

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

www.ejpmr.com

Research Article
ISSN 2394-3211
EJPMR

SAFETY EVALUATION OF SIDDHA FORMULATION THEER ANDHASKHAN MATHIRAI BY ACUTE AND SUB-ACUTE TOXICITY STUDIES IN WISTAR RATS

R. Naveen Kumar¹*, N. Anbu² and D.Sivaraman³

¹P.G Scholar, Department of Maruthuvam, Government Siddha Medical College, Arumbakkam, Chennai - 600106, Tamil Nadu, India.

²Head, Department of Maruthuvam, Government Siddha Medical College, Arumbakkam, Chennai - 600 106, TamilNadu, India.

³Scientist, Centre for Laboratory Animal Technology and Research, Col.Dr.Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi road, Chennai - 600 119, Tamil Nadu, India.

*Corresponding Author: R. Naveen Kumar

P.G Scholar, Department of Maruthuvam, Government Siddha Medical College, Arumbakkam, Chennai - 600106, Tamil Nadu, India.

Article Received on 24/01/2021

Article Revised on 12/02/2021

Article Accepted on 05/03/2021

ABSTRACT

In Siddha system of medicine, thousands of raw drugs are used to treat various kinds of diseases. These drugs are categorized into four groups namely Metals, Minerals, Herbals and Animal products. But in certain life-threatening diseases and especially in many chronic diseases, the herbal medicines alone have not been much effective. Herbal and herbo mineral preparations are being traditionally used in Indian system of Medicine especially in Siddha system. According to the Shelf life Herbo mineral preparations have more actions then any other drugs. Here THEER ANDHASKHAN MATHIRAI(TAM) is prepared as per Siddha classical text book Anuboga vaithiya Navaneetham, part 4, page no:105 - 106 to treat RA. Before clinical study there should be a need to undergone Preclinical trial as per WHO guidelines. The Clinical study was approved by Institutional Ethics Committee (IEC) and the approval number is IEC No: GSMC-CH-ME-5/004/2018. It was registered in Clinical Trials Registry-India (CTRI) and the registered number is CTRI/2019/08/020797. The present preclinical study aims to carry out safety and toxicity of the experimental protocol Theer Andhaskhan Mathirai was approved by Institutional Animal Ethics Committee (IAEC) of Sathyabama University, Chennai, Tamil Nadu, India. The approval number is SU/CLATR/IAEC/XIII/125/2019. Acute & Sub acute toxicity studies were carried out as per OECD guidelines 423 and 407. Hematological Parameters, biochemical parameters histopathological studies were performed for all animals. The study concludes that on oral administration of 100mg/kg of bodyweight of TAM to Wistar albino rats, there was no change in behaviour movements and no characteristic clinical sign of toxicity or mortality observed. From the result it was concluded that the Siddha preparation TAM offers wide margin of safety in tested rodents and further long term usage of drugs will be considered as safe for the ailment of various disease.7

KEYWORD: Siddha, OECD guidelines, Acute, Sub-acute, TAM, IAEC.

INTRODUCTION

Siddha system of medicine is one of the ancient indigenous medical system compiled by Siddhars, who lived a spiritual life in the southern region of India. [1] In Siddha system, metals and minerals are widely used, when compared to other traditional medical systems. In such conditions, Siddhars enumerated some Herbo metal and Herbo - mineral formulations. Some of the mineral drugs and also plant drugs produces some toxic effects to human. So before entering into the clinical trial there is a huge need for preclinical studies. Toxicity is defined as any harmful effect of chemical or a drug on a target organism. Acute toxicity has been defined by various experts. The Organization for Economic Cooperation and Development panel of experts (OECD Guidelines) defines acute toxicity as "the adverse effects occurring within a short time of administration of a single dose of a substance or multiple dose given within 24 hours. [2] Toxicity profiling of Siddha preparations are highly essential to prove the safety and efficacy of this Herbo mineral formulation before administration in humans. It provides a base for fixation of dose to the pharmacological study. The main purpose of toxicity studies reveals the information regarding LD50. The OECD Guidelines for the testing of chemicals are a collection of the most relevant internationally agreed testing methods used by government, industry, and independent laboratories to characterize potential hazards of new and existing chemical substances and chemical preparations, mixtures.^[3] The main aim of the present investigation is to evaluate the safety of the Siddha formulation Theer Andhaskhan Mathirai in rodents at fixed dose level by acute and sub-acute toxicity studies in accordance with OECD guidelines.

www.ejpmr.com | Vol 8, Issue 4, 2021. | ISO 9001:2015 Certified Journal | 415

MATERIALS AND METHODS STUDY DRUG

Trial drug name: Theer Andhaskhan Mathirai.

Reference: Anuboga vaithiya Navaneetham, part 4, page no: 105 – 106. [4]

Required ingredients: Rasa Karpooram (*Hydragyrum subchloride*- 5 varagan (21gms) Milagu (*Piper nigrum*) powder-5 varagan (21gms) Lavangam (*Syzygium aromaticum*) powder-5 varagan (21gms) Omam (*Carum copticum*) powder-5 varagan (21gms) Poolan Kizhangu (*Curcuma zedoaria*) powder -5 varagan (21gms) Aatruthumati Kai (*Citrullus colcocynthis*)-125 Nos (extracted juice).

