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1. An Introduction to MMPs 

The Matrix metalloproteinases (MMPs) are a large 

family of zinc-dependent endopeptidases that are 

collectively capable of proteolyzing all components of 

the extracellular matrix compartment (ECM).
[1,2]

 They 

were first discovered by Gross and Lapiere
[3] 

when the 

authors described collagenase activity in 

metamorphosing tadpoles. Since then, the number of 

known MMPs as well as their characterized functions 

has risen dramatically.
[4,5]

 Thus, MMPs play a multitude 

of roles in regulating a diverse array of biological 

processes such as embryonic development, tissue 

homeostasis, tumorigenesis, and organ fibrogenesis.
[1,6]

 

 

MMPs collectively known as matrixins are proteinases 

that participate in ECM degradation
[7,8]

 and these are 

increasingly known to be able to cleave a wide variety of 

substrates, which range from cell surface receptors and 

adhesion molecules to growth factors and cytokines. This 

broad spectrum of substrates enables MMPs to be a 

critical player not only in regulating ECM remodeling 

but also in controlling many cell behaviors such as cell 

proliferation, migration, differentiation, angiogenesis, 

and apoptosis.
[9,4] 

MMPs are expressed in both 

developing and adult kidneys, and they are implicated in 

regulating nephron formation and the pathogenesis of 

kidney diseases.
[1]

 In light of their proteolytic potential, 

MMPs are traditionally conceived as antifibrotic players 

in the development and progression of chronic kidney 

diseases (CKD) and end-stage renal disease (ESRD) in 

which renal transplant or some other kind of renal 

replacement therapies are required. 

 

We therefore attempt to highlight the role of MMPs as 

biomarkers in Renal Transplant, their impact on the 

rejection process and therefore longevity of the graft, on 

the therapeutic regimen and on the delayed graft function 

in this mini review. In this present study we included the 

entire positive and the negative studies showing 

association between Renal Transplantation and MMPs 

(Please see Table 1). Using the terms (MMPs & Renal 

Transplantation; MMPs & Renal Allograft Rejection and 

MMPs & Kidney Transplantation); we searched PubMed 

for all reports of original research, with English language 

restriction. We included reports which met the following 

criteria (1) MMPs in Renal Transplantation between 

recipients and donors, (2) MMPs in Renal Allograft 

Rejection, and (3) MMPs in Acute & Chronic Kidney 

Rejection. These criteria were an absolute requirement 

for inclusion of a report in the study. 
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ABSTRACT 

Renal transplantation (RT) is currently the most effective replacement therapy and believed as a boon for patients 

with end-stage renal disease (ESRD). The short-term outcomes of transplant have improved significantly, whereas 

the long term outcomes are still fairly compromised. The role of early acute rejections with their impact on long 

term graft survival has been widely recognized as one of the most important factor. The Matrix metalloproteinases 

(MMPs) are traditionally evolved as antifibrotic players in the development and progression of chronic kidney 

diseases and ESRD in which RT is required. The goal of this review is to highlight the role of MMPs as biomarkers 

in RT; their impact on the rejection process and therefore longevity of the graft; on the therapeutic regimen and on 

the delayed graft function. We found that MMP-1, MMP-2, MMP-7, MMP-9 and MMP-20 have impact on renal 

transplant and allograft rejection. They represent as new mediators involved in acute kidney transplant rejection. 

MMP-1, MMP-7, MMP-9, and MMP-13 represent as potential molecular allograft rejection markers. MMP-9 was 

also found associated with delayed graft function. Complementary therapy of allograft rejection and pre-transplant 

allograft outcome can be predicted due to enhanced allograft survival in mutant allele carriers for MMP-2. 

 

KEYWORDS: Renal transplantation; Allograft rejection; Biomarkers; Delayed Graft Function; Matrix 

metalloproteinases (MMPs). 
 

