872 

3 2b Et 400 6.3979 

4 2c nPr 3400 5.4685 

5 2d Bn 10000 5 

 

Table 2: IC50 and pIC50 Values of Compounds 8a-8z.
[9]

 

MeN

N

N

N

NH2

Cl

O

R

6

7

8

9

 
S. NO Compound R IC50 nm pIC50 

1 8a 6-OMe 660 6.1805 

2 8b 6-CO2Me 271 6.567 

3 8c 6-CO2H 72 7.1427 

4 8d 7-F 66 7.1805 

5 8e 7-Ph 72 7.1427 

6 8f 7-Me 340 6.4685 

7 8g 7-OMe 66 7.1805 

8 8h 7-CH2OMe 17 7.7696 

9 8i 7-CH2OH 22 7.6576 

10 8j 7-CO2Me 16 7.7959 

11 8k 7-CONH2 12 7.9208 

12 8l 7-CONMe2 10 8 

13 8m 7-CN 6.3 8.2007 

14 8n 7-CO2H 1.6 8.7959 

15 8o 7-CH2CO2H 3.8 8.4202 

16 8p 8-OMe 90 7.0458 

17 8q 8-Me 94 7.0269 

18 8r 8-F 56 7.2518 
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19 8s 8-OCHF2 60 7.2218 

20 8t 8-CO2Me 21 7.677 

21 8u 8-CONH2 14 7.8539 

22 8v 8-CONMe2 13 7.8861 

23 8w 8-CO2H 5.8 8.2366 

24 8x 8-CH2CO2H 3.5 8.4559 

25 8y 9-CO2H 54 7.2676 

26 8z 9-CH2CO2H 17 7.7696 

 

Table 3: IC50 and pIC50 Values of Compounds 24a-24n, 28 and 29.
[9]

 

MeN

N

N

N

R

NH2

O

X

7

8

3

 
S. NO Compound X R IC50 nm pIC50 

1 24a 8-CO2H Benzyl 64 7.1938 

2 24b 8-CO2H 2-Methylbenzyl 11 7.9586 

3 24c 8-CO2H 2-Methoxybenzyl 38 7.4202 

4 24d 8-CO2H 2-Fluorobenzyl 160 6.7959 

5 24e 8-CO2H 3-Chlorobenzyl 110 6.9586 

6 24f 8-CO2H 4-Chlorobenzyl 10000 5 

7 24g 8-CO2H 3-Methoxybenzyl 150 6.8239 

8 24h 8-CO2H 4-Methoxybenzyl 6900 5.1612 

9 24i 8-CO2H 2-Chlorophenethyl 3500 5.4559 

10 24j 8-CO2H Cyclohexylmethyl 8900 5.0506 

11 24k 8-CO2H Methyylbut-2-enyl 51 7.2924 

12 24l 8-CO2H But-2-ynyl 90 7.0458 

13 24m 8-CO2H 2,5-Dichlorobenzyl 25 7.6021 

14 24n 8-CO2H 2-Chloro-5-fluorobenzyl 4.8 8.3188 

15 28 7-CO2H 2-Chloro-5-fluorobenzyl 0.48 9.3188 

16 29 7-CO2H 5-Fluoro-2-methylbenzyl 0.55 9.2596 

 

B. Software 
The chemical structures of all the molecules were 

sketched using Chem Draw Ultra 7.0. All computational 

studies were performed using Sybyl X 2.1.1 software.
[10]

 

 

C. Pharmacophore Modeling 

Genetic algorithm with linear assignment of 

hypermolecular alignment of datasets (GALAHAD) 

module of SYBYL X 2.1.1 software was used to 

generate the pharmacophore models. The selected series 

included 47 compounds out of which 38 compounds 

were put in training set and remaining 9 compound were 

put in test set on the basis of diversity using SYBYL X 

2.1.1 software. All the compounds in the training set 

were prepared by the following procedures: bond orders 

of structure were checked, additions of hydrogen atoms 

were done and energy minimization was done using the 

MMFF94 force-field. GALAHAD was run for 50 

generations with a population size of 100. The CoMFA 

molecular modelling studies were performed using 

TRIPOS module of SYBYL-X 2.1.1 software. Five 

pharmacophore models were generated from 9 

compounds in test set.  