STANDARD OPERATIVE PROCEDURE

Source of Raw Drugs

The required raw drugs were procured from a well reputed indigenous raw drug shop. The raw drugs taken for study was authenticated by the Botanist, Dept. of Medicinal botany and mineral drug was authenticated by HOD, Gunapadam department, Government Siddha medical college, Chennai - 106. Certificate was enclosed.

Purification of Raw Drugs^[5]

The raw drugs were purified as mentioned in "Sikitcha Rathna Deepam Ennum Vaithiya Nool".

1. Rasa Karpooram (Hydragyrum subchloride)

- ➤ Hydrargyrum Sub Chloride 35 gm
- ➤ Betel leaf (*Piper betel*) 8.75 gm
- Pepper (*Piper nigrum*) 8.75 gm
- Water 1.3 litre

Procedure

The Poultice made of betel leaf and pepper was taken and dissolved in water. Rasa Karpooram (Calomel) was tied in a cloth and immersed in the liquid hung from the cross bar and heated. After the water was reduced to ¾ of its volume, the Rasa Karpooram (Calomel) was taken out washed with water and dried to get purified form.

2. Milagu (Piper nigrum)

Pepper was soaked into sour butter milk for 3 hours and dried to get purified form of pepper.

3. Lavangam (Syzygium aromaticum)

Clean without any debris and keep it dry at night & get purified form.

4. Omam (Carum copticum)

Take omam and soaked into lime water then dried to get purified form.

5. Poolan Kizhangu (Curcuma zedoaria)

Clean without any debris in upper surface and keep it dry at night then powdered it.

6. Aatruthumati Kai (Citrullus colcocynthis) juice

Take Aatruthumati kai and shoot at straw fires until that upper skin colour turned into charcoal colour then leave it few minutes, now remove the that upper skin part and take that inner pulp part then crushed it well to get a juice.

METHOD OF PREPARATION

Take the Purified Pooram in a kalvam and make it into fine powder. Add all the powders and grind them altogether with Aatruthumati kai juice by adding little by little. After the entire quantity of the juice has been totally utilized, make into pills of Kundri size (130mg).

DRUG STORAGE

Dried well in shade and stored in an air-tight porcelain iar.

PRE-CLINICAL STUDY

In Vivo studies

The experimental protocol *Theer Andhaskhan Mathirai* was approved by Institutional Animal Ethics Committee (IAEC) of Sathyabama University, Chennai, Tamil Nadu, India. The approval number is SU/CLATR/IAEC/XIII/125/2019.

Toxicological study

Acute oral toxicity study was carried out as Per OECD guideline 423.

Sub acute toxicity study 28 days repeated dose oral toxicity study was carried out as Per OECD guideline 407.

Study center

Sathyabama Institute of science and technology, Chennai – 119, Tamilnadu, India.

Medicine name: Theer Andhaskhan Mathirai

Dosage: 2 Tablets /BD Adjuvant: Jaggery Duration: 48 days

ACUTE TOXICITY STUDY

Acute toxicity study of the study drug Theer Andhaskhan Mathirai (TAM) was carried out as per OECD guideline (Organization for Economic Co-operation and Development) Guideline-423.

Animal

Healthy adult Wistar albino rat weighing between 180-200 g were used for the study. The animals were housed in poly propylene cages and were kept in well ventilated with 100% fresh air by air handling unit (AHU). A 12 light / dark cycle were maintained. Room temperature was maintained between $22 \pm 2^{\circ}$ C and relative humidity 50–65%. They were provided with food (Amruth, Kvat, Hyderabad, India) and water *ad libitum*. All the animals were acclimatized to the laboratory for 7 days prior to the start of the study. The experimental protocol was

416

approved by The Institutional Animal Ethics Committee of Sathyabama Institute of science and technology, Chennai, Tamil Nadu, India.

Acute toxicity Study

Acute toxicity study will be carried out in accordance with OECD guideline 423. The animals were fasted overnight with free access to water. The study was conducted with single oral dose administration of TAM.

IAEC SU/CLATR/IAEC/XIII/125/2019

Animal Grouping

One group consist of 6 female rats were used for this study. The dose utilized for evaluation of acute toxicity study is about 2000 mg/kg higher than that of the therapeutic dose.

Study Description

The animals were fasted overnight (12-16 hrs) with free access to water. The study was conducted with single oral administration of study drug TAM at the dose of 2000mg/kg (p.o) prepared in respective recommended adjuvant. The animals were observed continuously for first 72 h and then 14 days for emerging signs of behavioral changes, body weight changes and for mortality.

Clinical signs Observation

Lacrimation, Salivation, Animal appearance, open field behavior, cage behavior, Convulsion, Laxative action, sensory responses, Mobility /balancing, skin tone, CNS abnormalities, CVS abnormalities, respiratory distress, Muscle strength/ Coordination, Urine analysis, fecal pellet consistency and Mortality.

Report

The dose of TAM used for acute toxicity study is 2000mg/kg is higher than the normal therapeutic dose. No mortality observed at this dose level, further no significant change with respect to clinical signs on acute toxicity observed for (24-48 h) and for a period of 14 days. There is no significant change in the body weight, organ weight and gross observational changes of the treated animals which confirms the wide margin of safety of the study drug.

