

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

<u>www.ejpmr.com</u>

Research Article ISSN 2394-3211 EJPMR

ANTI HYPERTENSIVE DRUGS FOR PULMONARY ARTERIAL HYPERTENSION (PAH) IN INTERNATIONAL PHARMACOVIGILANCE: DATA MINING STUDY

V. Lavanya*¹, Y. Anil Kumar¹, Konda Ravi Kumar² and K. S. D. V. Surya Kiran¹

*¹Assistant Professor, Department of Pharmacology, Hindu College of Pharmacy, Amaravathi Road, Guntur. A.P, India.

²Professor, Department of Pharmaceutical Chemistry, Hindu College of Pharmacy, Amaravathi Road, Guntur, A.P.

*Corresponding Author: V. Lavanya

Assistant Professor, Department of Pharmacology, Hindu College of Pharmacy, Amaravathi Road, Guntur. A.P. India.

Article Received on 31/01/2019

Article Revised on 20/02/2019

Article Accepted on 12/03/2019

ABSTRACT

Precapillary pulmonary hypertension with a mean pulmonary artery pressure of >25 mm Hg and a normal pulmonary artery wedge pressure of <15mmhg is pulmonary arterial hypertension signs and symptoms of PAH are similar to those of heart & lung conditions. The prevalence of PAH is thought to be range of 15-50 subjects per million population in Europe. Biological factors, chemical factors genetical factors are the confounding risk factors for PAH drug use PAH can be associated with exposure to certain drugs or toxins, particularly to appetite suppressant intake drugs. PAH is a disease of precapillary pulmonary arterial bed, including the medium sized pulmonary arteries & pulmonary arteriols characterized by vascular obliteration widespread endothelial apoptosis result in proliferation of apoptosis resistant endothelial precursor cell & that proliferate & eventually form plexiform lessions PAH has a genetic component. The bone morphogenetic proteins (BMP) are part of the transforming growth factor superfamily (TGF-BETA). The disfunctional pulmonary hypertensive endothelial cell phenotype is characterized by uncontrolled proliferation increased production of vasoconstrictor mediators such as endothelin expression of 5-lipoxygenase & decreased synthesis of prostacyclin CCB_s, ERA_s,PD5 inhibitors, guanylate cyclase stimulators, prostacyclin IP receptors agonists are used for treatment of PAH.

KEYWORDS:

INTRODUCTION

Pulmonary arterial hypertension (PAH) is defined by right-heart catheterization (RHC) showing precapillary pulmonary hypertension with a mean pulmonary artery pressure (mPAP) of >25 mmHg and a normal pulmonary artery wedge pressure (PCWP) of <15 mmHg.^[1]

SIGNS

Many of the signs and symptoms of PAH are similar to those of other heart and lung conditions. These symptoms may include shortness of breath, dizziness or fainting, racing pulse or heart palpitations, fatigue, weakness, chest pain and cough which makes it difficult to notice abdominal swelling, or swelling of the arms, legs, or ankles blue or chalky skin, especially at the fingertips.

MATERIALS AND METHODS REASONS

Sometimes doctors can't find a reason for high blood pressure in the lungs. In that case, the condition is called idiopathic pulmonary hypertension. Genes may play a role in why some people get it. In other cases, another condition causing the problem. Any of these illnesses can lead to high blood pressure.

EPIDEMEOLOGY

The annual rate of PAH has been estimated to be 2.4 cases per million people per year in France and 7.1~7.6 cases per million population per year in Scotland.^{2,3} The prevalence of PAH is 5~25 cases per million people in France and 26~52 cases per million population in Scotland. Therefore, the prevalence of PAH is thought to be in the range 15-50 subjects per million population in Europe. In the French registry, 39.2% of patients diagnosed with PAH had IPAH and 3.9% had family history. Besides, 9.5% had anorexigen exposure, 15.3% had CTD (mainly SSc), 6.2% had HIV infection, 10.4% had portal hypertension, and 11.3% had CHD. In the REVEAL registry conducted in US, half of enrolled patients (50.7%) presented with APAH and 46.2% were IPAH In the subgroup of APAH, CTD, CHD, portal hypertension, drugs/toxins and HIV infection corresponded to 49.9, 19.5, 10.6, 10.5, and 4.0% of the people, respectively.^[6-11]

RISK FACTORS

Anyone can develop PAH. There are a number of risk factors that can make someone more susceptible to this and other heart and lung conditions, such as The mean age at presentation was 36 ± 15 years and the majority of the patients were females.