 

D. CoMFA 

The Comparative molecular field analysis molecular 

modelling studies were performed using TRIPOS 

module of SYBYL-X 2.1.1 software.
[10]

 The steric and 

electrostatic field effects were calculated using the 

TRIPOS force field. The CoMFA models were 

developed using 38 compounds as training set, and 

validated using 9 compounds as test set (Table 7 and 8). 

The compound set was randomly divided into a training 

set and a test set. The range of pIC50 values for both the 

training and test set spans at least three orders of 
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magnitude, and in addition the biological activity values 

are well distributed over the entire range. 

 

Five different kinds of partial charges are considered:  

(1) Gasteige charges 

(2) Gast-Huck charges 

(3) Delre charges 

(4) Pullman charges 

(5) Formal charges and 

(6) MMFF94 charges 

 

E. Molecular Docking 

The novel compounds designed were docked using 

SURFLEX DOCK module of SYBYL X 2.1.1 

software
[10]

 to predict their DPP-IV inhibitory activity. 

The crystal structure of DPP-IV receptor (3.28 Å, 

4DSA.pdb) shown in fig. 1 was selected as the docking 

template. The ligand 4-[[{[(2R)-2-amino-3-(2,4,5-

trifluorophenyl)propyl]sulfamoyl} amino) methyl] 

benzenesulfonamide (C1) was extracted, crystallographic 

water molecules in the structure were removed, hydrogen 

atoms of modeled structure were added to define the 

correct configuration. After extracting the binding 

ligand, the structure of DPP-IV receptor was used for 

docking and the docking score was calculated. The 

default parameters, as implemented in the SYBYL X-

2.1.1 software, were used. 

 

 
Figure 1: Biological Assembly Image for 4DSA 

(Crystal Structure of DPP-IV with Compound C1). 

 

3. RESULT AND DISCUSSION 

A. Pharmacophore Modeling 

A pharmacophore is an ensemble of steric and electronic 

features that are necessary for a ligand to provide optmal 

molecular interaction with a specific biological target 

and to trigger (or block) its biological response.
[11]

 

 

In principle, a pharmacophore model could be simulated 

by deriving the common essential structural 

characteristics responsible for their bioactivities based on 

molecular alignment of a known set of bioactive ligands. 

The pharmacophore model generated could then be 

applied to virtually screen a compound database for 

chemically diverse molecules that shared similar 

structural features and their relative spatial arrangement 

defined in the pharmacophore model. 

 

The number of hits column indicates that all models hit 

all ligands in the dataset and each of them has seven 

features in it. Pareto rank indicates that no model is more 

or less superior to each another.
[12]

 

 

A series of imidzoquinoline derivatives were taken from 

the literature for the pharmacophore studies. The selected 

series of imidazoquinoline derivatives included 47 

compounds out of which 38 compounds were put in 

training set and remaining 9 compound were put in test 

set on the basis of diversity using the SYBYL X 2.1.1 

software. Results are given in Fig. 34 and 35 for each 

GALAHAD generated pharmacophore model for 

training set and test set compounds. 

 

The energy term of computer-generate pharmacophore 

model 1was 49.54kcal mol, which designates the total 

energy (using the Tripos force field) of all molecules. 

Meanwhile, the values of sterics, H-bond and 

MOL_QRY were computed as 4564.1001, 889.5 and 

170.21 respectively, in Model 1. In the GALAHAD 

algorithm, sterics is defined as the overall steric 

similarity among ligand conformers, H-bond as the 

overall pharmacophoric similarity among ligand 

conformers, and MOL_QRY represents the agreement 

between the query and the pharmacophoric features of 

the target ligands as a group.
[12]

 

 

In general, a good pharmacophore model should have a 

maximized steric consensus, maximized pharmacophore 

consensus, and minimized energy. As shown in Table 9, 

the pharmacophore Model 1 had the lowest value for 

energy, in comparison to the other nine models. Model 1 

was therefore selected as the final pharmacophore model 

for imidazoquinoline derivatives. 
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Table 9: The Parameter Values for Each Pharmacophore Model of Training Set.  