*Corresponding Author: Prof. Aneesh Srivastava 

Department of Urology & Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India. 

http://www.ejpmr.com/


Srivastava et al.                                                              European Journal of Pharmaceutical and Medical Research  

  

  

www.ejpmr.com 

 

249 

2. MMPs and Kidney Transplantation 

Kidney transplantation provides kidney failure patients 

the best opportunity to live longer and improves their 

quality of lives and is currently the most effective 

replacement therapy for patients with ESRD. Survival 

after renal transplant is better compared with age 

matched individuals remaining on the transplant waiting 

list.
[10,11,12,13]

 During the last decade, renal allograft 

survival rates have increased significantly at 1 year after 

transplant.
[14,15]

 This is related to improvements in tissue 

typing, better understanding of immunology of the 

transplant, the use of more potent immunosuppressive 

regimens, and better clinical management of recipients 

preoperatively and postoperatively.
[16,17] 

 

Whereas the short-term outcomes of transplant have 

improved significantly, the long term outcomes are still 

fairly compromised.
[18,19]

 There are many factors which 

have a significant impact on the overall outcome and the 

role of early acute rejections with their impact on long 

term graft survival has been widely recognized as one of 

the most important. The survey of existing literature 

revealed that MMPs do actually play a critical role 

though it was riddled with some controversies. Their role 

as potential biomarkers during the pre-transplant 

evaluation of the patient is under evaluation. They have 

also been found to have evolving role in delayed graft 

function and complementary therapies in Renal 

transplant. 

 

3. MMPs in Renal Transplant and Allograft 

Rejection 

Acute and chronic allograft rejection remains to be one 

of the crucial impediments in successful renal 

transplantation. Allograft rejection is characterized by 

coordinated infiltration of T cells and macrophages, 

which induce the immune- mediated tissue destruction of 

the allograft, features associated with qualitative and 

quantitative alterations in the ECM.
[20]

 The major 

regulators of ECM turnover are matrix 

metalloproteinases (MMPs), which represent the major 

group of zinc-dependent matrix-degrading proteases. 

Furthermore, MMPs are involved in various pathological 

conditions associated with cell migration, tissue invasion 

by lymphocytes and inflammation.
[8,21]

 In addition, they 

are also involved in the regulation of the immune 

response by degradation and activation of several 

cytokines and chemokines.
[22]

 Few recent studies have 

demonstrated increased expression of MMP levels 

associated with kidney allograft rejection.
[23,24] 

 

Leukocyte invasion and tissue destruction, associated 

with qualitative and quantitative alterations in the ECM 

characterizes acute cellular allograft rejection. MMPs 

that are zinc dependent endoproteinases mainly regulates 

metabolism of ECM proteins. MMP- 2 and MMP-9 are 

basement membrane degrading MMPs. These MMPs 

also facilitate tissue invasion of leukocytes and MMP-2 

exerts a direct pro-inflammatory effect upon glomerular 

mesangial cells. 

Alterations in the extracellular matrix compartment and 

changes in the proliferation rates of various cell types 

lead to chronic renal allograft rejection.
[25]

 Metzincin 

super family of metallo-endopeptidases, including matrix 

metalloproteinases (MMPs) controls these features.
[26,27] 

 

While rates of acute rejection (AR) continue to decrease, 

it remains the strongest predictor of long-term allograft 

survival.
[28,29,30,31and32]

 Better understanding of factors 

predicting AR may contribute to more individualized 

patient care. Environmental factors associated with AR 

have been evaluated in the past.
[33,34and35]

 Similarly, 

literature discussing genetic predictors of AR has 

emerged in recent years. Indirect evidence that AR might 

indeed be associated with genetic factors come from 

expression studies demonstrating that gene expression 

profiles between rejecting and non-rejecting kidneys are 

different.
[36,37] 

 

It therefore appears that, the study of the role of MMPs 

in transplant rejection process may also lead to novel 

approaches in the therapy of rejection processes. 