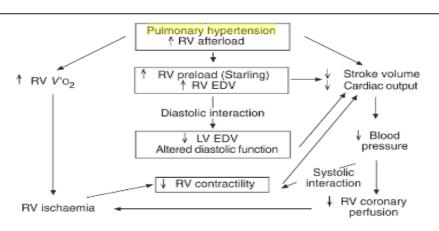
BIOLOGICAL FACTORS

Smooth muscle contraction occurs by influx of calcium either through voltage gated ion channels, Ionositol 1, 4, 5-tri phosphate (IP3) mediated receptors on sarcoplasmic endoplasmic reticulum or by Phosphokinase c (PKC). When a ligand binds to GPCR receptor it activates phospholipase C, which converts ionositol 4, 5 bis phosphate (PIP2) to IP3. IP3 binds to IP3 receptors thus causing efflux of calcium into endoplasm. Also PLC activates DAG, which activates PKC thus causing influx of calcium into endoplasm. Prostaglandins act on prostanoid receptors which are kinase type receptors activate PLC thus activating DAG, and causing calcium influx. Calcium acts on calmodulin thus activating mvosin light chain kinases (MLCK) which phosphorylates myosin thus actin-myosin filaments bind causing contraction.

CHEMICAL FACTORS

Cellular and molecular mechanisms responsible for the pathobiology of PAH. This summary aims to present the

current state of our understanding of some of the key mechanisms. We also indicate further areas and directions of research and suggest novel approaches to therapy.


GENETICAL FACTORS

Pulmonary arterial hypertension may be heritable (HPAH), idiopathic, or associated with drug or toxin exposures (fenfluramine derivatives or toxic oil syndrome), or other medical conditions, including connective tissue diseases, human immunodeficiency virus infection, congenital heart disease, and portal hypertension bone morphogenetic protein receptor type 2 (BMPR2) was identified following linkage analysis as the gene responsible for more than 70% of HPAH and approximately 20% of IPAH cases. Two further receptor members of the transforming growth factor (TGF)- β cell signaling super family are also recognized as uncommon causes of HPAH. Heterozygous mutations in activin-like kinase-type 1 (ALK1) and endoglin (ENG) cause hereditary hemorrhagic telangiectasia (HHT) and may rarely lead directly to the development of PAH.^[12]

Genes	Mutation
	ACVRL1 mutation carriers had better hemodynamic status at diagnosis, but none responded to
ALK1	acute vasodilator challenge and they had shorter survival when compared with other patients
	with PAH despite similar use of specific therapies.
	All research conducted in ENGgene have been performed in IPAH or HPAH patients, but the
ENG9 (Endoglin)	study by Pfarr et al described a small number of pathogenic
	mutations in patients with congenital heart disease associated to PAH.
BMPR2	BMPR2and SMAD9. One non-canonical function of BMP signaling regulates biogenesis of a
&	subset of micro RNAs. We have previously shown that this function is abrogated in patients
SMAD9	with HPAH, making it a highly sensitive readout of BMP pathway integrity.
	we identify a Heterozygous F160X CAV1 mutation predicted to generate a C-terminally
CAW (asyachin)	truncated mutant protein in a patient with both PAH and CGL using whole exome sequencing,
CAV(caveolin)	and characterize the properties of CAV1
	Robust gene expression of KCNK3 in healthy and familial PAH patient lungs, but no
KCNK3	quantifiable expression of KCNK9, and demonstrated in functional studies that KCNK9
	minimizes the impact of select KCNK3 mutations when the 2 channel subunits co-assemble.

PATHOPHYSIOLOGY

PATHOPHYSIOLOGY OF PAH

Complications of PAH

- Sudden cardiac death.
- Pleural effusions.
- Gross peripheral oedema.
- Exertional syncope.

- Deteriorating right heart function and right-sided cardiac failure.
- Hepatic congestion and cardiac cirrhosis.
- Gross exertional dyspnoea.
- Problems during childbirth, including sudden death.

TREATMENTS

Tab.2: Classes of drugs.

Classes	Drugs
Class 1	Ambrisentan, bosentan, macitentan
Class 2	Ambrisentan, bosentan, macitentan, riociguat, sildenafil, tadalafil.
Class 3	Ambrisentan, bosentan, epoprostenol, iloprostinhaled, macitentan, riociguat, sildenafil, tedalafil, treprostinil.
Class 4	Epoprostenol, ambrisentan, bosentan, iloprost, inhaled&i.v, macitentan, riociguat, sildenafil, tadalafil, treprostinil.