S.n Name Specificity Hits Feats Pareto Energy Sterics H-bond Mol Qry 

1 1 2.86 0 9 0 49.54 4564.1001 889.5 170.21 

2 2 2.859 0 9 0 6724868928 4734.3999 883.9 192.54 

3 3 2.86 0 9 0 56.92 4808.2998 838.2 180.89 

4 4 2.859 0 9 0 435172.406 4712.1001 880.5 181.81 

5 5 2.861 0 9 0 1066860224 4806.2998 871.4 176.76 

6 6 2.861 0 9 0 1150482432 4739.2998 885.6 159.1 

7 7 2.86 0 9 0 52.84 4719.1001 856.2 168.95 

8 8 2.859 0 9 0 3157616128 4746.1001 885.1 152.64 

9 9 2.859 0 9 0 52.49 4662.1001 840.8 144.13 

10 10 2.859 0 9 0 52.34 4672.7002 878.7 165.53 

 

 
Figure 2: Pharmacophore model 1 and molecular alignment of training set compounds (Table 7). 

 

In general, a good pharmacophore model should have a 

maximized steric consensus, maximized pharmacophore 

consensus, and minimized energy. As shown in Table 9, 

the pharmacophore Model 1 had the lowest value for 

energy, in comparison to the other nine models. Model 1 

was therefore selected as the final pharmacophore model 

for imidazoquinoline derivatives. As illustrated in Fig. 2, 

the GALAHAD-generated pharmacophore Model 1 for 

most active compound in the series (compound 28) 

contained three H-bond acceptor features (AA_1, AA_2 

and AA_3), four hydrophobic centres (HY_4, HY_5, 

HY_6 and HY_7) and two positive nitrogen centres 

(NP_8 and NP_9). For all the 9 compounds in the test set 

GALAHAD was run for 50 generations with a 

population size of 55. Five pharmacophore models were 

generated from 9 compounds in test set. Table 10 shows 

the predictable results for each model. Model 003 with 

the lowest value of energy (63.43), was considered to be 

the best model.  

 

Table 10: The Parameter Values for Each Pharmacophore Model of Test Set. 

S.n Name Specificity Hits Feats Pareto Energy Sterics H-bond Mol Qry 

1 1 2.858 0 9 0 101014 5255 907.9 167.07 

2 2 2.858 0 9 0 91 4707.2002 864.2 170.96 

3 3 2.858 0 9 0 63.43 5147.2002 859.2 153.48 

4 4 2.858 0 9 0 863.54 5084.8999 902.6 153.26 

5 5 2.858 0 9 0 1898.9399 4912.3999 896.1 155.61 
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Figure 3: Pharmacophore model 3 and molecular alignment of test set compounds (Table 8). 

 

Generated pharmacophore model shown in fig. 3 

contained three H-bond acceptor features (green), four 

hydrophobic features (cyan) and two positive nitrogen 

centres (red). 

 

B. CoMFA 

CoMFA models of 47 imidazoquinoline analogues were 

divided into training set of 38 molecules and test set of 9 

molecules the basis of diversity using the SYBYL X 

2.1.1 software. Predictive power of resulting model was 

evaluated using a test set of 9 molecules. The statistical 

parameters associated with CoMFA models of this series 

are listed in table 11, 12 and 13.A 3D QSAR model is 

considered statistically significant if its Q
2
 value is above 

0.3 although a Q
2
 value above 0.4 to 0.5 is naturally 

preferable. Q
2
 value for all the charges were above 0.4 

except for Gast-Huck charge, which was excluded. 

Formal charge with a Q
2
 value of 0.526 was considered 

the best model. The CoMFA models derived from the 38 

training compounds for formal charges from using both 

steric and electrostatic fields gave a cross-validated 

correlation coefficient (Q
2
) of 0.526. A non-cross related 

coefficient (R
2
) of 0.946 with a low standard error 

estimate (SEE) of 0.265618 was obtained. The 

contributions of steric and electrostatic fields were 

66.76% and 0% respectively. Whereas cross-validated 

correlation coefficient (Q
2
), non-cross related coefficient 

(R
2
) and standard error estimate (SEE) for MMFF94 

charge was found to be 0.494, 0.948 and 0.27334. The 

contributions of steric and electrostatic fields were 

18.47% and 12.08% respectively. 