 

4. Members of the Matrixin Family 

To date, 28 MMPs have been found in humans
[1]

, who 

share a large amount of common structural and 

functional similarities, however, differ in their substrate 

specificities.
[38]

 Matrixins are also found in Hydra
[39]

 sea 

urchin,
[40]

 and Arabidopsis.
[41]

 The sequence homology 

with collagenase 1 (MMP-1), the cysteine switch motif 

PRCGXPD in the propeptide that maintains MMPs in 

their zymogen form (proMMP), and the zinc-binding 

motif HEXGHXXGXXH in the catalytic domain are the 

signatures used to assign proteinases to this family. 

MMP-23 is the exception, which lacks the cysteine 

switch motif, but its amino acid sequence of the catalytic 

domain is related to MMP-1. On the basis of substrate 

specificity, sequence similarity, and domain 

organization, vertebrate MMPs can be divided into six 

groups (collagenases, gelatinases, stromelysins, 

matrilysins, membrane type, and other).
[42]

 (See Table1). 

 

4.1. Collagenases 

Collagenases have ability to cleave interstitial collagens 

I, II, and III at a specific site three-fourths from the N-

terminus. Theses enzymes can also digest a number of 

other ECM and non-ECM molecules. Several MMPs like 

MMP-1, MMP-8, MMP-13, and MMP-18 (Xenopus) are 

in this group. 

 

MMP-1 and MMP-13 is from collagenases I and 

collagenases III respectively and are located on 

chromosome 11q22.3.MMP-1 and MMP-13 from this 

group is related to renal transplant and allograft rejection 

episodes. MMP-1 was increased in patients with acute 

rejection compared with those with stable graft function 

and healthy donors.
[43]

 Likewise, in a study renal 

transplant recipient groups had higher MMP-13 levels 

than healthy group.
[44]

 More positively and negatively 
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associated studies of MMP-1 and 13 with renal 

transplant are presented in table 2. 

 

Previous in vitro studies regarding the effect of 

Cyclosporine A (CsA) on MMP production gave variant 

findings
[45, 46,47,48&49]

 The study by Emingil et al. 2010
[44]

 

investigated MMP-13 levels in patients under different 

immunosuppressive therapies for the first time. In 

conclusion, the results of the study indicated that CsA 

and Tacrolimus therapy do not have a significant effect 

on MMP-13 levels. These results showed that CsA and 

tacrolimus therapy do not have a significant effect on 

MMP-13 levels. On the other hand, Emingil et al. 

2010
[44]

 have recently found that tacrolimus could 

slightly but significantly elevate the serum level of 

MMP-8.
[50]

 It seems that tacrolimus can in vivo up-

regulate the systemic serum MMP-8 level and seemingly 

strengthen the defensive process.
[51,52,53&54]

 Ong et al. 

2016
[55]

, in their study found that the effect of MMP-1 

gene polymorphisms on NODAT (New-onset diabetes 

after transplantation) in renal transplant patients were 

significantly high after use of Tacrolimus. They also 

showed that Tacrolimus elevated the serum MMP-1 level 

and can be the risk factor for NODAT in renal transplant 

patients.
[56] 

 

4.2. Gelatinases 

Gelatinase A (MMP-2) and gelatinase B (MMP-9) 

belong to this group. They readily digest the denatured 

collagens, gelatins. These enzymes have three repeats of 

a type II fibronectin domain inserted in the catalytic 

domain, which bind to gelatin, collagens, and laminin.
[57]

 

MMP-2 digests type I, II, and III collagens.
[58,59] 

 

4.2.1. MMP-9 

MMP-9 is among the biggest members of the MMP 

family described so far. It is the major structural 

component of basement membrane.
[60]

 MMP-9 of the 

gelatinases subfamily of MMPs has been widely studied 

in renal transplant models for acute and chronic allograft 

rejection.
[61,62]

 MMP-9 (gelatinase B) degrades collagen 

Types IV and V.
[63]