CLASSES OF TREATMENT

Classes of drugs.

Tab.3: Classes of Treatment

Drugs used for treatment of pulmonary arterial hypertension (group 1)	Comment
Calcium channel blockers	e.g., Amlodipine
	Ambrisentan
Endothelin receptor antagonist	Bosentan
	Macitentan
Phosphodiesterase type 5 inhibitors (no pathway)	Sildenafil
riosphodiesterase type 5 minorors (no paurway)	tadalafil
Guanylate cyclase stimulators (no pathway)	Riociguat
	Epoprostinol (intravenous)
Prostacyclin analogues	Iloprost 9inhaled0
	Treprostinil (subcutaneous)
Prostacyclin ip receptor agonists	Selexipag (oral)

GROUP 1 PAH therapy Tab.4: GROUP 1 PAH therapy

Recommendations for efficacy of specific drug therapy, ballon atrial septostomy, and lung transplantation(group 1) according to who functional class (WHO-FC)

M	× · · · ·	Classes of Recommendation-Level Of Evidence		
Measurement		WHO-FC II	WHO-FO	C III
Calcium channel blockers	I-c ^a	I-c ^a		
Endothelin receptor antagonist	Ambrisentan Bosentan Setaxentan	I-A I-A II _a -C	I-A I-A I-A	$II_a - C$ $II_a - C$ $II_a - C$
Phosphodiesterase type 5	Sildenafil	I-A	I-A	II _a - C
inhibitors	Tadalafil	I-B	I-B	II _a - C
	Beraprost		Ib-B	
	Epoprostinol (intravenous)		I-A	I-A
	Iloprost (inhaled)		I-A	II _a -C
	Iloprost (intravenous)		II _a -C	II _a - C
Protanoids	Treprostenil (subcutaneous)		I-B	II _a - C
	Treprostenil (intravenous)		II _a -C	II _a - C
	Treprostenil (inhaled)		I-B	II _a - C
Initial drugs combination				II _a - C

therapy				
Sequential drugs combination therapy		II _a - C	II _a - B	II _a -B
Balloon arterial septostomy			I-C	I-C
Lung transplantation		I-C	I-C	
The Drugs used for Data mining an	Ambricanten Decenter and N	Jacitorton		

The Drugs used for Data mining are Ambrisentan, Bosentan and Macitentan.

RESULTS AND DISCUSSION

After the pharmacovigilance study the percentage of side effects were decreases compared to previous the study was done from 2002 -2018 in between 2015-1017 the cases was in decreased manner. PAH is a rare disorder of which very little is known. The number of patients suffering from PAH is raising from day to day due to increase in co-morbidity that causes PAH. The mean age was 36 (+or-) 15 years and as we can see most the patients are females. The exact cause is still unknown. Mostly PAH occurs due to genetical mutations with BMPR2 responsible for 70% HPAH & approximately

20% of IPAH cases. BMPR2 mutations cause up regulation/down regulation of mutated micro RNAS which causes abnormal BMP pathway function. We can't rule out only BMPR2 is responsible for PAH but also other genes such ALK1, as ENG9 etc..Chemical/biological factors are secondary to genetical but PAH is not precipitated due to chemical/biological there are very rare cases of irreversible PAH in patients who have been under the treatment of fenfluramine, aminorex, antivirals can cause PAH.

Tab 5: Number of Individual Cases By Age Group (WHO-UMC).

A go group	Ambriser	Ambrisentan		Bosentan		Macitentan	
Age group	Cases	%	Cases	%	Cases	%	
0-27 days	1	0	12	0	5	0	
28days-23months	31	0	447	1	7	0	
2-11years	448	1	642	2	20	0	
12-17years	459	1	292	1	59	0	
18-44years	6328	10	2455	8	1340	11	
45-64years	18587	29	6523	21	3965	34	
65-74years	12296	19	4936	16	3311	28	
>75years	10185	16	4899	16	2736	23	
Not specified	16202	25	10331	34	3850	3	

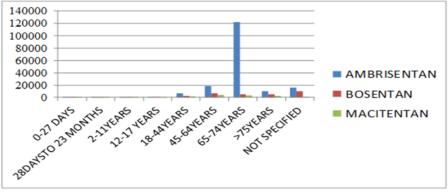


Fig.1: Graph of Individual Cases by Age (WHO-UMC).