SUB-ACUTE TOXICITY STUDY

Guideline: Sub-acute toxicity study was carried out as per OECD guidelines Guideline-407. [21]

Animal

Healthy adult Wistar albino rat weighing between 180-200 g were used for the study. The animals were housed in poly propylene cages and were kept in well ventilated with 100% fresh air by air handling unit (AHU). A 12 light / dark cycle were maintained. Room temperature was maintained between $22 \pm 2^{\circ}$ C and relative humidity 50–65%. They were provided with food (Amruth, Kvat, Hyderabad, India) and water *ad libitum*. All the animals

were acclimatized to the laboratory for 7 days prior to the start of the study. The experimental protocol was approved by The Institutional Animal Ethics Committee of Sathyabama Institute of Science and technology, Chennai, Tamil Nadu, India.

Animal Grouping

Animals were divided into three groups of 06 animals each consist of 3 male and 3 female rats.

GROUP II: Animals received saline 5 ml/kg b.w (p.o) **GROUP II:** Animals received low dose of test drug 200 mg/kg (p.o)

GROUP III: Animals received high dose of test drug 400 mg/kg (p.o)

The animals were randomly divided into control group and drug treated groups for two different doses viz. low dose (200 mg/kg b.w) and high dose (400 mg/kg b.w) prepared in respective recommended adjuvant.

The animals were administrated with the study drug once daily for 28 days. The animals in group I (control group) received normal saline 5 ml/kg b.w. The animals in group II received low dose of *TAM* 200 mg/kg b.w (p.o) and group III received high dose of *TAM* 400 mg/kg b.w (p.o).

The rats were weighed periodically and observed for signs of toxicity pertains to C.N.S, C.V.S, A.N.S including behavioral changes, food - water intake and morphological changes. At the end of 28th day, the animals were fasted for overnight with free access to water. On 29th day the animals were sacrificed with excess anesthesia. Blood samples were collected from aorta and stored in EDTA (ethylenediamine–tetra acetate) for Hematological analysis and for serum generation for biochemical analysis. The vital organs including heart, brain, lungs, spleen, kidneys, liver, stomach, testes, and ovary were harvested and carefully examined for gross lesions. The organs were preserved in 10% formalin for histopathological assessment and interpretation.

Hematological analysis^[7]

Blood samples were analyzed using established procedures and automated Bayer Hematology analyzer. Parameters evaluated include Packed Cell Volume (PCV), Red Blood Cells (RBC) count, White blood cell count (WBC), Platelet Count, Hemoglobin (Hb), Mean cell Hemoglobin Concentration (MCHC), Mean Red Cell Volume (MCV), Mean Cell Hemoglobin (MCH), Mean platelet volume (MPV), Neutrophils, Eosinophil's, Basophils, Lymphocytes and Monocytes.

Biochemical analysis^[8]

Serum samples were analyzed for High Density Lipoprotein (HDL), Low density Lipoprotein (LDL), Very low density Lipoprotein (VLDL), Triglycerides (TGL), Total Cholesterol, Blood urea nitrogen (BUN), Creatinine, Albumin, Total Protein, Glucose, Uric acid, Aspartate Transaminase (AST), Alanine amino Transaminase (ALT) and Alkaline Phosphatase (ALP) using Mind ray auto analyzer model BS 120.

Histopathological evaluation^[9]

Organs included of heart, brain, lungs, spleen, kidneys, liver, stomach, testes and ovary. Histological slides of organs were made and observed under the microscope. The pathological observations of cross section of these organs were performed on gross and microscopic bases. Histological examinations were performed on the preserved tissues with particular emphasis on those which showed gross pathological changes.

Statistical analysis

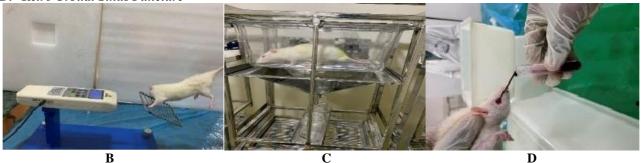
The statistical analysis was carried by one-way ANOVA (GRAPH PAD PRISM 5 computer program). Results were expressed as mean \pm standard error. A statistical comparison was carried out using the Dunnett's test for the control and treatment group.

Acute Toxicity Study Analysis TAM Consistency Soft Shape Irregular Colour Pale greenish Mucous Shedding Absent Blood Cells Absent Signs of Infection None Observed

B. Muscle Grip Strength Analysis: The grip strength test is a simple non-invasive method designed to evaluate rat muscle force in vivo. Rats of control and drug treated group was allowed to hold the pull bar with both the hind limbs firmly then the animal was gently pulled back with the tail until the animal lost the grip toward the bar. The procedure was repeated to get the average value. Muscle grip ness of the drug treated group was compared to that of the control rat to ensure the change in coordination.

C. Metabolic Cage Observation: Rat of control and treatment group was placed individually in metabolic cage with free access to feed and water. Urine dropping from the animal was collected using specialized wire mesh system fixed at the base of the cage having provision to trap the fecal pellet mixed with urine sample. The collected urine sample was subjected to analysis with respect to colour, pH, glucose, ketone bodies, pus and blood cells.