 In the kidney, collagen Type IV is 

present in basal membranes, whereas fibronectin, 

laminin and collagen Type V constitute the 

tubulointerstitial matrix.
[63]

 The MMP-9 gene located on 

chromosome 20q11-q13 encodes the 92-kDa collagenase 

IV. In the coding region of the MMP-9 gene, 836A>G in 

exon 6 (rs17576, Gln279Arg), 1721G>C in exon 10 

(rs2250889, Pro574Arg) and 2003G>A in exon 12 

(rs17577, Arg668Gln), resulting in missense amino acid 

substitution and thus influencing the substrate and 

inhibitor binding capacity.
[64,65]

 The 836A>G 

polymorphism in exon 6 of MMP-9, commonly referred 

to as Q279R, occurs in the coding region within the 

fibronectin Type II domains that play important roles in 

substrate binding.
[66]

 The 1721C>G and 2003G>A 

polymorphisms, commonly referred to as P574R and 

R668Q, respectively, are also located in the coding 

region of the gene, which are in the hemopexin domain 

and are thought to affect both substrate and inhibitor 

binding.
[67]

 Therefore, these polymorphisms potentially 

alter the protein structure of MMP- 9 and may have some 

functional relevance and affect an individual's 

susceptibility to allograft rejection. 

 

The molecular epidemiologic study by Singh et al., 

2010
[68]

 examined the mutant allele carriers (GA+AA) 

for MMP-9 (2003G>A) SNP in exon 12. The study 

revealed that this polymorphism was significantly 

associated with reduced risk for allograft rejection and 

suggested that the mutant allele carriers for the 

polymorphism had a beneficial effect and thus, reduced 

susceptibility for allograft rejection in North Indian 

cohort of renal transplant recipients. This could serve as 

an ideal marker to predict pre-transplant allograft 

outcome. The significantly reduced risk for allograft 

rejection inferred by mutant allele carriers (GA+AA) for 

MMP-9 2003G>A in exon 12, suggested that substitution 

of arginine by glutamine may have resulted in reduced 

substrate and inhibitor binding and, therefore, reduced 

MMP-9 expression subsequently resulting in reduced 

proteolytic cleavage of basement membrane, the major 

cause of allograft rejection. MMP-9, have been most 

widely associated with allograft rejection, suggesting a 

significantly increased gelatinase expression at the time 

of rejection. Recently, MMP-9 has been suggested to 

play a critical role in the development of tissue 

remodeling and fibrosis in the renal allograft.
[62]

 The 

distribution of MMPs on the basis of antibody-mediated 

and cellular rejection suggested a significantly increased 

risk for cellular rejection in rejecters with variant allele 

for MMP9 1721C>G in exon 10.
[68]

 These, findings in 

the study demonstrated enhanced allograft survival in 

mutant allele carriers for MMP-9 2003G>A which may 

offer an opportunity to predict pre-transplant allograft 

outcome and subsequently be used in complementary 

therapy of allograft rejection.
[68] 

 

In another landmark study by Ermolli et al. 2003,
[69]

 

MMP-9 showed a small but significant increase during 

the rejection process and appeared to represent as a new 

mediators involved in acute kidney transplant rejection. 

Rödder et al. 2010
[70] 

in their study represented MMP-9 

as potential molecular AR markers. With regards to the 

delayed graft function, another studies on MMP9 by 

Turunen et al. 2015
[71]

 and Kamińska et al. 2018
[72]

 have 

shown positive association. For some more studies 

between MMP-9 and renal transplant please see table 2. 