 

Table 11: Summary of CoMFA analyses results. 

S.no 
Model 

name 
Q

2
 R

2
 Std. error 

Steric contribution % Electrostatic contribution % 

Steric bulk 

desirable 

Steric bulk 

undesireable 

Positive charge 

desireable 

Negative charge 

desireable 

1 K2 0.473 0.898 0.372548 12.20 6.92 29.02 31.83 

2 K4 0.266 0.484 0.801739 - - - - 

3 K6 0.486 0.909 0.351 20.52 10.46 39.29 9.70 

4 K8 0.461 0.951 0.265618 23.15 31.31 4.78 20.75 

5 K10 0.526 0.946 0.265618 66.76 13.23 0 0 

6 K12 0.494 0.948 0.27334 18.47 28.39 12.08 20.23 

*K2- Gasteiger charge, K4-Gast Huck charge, K6- Delre charge, K8-Pullman charge, K10-Formal charge, K12-

MMFF94. 

 

Table 12: The experimental pIC50 values and predicted pIC50 values of the training set compounds. 

S.no 
Comp. 

name 

Experimental 

pIC50 

Predicted pIC50 

Gasteiger Delre Pullman Formal MMFF94 

1 2 6.3788 6.6093 6.5288 6.5454 6.1754 6.5583 

2 2a 6.9872 6.6296 6.5915 6.6789 6.776 6.7009 

3 2b 6.3979 6.2592 6.1 6.1313 6.2872 6.1376 

4 2c 5.4685 5.941 5.7176 5.5457 5.4107 5.5405 

5 2d 5 5.2887 5.2646 4.973 5.1423 4.9765 

6 8c 7.1427 7.2841 7.4114 7.2926 7.5226 7.3274 

7 8d 7.1805 7.1453 7.1009 7.1072 6.8912 7.1027 

8 8e 7.1427 7.1591 7.2509 7.2354 7.1907 7.2637 

9 8f 6.4685 6.9023 7.0293 6.8792 7.068 6.9793 

10 8g 7.1805 7.3104 7.5763 7.3132 7.4429 7.3432 

11 8h 7.7696 7.5993 7.4603 7.761 7.8485 7.717 

12 8i 7.6576 7.5839 7.7689 7.5477 7.2464 7.5102 
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13 8j 7.7959 7.9971 7.8971 7.8947 7.7758 7.8556 