Tab 6: Number of Individual Cases by Age (Eudravigilance).

Age Group	AMBRISENTAN		BOSENTAN		MACITEN	NTAN
	Cases	%	Cases	%	Cases	%
0-1 months	7	0.00	10	0.10	4	0.10
2months	17	0.10	254	2.60	8	0.20
3-11years	105	0.50	197	2.00	5	0.10
12-17years	154	0.70	188	1.90	26	0.60
18-64years	8998	43.50	3704	37.90	1916	45.10
65-86years	8255	39.90	3217	32.90	1930	45.40
>85years	728	3.50	338	3.50	185	4.40
Not specified	2434	11.80	1862	19.10	175	4.10

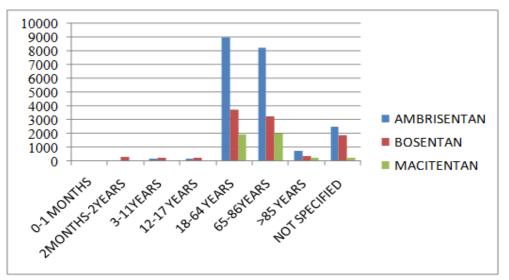


Fig.2: Graph of Individual Cases by Age (Eudravigilance)

Tab.7: Number of Individual Cases By Gender (WHO-UMC)

Condon	Ambrisentan		Bosenta	Macitentan		
Gender	Cases	%	Cases	%	Cases	%
Female	48405	75	15752	52	8690	73
Male	15662	24	5641	18	3021	26
Not specified	470	1	9144	30	117	1

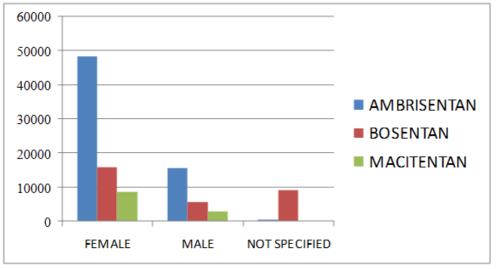


Fig.3: Graph Of Individual Cases By Gender(WHO-UMC).

Tab.8: Number of Individual Cases by Gender (Eudravigilar	Tab.8:	: Number o	of Individual	Cases by	Gender	(Eudravigilanc
---	--------	------------	---------------	----------	--------	----------------

or mutvidual Cases by Ochder (Eduravignance)									
Gender	AMBRISENTAN		BOSE	NTAN	MACITENTAN				
Gender	Cases	%	Cases	%	Cases	%			
Female	13700	66.20	5744	58.80	2980	70.10			
Male	4864	23.50	2390	24.50	1187	27.90			
Not specified	2134	10.30	1636	16.70	83	2.00			

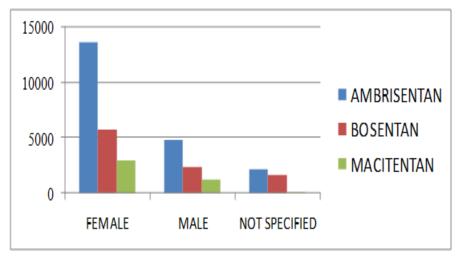


Fig.4: Graph of Individual Cases by Gender (Eudravigilance)

Tab.9: Number of Individual Cases by Year

Veen	Ambri	sentan	Bosen	tan	Macito	entan
Year	Cases	%	Cases	%	Cases	%
2018	1989	3	411	1	-	8
2017	6996	11	2189	7	-	33
2016	5275	8	2197	7	-	24
2015	21917	34	4767	16	-	34
2014	19353	30	4280	14	-	2
2013	1405	2	1621	5	-	0
2012	3085	5	3833	13	-	0
2011	2616	4	7427	4	945	0
2010	844	1	717	2	3849	-
2009	835	1	366	1	2786	-
2008	220	0	466	2	3997	-
2007	0	0	27	0	247	-
2006	2	2	326	1	0	-
2005	-	-	583	2	3	-
2004	-	-	832	3	1	-
2003	-	-	485	2	945	-
2002	-	-	10	0	3849	-

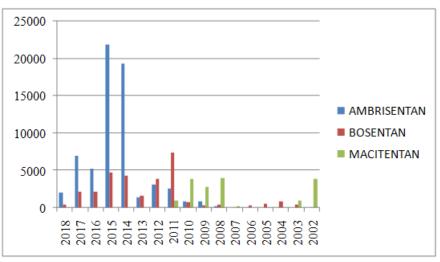


Fig.5: Graph of Individual Cases by Yea.