ADMINISTRATION OF TRIAL DRUG


METHODOLOGY

A. Fecal Pellet Analysis: Rats of control and treatment group were allowed to explore to open field on clean and sterile Stainless-steel tray. The collected pellets were analyzed for consistency, color, Shape, Presence of blood cells etc.

Sub-Acute Toxicity Study								
Analysis	Control	Low Dose	High Dose					
Consistency	Rigid	Soft	Soft					
Shape	Oblong	Irregular	Irregular					
Colour	Greenish	Pale greenish	Pale greenish					
Mucous Shedding	Absence	Absence	Absence					
Blood Cells	Absent	Absent	Absent					
Signs of Infection	None Observed	None Observed	None Observed					

D. Retro Orbital Sinus Puncture

RESULTS

Assessment of clinical signs in rats treated with (TAM) on Acute toxicity study.

Parameter	TAM	Parameter	TAM
Lacrimation	Absence	Response to Sound	Normal
Salivation	Absence	Response to Light	Normal
Animal appearance	Normal	Mobility	Normal
Tonic Movement	Absence	Respiratory Distress	Nil
Clonic Movement	Absence	Skin Color	Normal
Laxative action	Absence	Stereotype behavior	Absence
Touch Response	Normal	Piloerection	Absence
Limb Paralysis	Absence	Open field behavior	Normal
Posture	Normal	Gait Balancing	Normal
Freezing Behaviour	Absent	Sings of Stress and Anxiety	None observed
Muscular coordination	Normal	Muscle grip	Normal
Sedation	Absence	Social Behavior	Normal
Urine Analysis	No abnormality	Urine Colour	Yellowish
Urine Ph	6	Urine - Glucose	Absence
Urine - Ketones	Absence	Urine- Bilirubin	Absence
Urine-Blood Cells	Negative	Urine - Pus cells	Negative
Mortality	Nil		

Quantitative data on the body weight of rats treated with (TAM) in Acute toxicity study

ТАМ	Body wt in gms				
1 AIVI	Initial	Final			
Mean	180.3	187.2			
Std. Deviation	2.944	3.189			
Std. Error	1.202	1.302			

Values are mean \pm S.D (n = 6 per group). Statistical significance carried out using one-way ANOVA followed by Dunnett's test.

Assessment of clinical signs in rats treated with (TAM) on Sub-Acute toxicity study

	SUB ACUTE TOXICITY STUDY					
Parameter	CONTROL	LOW DOSE	HIGH DOSE			
Clinical Signs Parameters for the duration of 28 days	Normal Saline	TAM 200 mg/kg	TAM 400 mg/kg			
Lacrimation	Absence	Absence	Absence			
Salivation	Absence	Absence	Absence			
Animal appearance	Normal	Normal	Normal			
Tonic Movement	Absence	Absence	Absence			
Clonic Movement	Absence	Absence	Absence			
Laxative action	Absence	Absence	Absence			
Touch Response	Normal	Normal	Normal			
Response to Sound	Normal Response	Normal Response	Normal Response			
Response to Light	Normal Response	Normal Response	Normal Response			
Mobility	Normal Response	Normal Response	Normal Response			
Resp.Distress	Nil	Nil	Nil			
Skin Color	Normal	Normal	Normal			

www.ejpmr.com Vol 8, Issue 4, 2021. ISO 9001:2015 Certified Journal 419

Absence	Absence	Absence
Absence	Absence	Absence
Absence	Absence	Absence
Normal	Normal	Normal
Normal	Normal	Normal
Normal	Normal	Normal
Absent	Absent	Absent
None Observed	None Observed	None Observed
Normal	Normal	Normal
Normal	Normal	Normal
Absence	Absence	Absence
Normal	Normal	Normal
No Abnormality	No Abnormality	No Abnormality
Yellowish	Yellowish	Yellowish
7	6	6
Absence	Absence	Absence
Absence	Absence	Absence
Absence	Absence	Absence
Negative	Negative	Negative
Negative	Negative	Negative
Nil	Nil	Nil
	Absence Absence Normal Normal Normal Absent None Observed Normal Absence Normal Absence Normal Absence Normal No Abnormality Yellowish 7 Absence Absence Absence Negative Negative	Absence Absence Absence Normal Normal Normal Normal Normal Normal Normal Absent None Observed Normal Normal Normal Normal Normal Normal Normal Normal Normal Absence Normal Absence Absence Normal No Abnormality Yellowish 7 6 Absence Negative Negative Negative

Effect of (TAM) on Body weight of Rats in Sub-acute toxicity study.

Group	TAM	
Control	Body wt in g	ms
	Initial	Final
Mean	184.5	218.8
Std. Deviation	1.871	5.636
Std. Error	0.7638	2.301
	Body wt in g	ms
TAM Low Dose	Initial	Final
Mean	184.8	219.7
Std. Deviation	3.92	8.548
Std. Error	1.6	3.49
	Body wt in g	ms
TAM High Dose	Initial	Final
Mean	183.8	216.8
Std. Deviation	2.787	4.622
Std. Error	1.138	1.887

Values are mean \pm S.D (n = 6 per group of which 3 males and 3 females). Control and treatment groups were

compared statistically using one-way ANOVA followed by Dunnett's test.