14 8k 7.9208 8.1443 7.8463 8.1303 8.0655 8.098 

15 8l 8 7.7949 7.9989 7.5023 8.0583 7.771 

16 8m 8.2007 7.6003 7.5092 8.0953 8.0788 8.019 

17 8n 8.7959 8.5679 8.4846 8.7633 8.4654 8.8376 

18 8o 8.4202 8.1521 8.3531 8.3234 8.2317 8.3104 

19 8p 7.0458 6.7708 7.1085 6.9162 7.0255 6.8429 

20 8q 7.0269 6.9014 7.0438 7.0768 7.4029 7.6523 

21 8s 7.2218 7.3711 7.4035 7.138 7.3442 7.0863 

22 8t 7.677 7.665 7.7693 7.5665 7.5795 7.5899 

23 8v 7.8861 7.7737 

7.7737 
8.0262 7.7475 7.9861 7.7625 

24 8w 8.2366 7.4372 7.5786 7.537 7.6041 7.6147 

25 8x 8.4559 8.7956 8.5106 8.5585 8.32 8.4759 

26 24b 7.9586 7.1607 7.086 7.4695 7.9202 7.501 

27 24c 7.4202 7.7069 7.6937 7.7745 7.4107 7.7978 

28 24d 6.7959 7.6057 7.563 7.4736 7.5527 7.5556 

29 24e 6.9586 6.9427 6.8267 6.955 6.9448 7.0098 

30 24f 5 5.803 5.2444 5.2141 5.0918 5.2595 

31 24g 6.8239 6.734 6.7687 7.0808 6.6293 7.0117 

32 24h 5.1612 4.7353 4.9067 4.9925 5.1046 4.9489 

33 24j 5.0506 4.917 4.9367 5.0314 5.0445 5.0093 

34 24l 7.0458 7.0027 7.0619 7.1154 7.0347 7.1037 

35 24m 7.6021 7.8678 8.0481 7.7921 7.4803 7.7637 

36 24n 8.3188 8.3087 8.4294 8.2341 8.5027 8.2084 

37 28 9.3188 9.441 9.3432 9.4571 9.3648 9.428 

38 29 9.2596 9.2638 8.9377 9.043 9.1524 9.0933 

 

Table 13: The experimental pIC50 values and predicted pIC50 values of the test set compounds. 

S.no 
Comp. 

name 

Experimental 

pIC50 

Predicted pIC50 

Gasteiger Delre Pullman Formal MMFF94 

1 8a 6.1805 7.1108 6.832 6.7039 6.6175 6.8859 

2 8b 6.567 7.6217 7.3365 7.258 6.6128 7.2733 

3 8r 7.2518 6.7035 6.7385 6.6629 6.8681 6.7325 

4 8u 7.8539 7.3851 7.7657 7.4406 8.0051 7.5429 

5 8y 7.2676 9.9709 6.7316 6.931 6.8717 6.9806 

6 8z 7.7696 7.3614 7.8775 7.2467 7.6175 7.2423 

7 24a 7.1938 7.0047 6.8753 6.9705 7.0314 7.0019 

8 24i 5.4559 7.0066 7.4112 7.0517 5.9344 4.2689 

9 24k 7.2924 7.2924 7.2056 7.5044 7.6754 7.4358 

 

CoMFA Contour Maps 

The results obtained from CoMFA indicate that steric 

and electrostatic properties play a major role in inhibition 

activity (Table 11, 12 and 13). The steric interactions are 

represented by green and yellow colored contours while 

electrostatic interactions are represented by red and blue 

colored contours. In steric field, green contour represents 

region where bulky substituent enhances activity, 

whereas yellow contour indicates region where bulky 

substituents decrease the activity. In case of electrostatic 

interactions, the blue contour represents region where 

electropositive groups enhance the activity, while red-

colored region indicates that electronegative groups 

increases the activity.
[12]

  

 

One of the most active compounds in the series 

(compound 28) is shown with CoMFA contour maps of 

steric and electrostatic fields in Figs. 4-8. 

As shown in the CoMFA contour maps of compound 28 

which is the most active compound, the green contour 

was favored around the benzene ring attached to 

quinoline indicates that bulky substituents at the X 

increases activity like COOH, CONH2, CONH2, CN, 

CH2COOH, etc. Sterically unfavorable contour in 

yellow color were found near R in quinoline ring and 

around 3-amino piperidine ring. Thus bulky substituents 

decrease activity. Blue contour near R and quinoline ring 

indicates that substituents with electropositive group 

enhance activity. While red colour on substituent R i.e. 

2-chloro-5-fluorobenzyl indicates that electronegative 

group at this position enhances activity. 
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(a)                                                                                  (b) 

Figure 4: CoMFA contour maps for Gasteiger charge (of Compound 28, Table 7) 

(a) Steric contributions, (b) Electrostatic contributions. 

 

  
(a)                                                                         (b) 

Figure 5: CoMFA contour maps for Delre charge (of Compound 28, Table 7) 

(a) Steric contributions, (b) Electrostatic contributions. 

 

  
(a)                                                            (b) 

Figure 6: CoMFA contour maps for Pullman charge (of Compound 28, Table 7) 

(a) Steric contributions, (b) Electrostatic contributions. 

 

  
(a)                                                           (b) 

Figure 7: CoMFA contour maps for Fromal charge (of Compound 28, Table 7) 

(a) Steric contributions, (b) Electrostatic contributions. 
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(a)                                                                      (b) 

Figure 8: CoMFA contour maps for MMFF94 charge (of Compound 28, Table 7) 

(a) Steric contributions, (b) Electrostatic contributions. 