 

4.2.2. MMP-2 

MMP-2 of the gelatinases subfamily of MMPs have been 

widely studied in renal transplant models for acute and 

chronic allograft rejection.
[61,62]

 MMP-2 (gelatinase A) 

predominantly degrades fibronectin and laminin.
[63]

 The 

MMP-2 gene encoding 72-kDa collagenase IV is located 

on chromosome 16q21. MMP-2 (−735 C>T) transition 

located at a core recognition sequence of Sp1 (CCACC 

box) leads to a strikingly low promoter activity due to 

the abolishment of the Sp1 binding site.
[73]

 MMP-2 has 

been suggested in increasing gelatinase expression at the 
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time of rejection. It has a critical role in the development 

of tissue remodeling and fibrosis in the renal allograft.
[62]

 

In the study by Singh et al., 2010
[68]

 the mutant allele 

carriers CT+TT for MMP-2 (−735C>T) SNP was 

associated significantly with reduced risk for allograft 

rejection, suggested that T alleles may be associated with 

reduced MMP-2 expression. MMP-2 (−735C>T) 

polymorphism had reduced susceptibility for allograft 

rejection in North Indian cohort of renal transplant 

recipients, a beneficial effect and could serve as an ideal 

marker to predict pre-transplant allograft outcome.
[68]

 

The similar findings were also reported by Berthier et al. 

2006
[74]

 which suggested increased MMP2 levels in 

rejected allograft. 

 

Complementary therapy of allograft rejection and pre-

transplant allograft outcome can be predicted due to 

enhanced allograft survival in mutant allele carriers for 

MMP-2 (−735C>T).
[68]

 A weak but significant positive 

correlation was found between increasing Renal 

Transplant Recipient's age and plasma MMP-2.
[75]

 MMP-

2 is vital for the patient's condition after renal 

transplantation. The MMP-2 level was found associated 

with post transplant duration in the transplant recipients 

and may be critical for graft survival
[76]

 (See Table 2). 

 

4.3. Stromelysins 

Stromelysin 1 (MMP-3) and Stromelysin 2 (MMP-10) 

both have similar substrate specificities, but in general 

MMP-3 has a proteolytic efficiency higher than that of 

MMP-10. Besides digesting ECM components, MMP-3 

activates a number of proMMPs, and its action on a 

partially processed proMMP-1 is critical for the 

generation of fully active MMP-1.
[77]

 MMP-11 is known 

as Stromelysin 3, but due to the sequence and substrate 

specificity diverges from those of MMP-3, it is usually 

grouped with “other MMPs”. 

 

MMP-3 (Stromelysin 1) and MMP-10 (Stromelysin 2) is 

located on chromosome 11q22.3. In our review article 

three studies between MMP-3 and renal transplant were 

found. One MMP-3 study showed positive association 

with Renal Transplant
[78]

 and the other two showed 

negative association.
[55,43]

 (See Table2) 

 

4.4. Matrilysins 

Matrilysin 1 (MMP-7) and Matrilysin 2 (MMP-26)
[79]

 

also called endometase
[38]

 are in this group. The 

Matrilysins have a characteristic feature that they lack of 

a hemopexin domain. Besides ECM components, MMP-

7 processes cell surface molecules such as pro–-defensin, 

Fas-ligand, pro–tumor necrosis factor (TNF)-, and E-

cadherin. Matrilysin 2 (MMP-26) also digests a number 

of ECM components. 

 

MMP7 (Matrilysin 1) and MMP-26 (Matrilysin 2) is 

located on chromosome 11q22.3. Our present study 

includes five positively associated studies on MMP7 and 

acute rejection in renal transplant (Table 2). 

 

4.5. Membrane-Type MMPs 

There are six membrane-type MMPs (MT-MMPs): four 

are type I transmembrane proteins (MMP-14, MMP-15, 

MMP- 16, and MMP-24), and two are 

glycosylphosphatidylinositol (GPI) anchored proteins 

(MMP-17 and MMP-25). With the exception of MT4-

MMP, they are all capable of activating proMMP-2. 

These enzymes can also digest a number of ECM 

molecules, and MT1-MMP has collagenolytic activity on 

type I, II, and III collagens.
[80]

 However, we could not 

find any studies in the area of renal transplantation and 

these MMPs. 