Quantitative data on food intake of rats treated with TAM) for 28 days in Sub-acute toxicity study.

Average Feed Intake in gms	Control
18.17	Mean
0.7528	Std. Deviation
0.3073	Std. Error
Average Feed Intake in gms	TAM Low Dose
15.83	Mean
1.472	Std. Deviation
0.6009	Std. Error
Average Feed Intake in gms	TAM High Dose
16.67	Mean
1.862	Std. Deviation
0.7601	Std. Error

www.ejpmr.com Vol 8, Issue 4, 2021. ISO 9001:2015 Certified Journal 420

Values are mean \pm S.D (n = 6 per group of which 3 males and 3 females). Control and treatment groups were

compared statistically using one-way ANOVA followed by Dunnett's test.

Quantitative data on water intake of rats treated with (TAM) for 28 days in Sub-acute toxicity study.

Control	Average Water Intake in ml
Mean	23.67
Std. Deviation	3.882
Std. Error	1.585
TAM Low Dose	Average Water Intake in ml
Mean	24.67
Std. Deviation	2.944
Std. Error	1.202
TAM High Dose	Average Water Intake in ml
Mean	24.83
Std. Deviation	3.971
Std. Error	1.621

Values are mean \pm S.D (n = 6 per group of which 3 males and 3 females). Control and treatment groups were

compared statistically using one-way ANOVA followed by Dunnett's test.

Quantitative data on absolute Organ weight of control group rats.

Con male	Brain	Heart	Lung	Stomach	Liver	Spleen	Kidney	Testes	Uterus	Ovary
Mean	1.757	0.57	1.378	1.458	4.641	0.6254	1.102	1.366		
Std.Dev	0.01541	0.1716	0.1599	0.1754	0.3403	0.3935	0.2501	0.4483		
Std. Error	0.008895	0.09907	0.09229	0.1013	0.1965	0.2272	0.1444	0.2588		
Con female	Brain	Heart	Lung	Stomach	Liver	Spleen	Kidney	Testes	Uterus	Ovary
Mean	1.398	0.4593	1.394	1.286	4.387	0.602	0.8334		0.2232	0.05983
Std. Dev	0.1652	0.08049	0.1775	0.2363	1.012	0.1188	0.2198		0.09344	0.00948
Std. Error	0.09537	0.04647	0.1025	0.1364	0.5845	0.06861	0.1269		0.05395	0.00547

Values are mean \pm S.D (n = 3 per group of which 3 males and 3 females). Control and treatment groups were

compared statistically using one-way ANOVA followed by Dunnett's test.

Quantitative data on absolute Organ weight of treatment group rat.

duminative dutie on appointe organ weight of treatment group rate											
L.D.M	Brain	Heart	Lung	Stomach	Liver	Spleen	Kidney	Testes	Uterus	Ovary	
Mean	1.612	0.5821	1.282	1.268	4.06	0.3286	1.212	1.738			
Std. Dev	0.1276	0.1031	0.08642	0.2988	0.6671	0.02945	0.1127	0.3389			
Std. Error	0.07366	0.05952	0.04989	0.1725	0.3851	0.017	0.06508	0.1957			
L.D.F	Brain	Heart	Lung	Stomach	Liver	Spleen	Kidney	Testes	Uterus	Ovary	
Mean	1.582	0.587	1.856	1.547	4.075	0.3853	1.011		0.1487	0.09447	
Std. Dev	0.04367	0.134	0.9227	0.2947	0.6306	0.143	0.1353		0.04568	0.01417	
Std. Error	0.02521	0.07735	0.5327	0.1702	0.3641	0.08259	0.07809		0.02637	0.00818	
H.D.M	BRAIN	HEART	LUNG	STOMACH	LIVER	SPLEEN	KIDNEY	TESTES	UTERUS	OVARY	
Mean	1.646	0.5324	0.9496	1.456	3.945	0.3042	1.183	1.089			
Std. Dev	0.1004	0.08777	0.1087	0.1809	0.1769	0.05838	0.239	0.4323			
Std. Error	0.05795	0.05067	0.06277	0.1045	0.1022	0.03371	0.138	0.2496			
H.D.F	Brain	Heart	Lung	Stomach	Liver	Spleen	Kidney	Testes	Uterus	Ovary	
Mean	1.51	0.6078	1.741	1.591	5.556	0.8579	1.141		0.3075	0.4794	
Std. Dev	0.2122	0.06278	0.2962	0.3681	0.9132	0.5153	0.1853		0.08281	0.7056	
Std. Error	0.1225	0.03625	0.171	0.2125	0.5272	0.2975	0.107		0.04781	0.4074	

L.D.M - Low Dose Male, L.D.F- Low Dose Female, H.D.M - High Dose Male, H.D.F- High Dose Female Values are mean \pm S.D (n = 3 per group of which 3

males and 3 females). Control and treatment groups were compared statistically using one-way ANOVA followed by Dunnett's test.