Side effects	Ambrisentan	Bosentan	Macitentan
Blood and lymphatic system disorders	1436	1152	575
Cardiac disorders	5812	4338	1642
Congenital, familial and genetic disorder	176	166	51
Ear and labyrinth disorder	544	145	167
Endocrine disorder	86	88	40
Eye disorder	1185	360	276
Gastrointestinal disorder	7772	3733	2295
General disorders and administration site condition	25236	15112	5753
HEPATOBILIARY DISORDER	715	1347	247
IMMUNE SYSTEM DISORDER	733	283	178
INFECTIONS AND INFESTATION	10863	5181	2726
Injury, poisoning and procedural complications	4168	2668	1208
Investigations	6824	5433	2177
Metabolism and nutrition disorder	4847	2241	1425
Musculoskeletal and connective tissue disorders	4143	1732	1214
Neoplasms begin, malignantand unspecified (incl cysts and polyps)	960	869	294
Nervous system disorders	10383	3566	2318
Pregnancy, puerperium and perinatal conditions	56	194	22
Product issues	513	232	180
Psychiatric disorders	1784	888	563
Renal and urinary disorders	1644	1253	619
Reproductive system and brest disorders	280	179	116
Respiratory, thoracic and mediastinal disorders	19854	7891	4241
Skin and subcutaneous tissue disorders	2504	1018	696
Social circumstances	390	221	134
Surgical and medical procedures	3787	3888	1582
Vascular disorders	3849	1988	1111

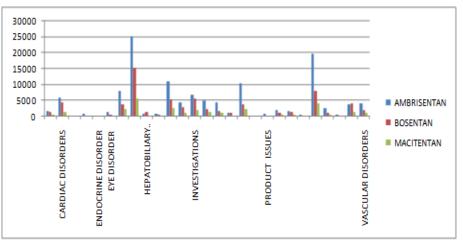


Fig.6: Graph of Individual Cases By Side effects.

REFERENCES

- 1. David Montani, et al.(2013). Pulmonary arterial hypertension.Orphanet J Rare Dis, 2013; 8: 97.
- Humbert M, Sitbon O, Chaouat A, et al. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med, 2006; 173: 1023–1030.
- 3. Peacock AJ, Murphy NF, McMurray JJ, et al. An epidemiological study of pulmonary arterial hypertension. Eur Respir J, 2007; 30: 104–109.
- 4. Badesch DB, Raskob GE, Elliott CG, et al. Pulmonary arterial hypertension: baseline characteristics from the REVEAL Registry. Chest, 2010; 137: 376–387.
- 5. Galie` N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J, 2009; 34: 1219–1263.
- 6. Frachon I, Etienne Y, Jobic Y, et al. Benfluorex and unexplained valvular heart disease: a case-control study. PLoSOne, 2010; 5: e10128.

- Rajiv D.Machado, et al.(2009). Genetics and Genomics of Pulmonary Arterial Hypertension Volume 54, Issue 1, Supplement, 30 June 2009, Pages S32-S42. Journal of the American College of Cardiology.
- Barbara Girerd, et al.(2010)Clinical Outcomes of Pulmonary Arterial Hypertension in Patients Carrying an ACVRL1 (ALK1) Mutation Vol, 181, No. 8 | Apr 15, 2010.
- 9. Guillermo Pousada, Et al.(2016).Mutational and clinical analysis of the ENG gene in patients with pulmonary arterial hypertension. Published online, 2016 Jun 4. Doi.
- Kylie M. Drake, et al. (2013). Correction of Nonsense BMPR2 and SMAD9 Mutations by Ataluren in Pulmonary Arterial Hypertension, Sep 01, 2013; 49(3).
- 11. Han B#1,et al.(2016).Characterization of a caveolin-1 mutation associated with both pulmonary arterial hypertension and congenital generalized lipodystrophy. Traffic, 2016 Dec; 17(12): 1297-1312.
- Michelakis ED, Wilkins MR, Rabinovitch M. Emerging concepts and translational priorities in pulmonary arterial hypertension. Circulation. 2008; 118: 1486–95.