 

4.6. Other MMPs 

Seven MMPs are not classified in the above categories. 

Metalloelastase (MMP-12) is mainly expressed in 

macrophages
[81]

 and is essential for macrophage 

migration.
[82]

 Besides elastin, it digests a number of other 

proteins. MMP-19 was identified by cDNA cloning from 

liver
[83]

 and as a T-cell–derived auto antigen from 

patients with rheumatoid arthritis (RASI).
[84]

 MMP-20 is 

also known as Enamelysin; it is primarily located within 

newly formed tooth enamel and digests Amelogenin. 

Mutations at MMP-20 cleavage sites causes Amelogenin 

imperfecta; a genetic disorder caused by defective 

enamel formation.
[85]

 MMP-22 was first cloned from 

chicken fibroblasts
[86]

 and a human homologue has been 

identified on the basis of EST sequences. The function of 

this enzyme is not known. MMP-23, also known as 

cysteine array MMP and it is mainly expressed in 

reproductive tissues.
[87]

 The enzyme has a cysteine-rich 

domain followed by an immunoglobulin-like domain and 

lacks the cysteine switch motif in the prodomain and the 

hemopexin domain. MMP-23 is to be a type II 

membrane protein which harbors the transmembrane 

domain in the N-terminal part of the propeptide. Because 

it has a furin recognition motif in the propeptide, it is 

cleaved in the Golgi and released as an active enzyme 

into the extracellular space.
[88]

 The latest addition to the 

MMP family is epilysin, or MMP-28, mainly expressed 

in keratinocytes
[89,90]

 Expression patterns in intact and 

damaged skin suggest that MMP-28 might function in 

tissue hemostasis and wound repair.
[89,90 and 91] 

 

MMP-20 of Enamelysin group is located on chromosome 

11q22. MMP-20 gene polymorphism may be used as 

surrogate markers to predict long-term outcomes after 

kidney transplantation.
[92]

 (Table 2) 
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Table 1: MMPs and their substrates. 

MMP 
Alternate 

Names 
Selected Substrates 

Cytogenetic 

Location 

MMP-1 Collagenase-1 
Collagen I, II, III, entactin, perlectan, IGF-BP-2 and -3, 

pro- IL-1β, IL-1β 
11q22.3 

MMP-2 Gelatinase A 
Gelatin, collagen IV, V, XI, laminin, aggrecan, pro-TGF-

β, pro-TNF-α, IGFBP-3 and -5 
16q21 

MMP-3 Stromelysin-1 
Aggrecan, laminin, fibronectin, fibrinogen, MCP-1 to -4, 

pro-MMP-1, -3, -7, -8, -9,-13 
11q22.3 

MMP-7 Matrilysin 
Plasminogen, pro-α-defensin, FasL, pro-TNF-α, E-

cadherin, syndecan, pro-MMPs 
11q22.3 

MMP-8 Collagenase-2 
Collagen I-III, VII, X, aggrecan, fibronectin, pro-TNF-α, 

IGF-BP, MCP-1, angiotensin 
11q22.3 

MMP-9 Gelatinase B 
Gelatin, collagen IV, V, XI, pro-IL-8, Pro-TNF-α, pro-

TGF-β, pro-MMP-2, -9, -13 
20q11-q13 

MMP-10 Stromelysin-2 Gelatins, fibronectin, proteoglycan, pro-MMP-1, -8, -10 11q22.3 

MMP-11 Stromelysin-3 Fibronectin, laminin, aggrecan, IGFBP-1 22q11 

MMP-12 Metalloelastase Elastin, fibronectin, laminin, plasminogen, pro-TNF-α 11q22.3 