Effect	of Siddha	formulat	ion TAM o	n H	aematology pi	ofile of rats in	sub-acute to	exicity stud	y.

Control	RBC (×10 ⁶ μl)	WBC1 (×10 ³ μl)	PLT (×10 ³ μl)	HGB (g/dl)	MCH (pg)	MCV (fl)
Mean	5.867	7.55	720.7	13.25	18.88	56.12
Std. Deviation	1.226	1.696	71	0.8044	3.056	3.294
Std. Error	0.5004	0.6922	28.99	0.3284	1.248	1.345
Low dose	Rbc (×10 ⁶ μl)	Wbc (×10 ³ μl)	Plt (×10 ³ μl)	Hgb (g/dl)	Mch (pg)	Mcv (fl)
Mean	6.733	10.78	813.5	12.25	18.6	56.13
Std. Deviation	1.082	2.456	230.7	1.95	1.364	2.887
Std. Error	0.4417	1.002	94.17	0.796	0.556	1.129
High dose	Rbc (×10 ⁶ μl)	Wbc (×10 ³ μl)	Plt (×10 ³ μl)	Hgb (g/dl)	Mch (pg)	Mcv (fl)
Mean	7.15	8.6	756.8	12.9	19.92	59.7
Std. Deviation	1.228	2.661	63.23	1.765	2.477	5.279
Std. Error	0.501	1.086	25.81	0.7206	1.011	2.155

Values are mean \pm S.D (n = 6 per group of which 3 males and 3 females). Control and treatment groups were

compared statistically using one-way ANOVA followed by Dunnett's test.

Effect of Siddha formulation TAM on Haematology profile of rats in sub-acute toxicity study.

Control	Neutrophils 10 ³ /mm ³	Eosinophils (%)	Basophils (%)	Lymph (%)	Mon(%)
Mean	2.917	1.383	0.1667	78.32	4.4
Std. Deviation	0.5269	0.1722	0 .4082	8.401	0.613
Std. Error	0.2151	0.0703	0 .1667	3.43	0.250
Low Dose	Neutrophils 10 ³ /mm ³	Eosinophils (%)	Basophils (%)	Lymph (%)	Mon (%)
Mean	2.4	1.733	0	77.62	3.267
Std. Deviation	0.3347	0.1366	0	11.57	1.418
Std. Error	0.1366	0.0557	0	4.725	0.578
High Dose	Neutrophils 10 ³ /mm ³	Eosinophils (%)	Basophils (%)	Lymph (%)	Mon (%)
Mean	2.017	1.517	0	83.72	3.55
Std. Deviation	0.2483	0.3312	0	5.324	1.898
Std. Error	0.1014	0.1352	0	2.173	0.7749

ABSTRACT

In Siddha system of medicine, thousands of raw drugs are used to treat various kinds of diseases. These drugs are categorized into four groups namely Metals, Minerals, Herbals and Animal products. But in certain life-threatening diseases and especially in many chronic diseases, the herbal medicines alone have not been much effective. Herbal and herbo mineral preparations are being traditionally used in Indian system of Medicine especially in Siddha system. According to the Shelf life Herbo mineral preparations have more actions then any other drugs. Here **THEER ANDHASKHAN** MATHIRAI(TAM) is prepared as per Siddha classical text book Anuboga vaithiya Navaneetham, part 4, page no:105 - 106 to treat RA. Before clinical study there should be a need to undergone Preclinical trial as per WHO guidelines . The Clinical study was approved by Institutional Ethics Committee (IEC) and the approval number is IEC No: GSMC-CH-ME-5/004/2018. It was registered in Clinical Trials Registry-India (CTRI) and the registered number is CTRI/2019/08/020797.The present preclinical study aims to carry out safety and toxicity of the experimental protocol Theer Andhaskhan Mathirai was approved by Institutional Animal Ethics Committee (IAEC) of Sathyabama University, Chennai,

Tamil Nadu, India. The approval number is SU/CLATR/IAEC/XIII/125/2019. Acute & Sub acute toxicity studies were carried out as per OECD guidelines 423 and 407. Hematological Parameters, biochemical parameters histopathological studies were performed for all animals. The study concludes that on oral administration of 100mg/kg of bodyweight of TAM to Wistar albino rats, there was no change in behaviour movements and no characteristic clinical sign of toxicity or mortality observed. From the result it was concluded that the Siddha preparation TAM offers wide margin of safety in tested rodents and further long term usage of drugs will be considered as safe for the ailment of various disease.

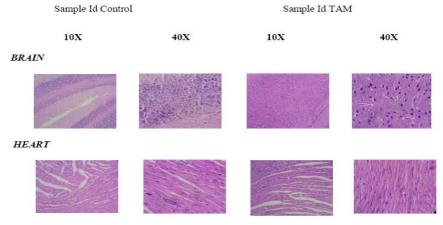
KEYWORD: Siddha, OECD guidelines, Acute, Subacute, TAM, IAEC.