 

C. Docking 

The DPP-IV structure was utilized in subsequent docking 

experiments without energy minimization. Potency of 

compounds is determined on the basis of their docking 

scores or interaction energies. One compound out of 8 

compounds designed formed active interaction with the 

protein receptor (PDB code: 4DSA) namely compound 

1-8. The most potent imidazoquinoline compound 5(2-(-

Amino-piperidin-1yl)-7-ethoxymethyl- 3-(2-ethyl-

benzyl)-5-methyl-3,5-dihydro-imidazo[4,5-c]quinolin-4-

one) was selected according to its docking scores 6.4314. 

The key residues and hydrogen bonds were labeled. The 

hydrogen bonds are shown by yellow color broken lines 

in fig. 10. 

 

N

N

N

N

NH2

H3C

O

C2H5

C2H5OH2C  
2-(-Amino-piperidin-1yl)-7-ethoxymethyl-3-(2-ethyl-benzyl)-5-methyl-3,5-dihydro-imidazo[4,5-c]quinolin-4-one 

(Compound 5) 

 

Table 14: The Docking Results to DPP-IV Receptor. 

S.no Name Total score Crash Polar 

1 

2-(-Amino-piperidin-1yl)-7-ethoxymethyl-

3-(2-ethyl-benzyl)-5-methyl-3,5-dihydro-

imidazo[4,5-c] quinolin-4-one 

6.4314 -1.8422 2.0116 

 

 
Figure 9: Protomol Structure for DPP-IV receptor (4DSA pdb.). 

http://www.ejpmr.com/


Steffy et al.                                                                      European Journal of Pharmaceutical and Medical Research  

  

www.ejpmr.com 

 

548 

 
Figure 10: Binding mode between compound 5 and active site of DPP-IV (PDB code 4DSA). The receptor is 

showed hydrogen bonding interaction, in which Val546 and Trp629 residues are depicted in blue. 

 

4. CONCLUSION 

The present study successfully applied pharmacophore 

mapping, 3D-QSAR and molecular docking analysis to 

characterize a set of synthesized DPP-IV inhibitors. A 

series of imidzoquinoline derivatives were taken from 

the literature for the pharmacophore and CoMFA studies. 

The selected series of imidazoquinoline derivatives 

included 47 compounds out of which 38 compounds 

were put in training set and remaining 9 compound were 

put in test set on the basis of diversity using the SYBYL 

X 2.1.1 software. The optimal pharmacophore model 

contains nine pharmacophore features. The models 

include four hydrophobes, three hydrogen bond 

acceptors and two positive nitrogen centres. The CoMFA 

models generated both exhibited reliable correlative and 

predictive abilities. Successful CoMFA models were 

generated from imidazoquinoline derivatives which 

displayed a cross-validated correlation coefficient (Q
2
) of 

0.526 and a non-cross related coefficient (R
2
) of 0.946. 

Moreover the contour maps derived from CoMFA 

models provided enough information to understand the 

SAR and to identify the structural features influencing 

DPP-IV inhibitory activity. On the basis of 

pharmacophoric features obtained by pharmacophore 

modeling and steric and electrostatic contributions 

obtained from CoMFA studies eight compounds were 

designed. The docking studies of these eight designed 

compounds were performed using the SURFLEX DOCK 

module of SYBYL X 2.1.1 software. The binding mode 

of designed compounds at the active site of DPP-IV 

enzyme (PDB ID. 4DSA) was explored and hydrogen-

bonding interactions were observed between the inhibitor 

and the target. Docking view of the most active 

compound from the designed compound demonstrated 

the interaction with Val-546 and Trp-629 of 4DSA 

receptor. The information obtained by the detailed 

molecular modeling study provides a methodology for 

predicting the affinity of imidazoquinoline derivatives 

for guiding structural design of novel potent DPP-IV 

inhibitors. The study will serve as a useful guideline for 

designing the novel compounds with significant DPP-IV 

inhibitory activity. 
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