MMP-13 Collagenase-3 
Collagen I, II, III, entactin, aggrecan, tenascin, pro-TNF-α, 

pro-MMP-9, -13 
11q22.3 

MMP-14 MT1-MMP 
Collagen I, II, III, laminin, fibronectin, pro-MMP-2, -13, 

CD44, tissue transglutaminase 
14q11-q12 

MMP-15 MT2-MMP Pro-MMP-2, pro-TNF-α, tissue transglutaminase 16q12-21 

MMP-16 MT3-MMP 
Collagen III, pro-MMP-2, pro-TNF-α, tissue 

transglutaminase 
8q21 

MMP-17 MT4-MMP 
Gelatin, fibronectin, fibrin, pro-MMP-2, ADAMTS-4, 

TIMPs, pro-TNF-α 
12q24.33 

MMP-18 Collagenase-4 Collagen I, II, III  

MMP-19 Stromelysin-4 Collagen IV, gelatin, laminin 12q14 

MMP-20 Enamelysin 
Amelogenin, aggrecan, cartilage oligomeric matrix protein 

(COMP) 
11q22 

MMP-21  Gelatin, α-1-antitrypsin  

MMP-23  May be similar to Stromelysins and collagenases 1p36 

MMP-24 MT5-MMP Pro-MMP-2 20q11.2 

MMP-25 MT6-MMP 
Collagen IV, gelatin, fibrin, fibronectin, pro-MMP-2 and -

9, TIMPs, uPAR 
 

MMP-26 Matrilysin-2 Collagen IV, fibronectin, fibrin, fibrinogen, pro-MMP-9  

MMP-27  Gelatin, casein  

MMP-28 Epilysin Neural cell adhesion molecule (NCAM), casein  

 

Table 2: Summary of the reports indicating the presence and absence of association between MMPs and Renal 

Transplant. 

MMPs Enzymes Positive Studies Negative Studies 

MMP-1 Collagenase-1 N=40, MMP-1 was significantly elevated
[95] 

N=309
[55] 

  

N=30, MMP-1 was increased in patients with acute rejection 

compared with those with stable graft function and healthy 

donors
[43] 

 

MMP-2 Gelatinase A 
There was a weak but significant positive correlation MMP-2, 

N=150
[75] 

[96] 

  N=150,significantly associated
[97] 

 

  
[98]

 N=24 
[99]

 N=150 

   
[100]

 N=87 

  
N=46, The expression of either MMP-2 was significantly 

increased in the renal allografts of the recipients
[101]

 

N=40,Serum 

MMP-2
[43] 

  N=309
[55] 

N=150
[
 
94] 

  N=41
[102] 

 

  

Mutant alleles for MMP-2 (−735C>T) were associated with 

reduced risk for allograft rejection and improved allograft survival 

in North Indian transplant recipients and could serve as an ideal 
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marker to predict pre-transplant allograft outcome, N=306
[68] 

  
[103] 

 

  MMP-2 may be critical for graft survival.
[76]

 N=152  

MMP-3 Stromelysin-1 N=16, MMP3 was significant
[78] 

N=309
[55] 

   N=40
[43] 

MMP-7 Matrilysin 

MMP7 contributes to transplant tolerance may help in the 

development of new strategies to improve long-term graft 

outcome
[104] 

 

  
[104, 105] 

 

  
N=235,Polymorphisms of MMP7 gene may be surrogate marker 

to predict long-term outcomes after kidney transplantation
[92]  

  N=25
[95] 

 

  
N=10, MMP-7 represents potential molecular Acute Rejection 

marker
[70]  

MMP-9 

 
Gelatinase B N=45, MMP-9 was associated with delayed graft function

[71] 
N=150

[97] 

  N=102
[106] 

 

  
N=10, MMP-9 represents potential molecular Acute Rejection 

marker
[70] 

[96] 

  

N=150, Renal transplant recipients compared with healthy 

volunteers (control group) showed significantly increased MMP-

9levels
[99] 

 

  N=102,
[106] 

 

  N=24,
[98] 

 

  N=87,
[100] 

 

  N=150, MMP-9 was increased in RTR compared with controls
[94] 

 

  