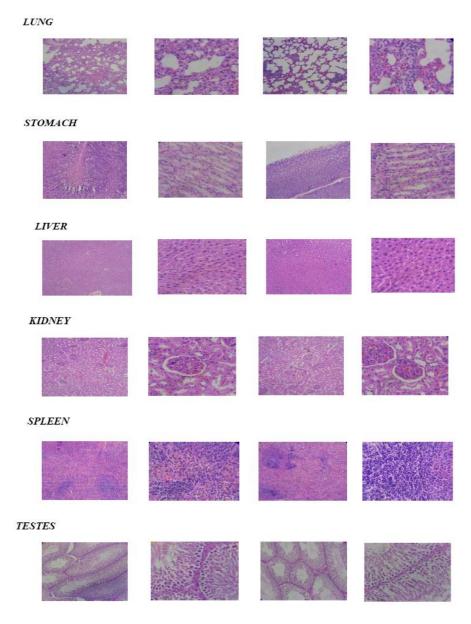
Values are mean \pm S.D (n = 6 per group of which 3 males and 3 females). Control and treatment groups were compared statistically using one-way ANOVA followed by Dunnett's test.

Effect of Siddha formulation TAM on Serum Bio-chemistry profile of rats in sub-acute toxicity study.

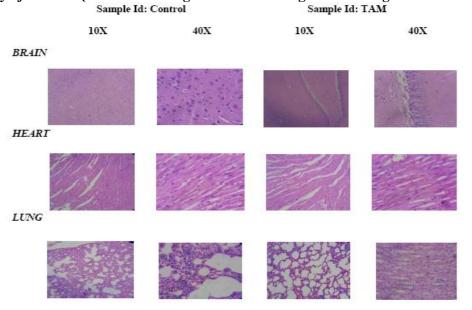
Control	BUN (mg/dl)	Serum Creatinine (mg/dl)	Total Bilirubin (mg/dl)	SGOT (IU/ml)	SGPT (IU/ml)
Mean	15.33	0.666	0.45	87	26.83
Std. Deviation	3.502	0.163	0.1975	17.5	12.06
Std. Error	1.43	0.066	0.080	7.146	4.922
Low Dose	BUN	Serum Creatinine	Total Bilirubin	SGOT	SGPT
Low Dose	(mg/dl)	(mg/dl)	(mg/dl)	(IU/ml)	(IU/ml)
Mean	13.83	0.6	0.3833	92.5	24.83
Std. Deviation	3.061	0.063	0.1472	10.54	4.792
Std. Error	1.249	0.025	0.060	4.303	1.956
High Dogo	BUN	Serum Creatinine	Total Bilirubin	SGOT	SGPT
High Dose	(mg/dl)	(mg/dl)	(mg/dl)	(IU/ml)	(IU/ml)
Mean	15.67	0.816	0.333	81.83	21.5
Std. Deviation	3.386	0.040	0.121	6.555	3.886
Std. Error	1.382	0.016	0.049	2.676	1.586

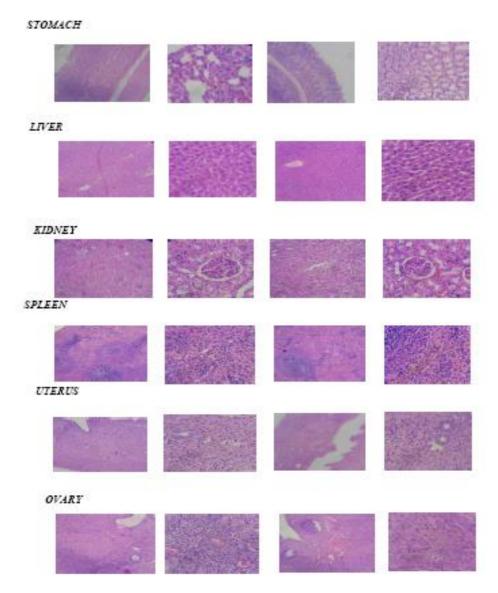
Values are mean \pm S.D (n = 6 per group of which 3 males and 3 females). Control and treatment groups were


compared statistically using one-way ANOVA followed by Dunnett's test.


Effect of Siddha formulation TAM on Serum Bio-chemistry profile of rats in sub-acute toxicity study.

riect of Siddha formulation TAM on Serum Bio-chemistr			y prome of rats in sub-acute toxicity study.			
Control	Total cholesterol (mg/dl)	HDL (mg/dl)	LDL (mg/dl)	VLDL (mg/dl)	TG (mg/dl)	
Mean	119.4	52.83	50	16.58	32.67	
Std. Deviation	6.972	4.021	5.292	1.329	7.394	
Std. Error	2.846	1.641	2.16	0.5425	3.018	
Low Dose	Total cholesterol		LDL	VLDL	TG	
Low Dose	(mg/dl)	HDL (mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	
Mean	121.2	57	47.5	16.67	29.83	
Std. Deviation	8.802	5.404	6.221	3.33	9.152	
Std. Error	3.596	2.206	2.54	1.359	3.736	
High Dogo	Total cholesterol		LDL	VLDL	TG	
High Dose	(mg/dl)	HDL (mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	
Mean	126.7	63	49.5	16.15	28.17	
Std. Deviation	10.22	6.663	11.74	3.289	6.338	
Std. Error	4.172	2.72	4.794	1.343	2.587	


Values are mean \pm S.D (n = 6 per group of which 3 males and 3 females). Control and treatment groups were compared statistically using one-way ANOVA followed by Dunnett's test.


Histopathology of Male {Low Power Magnification 10X, High Power Magnification 40X}

Histopathology of Female {Low Power Magnification 10X High Power Magnification 40X}

DISCUSSION

Toxicological evaluation of Siddha formulation *Theer Andhaskhan Mathirai* (TAM) has provided an evidence-based data with respect to C.N.S, A.N.S and C.V.S system on the tested animals. In acute toxicity study Siddha formulation TAM administered at the dose of 2000 mg/kg had no adverse effect on the treated rats in up to 14 days of observation. No significant change in the body weight, behavioral and sensory parameters were observed in acute toxicity study.

In acute toxicity study, there was no mortality up to a maximum dose of 2000 mg/kg body weight of TAM after per oral administration. The changes in bodyweight and other Clinical signs like skin color change, fecal consistency, gait analysis, urine analysis, sensory responses, animal behavior abnormalities, neuro muscular coordination have been used as an indicator of adverse effect. Since no remarkable changes were observed in animal behavior, body weight and organ weight at dose in treated rats as compared to control group, it can be inferred that Siddha formulation TAM is

nontoxic at the administered dose of 2000mg/kg.

In sub-acute toxicity study treatment with TAM at 200 and 400 mg/kg reveals no significant change in the body weight of the treated rats. The low and high dose selected for toxicity covers the average therapeutic dosage of the test drug TAM in humans. Results of the study reveals that 28-day daily dose treatment with the TAM elicited no clinical signs of toxicity, morbidity, or mortality across all the treatment groups hence it may have concluded that the formulation TAM is safe at the tested doses over the observation period.

Results of the present investigation showed that there was no sign of toxicity and no mortality after single and repeated administration of the test drug TAM at varying doses in tested rats. There was no significant difference in mean body weight, food/water intake, behavioral, C.N.S, C.V.S, A.N.S vitals in control and test group rats. Further no changes in the gross observation of all the vital organs in both male and female rats. Single and repeated oral administration of the Siddha drug TAM

may be safe and considered as relatively non-toxic at both the doses levels of 200 and 4000 mg/kg dose level.

CONCLUSION

In **acute toxicity study**, the dose of Theer Andhaskhan Mathirai (TAM) used for acute toxicity study is 2000mg/kg is higher than the normal therapeutic dose. No mortality observed at this dose level, further no significant change with respect to clinical signs on acute toxicity observed for (24-48 h) and for a period of 14 days. There is no significant change in the body weight, organ weight and gross observational changes of the treated animals which confirms the wide margin of safety of the study drug.

In **sub-acute toxicity study**, treatment with TAM at 200 and 400 mg/kg reveals no significant change in the body weight of the treated rats. The low and high dose selected for toxicity covers the average therapeutic dosage of the test drug TAM in humans. Results of the study reveals that 28-day daily dose treatment with the TAM elicited no clinical signs of toxicity, morbidity, or mortality across all the treatment groups hence it may have concluded that the formulation TAM is safe at the tested doses over the observation period.

ACKNOWLEDGEMENT

I wish to acknowledge my thanks to The Tamil Nadu Dr. M.G.R. Medical University, Chennai, Tamil Nadu, India and Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India.

REFERENCES

- 1. Tamil Valarchi Kazhagam Siddha Medicine Volume-1 First Edition. Tamil Valarchi Kazhagam Chennai-5 First Edition. 2010: 1 56.
- 2. Veerappan A, Miyasaki S, Kadarkaraisamy M, Ranganathan D. Acute and subacute toxicity studies of Aegle marmelos Corr., an Indian medicinal plants. Phytomedicine, 2007; 14: 209-15.
- 3. OECD. Descriptions of Selected Key Generic Terms Used in Chemical Hazard Risk Assessment. Joint Project with IPCS on the Harmonisation of Hazard Risk Assessment Terminology. OECD Series on Testing and Assessment No. 44. Environment Directorate, Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology. ENV/JM/MONO, 2003; 15. Paris: OECD.
- 4. Hakim.Pa.Mu.Abdullah saibu, Anuboga Vaithiya Navaneetham, Part 4, Thamarai noolagam, Chennai-26, 2nd edition, 2002; 105 106.
- 5. Kannusamy pillai, Chikicharathina Deepam ennum vaithiya nool, B.Rathinanayagar and Sons, First Edition, 1970; 7.
- OECD Guideline for testing of Chemicals, 2001; 423.
 Guideline: Acute Oral Toxicity-Acute Toxic Class Method.
- OECD Guide lines 407 for testing of chemicals.
 Repeated dose 28-Day Oral Toxicity Study in

- Rodents, 2008; pp 2-8.
- 8. Jain N, Sharma P, Sharma N, Joshi S C. Haemato-biochemical profile following sub-acute toxicity of malathion in male albino rats. Pharmacology online, 2009; 2: 500–506.
- 9. Suvarna, S.K., C.Layton and J.D. Bancroft, 2013. Bancroft's theory and practice of histological techniques. 7th edn, Churchill Livingstone, London.

www.ejpmr.com | Vol 8, Issue 4, 2021. | ISO 9001:2015 Certified Journal | 426