N=306, Mutant alleles for MMP-9 (2003G>A) is associated with 

reduced risk for allograft rejection and improved allograft survival 

in North Indian transplant recipients and could serve as an ideal 

marker to predict pre-transplant allograft outcome
[68] 

 

  
MMP-9 is involved in protecting the transplant kidney from 

preservation injury
[103]  

  

During the rejection process, MMP-9 showed significant increase 

so concluded that MMP-especially MMP-9-appear to represent 

new mediators involved in acute kidney transplant rejection.
[69] 

 

  N=33, MMP9 was related with delayed graft function.
[72] 

 

MMP13 Collagenase-3 Patient groups had higher MMP-13 levels than healthy group
[44] 

 

MMP20 Enamelysin 

N=235, Polymorphisms of MMP20 gene may be surrogate 

markers to predict long-term outcomes after kidney 

transplantation
[92] 

 

N= number of cases (recipients) 

 

1. DISCUSSION 

In the present review the activity of MMPs involved in 

the Renal transplantation and allograft rejection was 

studied. Our study revealed that gelatinases especially 

MMP9 and MMP2 play major role in renal 

transplantation and allograft rejection. The several 

studies included in our review suggested that MMP-1, 

MMP-7, MMP-9, and MMP-13 represent as promising 

molecular Allograft Rejection markers and MMP-9, 

particularly was also found associated with delayed graft 

function.
[72]

 

 

Likewise, Singh et al. 2010
[68]

 in their study have shown 

that polymorphism in MMP9 and MMP2 have 

significant association with allograft rejection in North 

Indian population. Alexander et al. 2010
[93]

 included 

most of the genes as genetic predictors of acute renal 

transplant rejection in their study except MMPs. They 

did not included MMPs as genetic predictors of acute 

rejection in their review article. Mazanoskwa et al. 

2011
[94]

 observed increased MMP-2 concentrations in 

renal transplant recipients, experiencing chronic humoral 

rejection. MMPs are proteolytic enzymes involved in 

degradation of extracellular matrix and basement 

membrane and play important roles in the progression of 

CKD. 

 

In summary, the tight regulation of the MMP system is 

essential for normal renal development. MMPs are 

usually considered to be protective due to their 

antifibrotic activities, but this view is too simplistic and 

too optimistic. Increased levels of MMPs are usually 

associated with disease activity and the influx of 

inflammatory cells. It is now becoming widely accepted 
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that MMPs are not just involved in ECM degradation, 

but are precise proteolytic processing enzymes that are 

involved in development, homeostasis of the 

extracellular environment, and control of innate 

immunity.
[4] 

 

We are exploring more MMPs through an ongoing study 

on MMP2 and MMP9 in renal transplant recipients. It 

appears that, the investigation of the role of MMPs in 

allograft rejection may lead to better understanding and 

subsequently newer approaches to combat rejection 

process. In this way, we hope that more interesting 

discoveries can be brought and we can have a more 

specific and accurate understanding of their function in 

the human body. 

 

2. CONCLUSION AND PERSPECTIVES 

MMP-1, MMP-2, MMP-7, MMP-9 and MMP-20 have 

been found to have impact on renal transplant and 

allograft rejection. They represent as new mediators 

involved in acute kidney transplant rejection. However, 

their exact role in the process of rejection still remains 

unclear and needs further exploration. 

 

Most of the studies in our review show that MMP-1, 

MMP-7, MMP-9, and MMP-13 represent as promising 

potential molecular Acute Rejection markers. 

 

MMP-9 was found associated with delayed graft 

function.
[72]

 

 

Complementary therapy of allograft rejection and pre-

transplant allograft outcome can be predicted due to 

enhanced allograft survival in mutant allele carriers for 

MMP-2. 

 

More research based on larger samples size, genome- 

wide association analysis, rigorous study design and 

appropriate statistical methods using modern 

bioinformatics tools is required in this important area. 
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