ejpmr, 2017,4(8), 312-314



# EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

<u>www.ejpmr.com</u>

Research Article ISSN 2394-3211 EJPMR

## BIO-NUTRITIONAL ANALYSIS OF THE CULTIVATED RICE VARIETY – KANNAGI AROUND THALAIYUTH SANKAR CEMENT FACTORY OF TIRUNELVELI DISTRICT, INDIA

## Dr. B. Christudhas Williams<sup>1</sup>, Dr. R. Mary Suja\* and C. Jemila Roshini<sup>2</sup>

<sup>1</sup>Assistant Professor Scott Christian College (Autonomous), Nagercoil-629 003. \*Director William Research Centre Nagercoil - 1. <sup>2</sup>Research Scholar Scott Christian College Nagercoil (Autonomous), Manonmaniam Sundaranar University,

Tirunelveli.

#### \*Corresponding Author: Dr. R. Mary Suja

Director William Research Centre Nagercoil - 1.

Article Received on 05/06/2017

#### Article Revised on 25/06/2017

Article Accepted on 15/07/2017

#### ABSTRACT

Bio-nutritional analysis of the *Oryza sativa* plants at the cement polluted sites reported significant reduction of Starch, Carbohydrate, Total aminoacid, Vitamin A and Vitamin B<sub>1</sub> are positively correlated  $(0.99)^{**}$  at 0.01 level of significant whereas,  $(0.87)^*$  showed 0.05 level of significant. Multiple regression analysis of the bio-nutrients are highly dependent against the variables, R<sup>2</sup> value (0.987326291) and multiple R (0.972356732) in the control rice during summer whereas, the R<sup>2</sup> value (0.955673275) and multiple R (0.963267135) in the cement polluted rice during summer.

**KEYWORDS:** *Oryza sativa*, correlation, multiple regression, multiple linear regression, cement dust, Kannagi, Thalaiyuth.

## INTRODUCTION

Cement dust is a common particulate air pollutant around the cement factories and construction sites. Even though cement is very useful to mankind for building purposes badly affects the vegetation produces considerable heavy metal accumulation in the soil, leaves, stem and fruits (Asubiojo *et al.*, 1991; Umebese and Ade- Ademilua, 2007). The fall out of cement dust areas lead to changes in the soil characteristics and plant structure affects the plant growth with the formation of crusts on leaves, branches, flowers and fruits. These changes reflect irreparable habitat degradation. The cement polluted plants are directly affected through leaf stomata and indirectly by changing the pH of the soil (Singh, 1981).

## MATERIALS AND METHODS

Experimental field work was carried out around the Sankar cement factory at Thalaiyuth of Tirunelveli district. The cultivated rice variety – Kannagi around the vicinity of the factory i.e. 3-10 kms was treated as cement polluted and beyond 10kms as control plants. Bio-nutritional estimations were carried out as prescribed by Sadasivam and Manickam.

#### **RESULT AND DISCUSSION**

The polluted and control rice plants around the Thalaiyuth Cement Factory reported the reduction of bionutrients for instance starch, carbohydrate, total aminoacid, Vitamin-A and Vitamin – A1 in summer and monsoon.

#### **Starch content in Fruits**

Starch content in the cement polluted rice fruits varied from the minimum of  $0.59 \pm 0.414$  in monsoon to the maximum of  $0.64 \pm 0.414$  in summer. On the other hand, starch content in the control fruits varied from the minimum of  $0.92 \pm 0.016$  during summer to the maximum of  $0.99 \pm 0.006$  in monsoon.

#### **Carbohydrate content in Fruits**

Carbohydrate content in the cement polluted rice fruits varied from the minimum of  $0.42 \pm 0.001$  in summer to the maximum of  $0.82 \pm 0.428$  in monsoon. On the other hand, carbohydrate content in the control fruits varied from the minimum of  $0.78 \pm 0.001$  in summer to the maximum of  $0.80 \pm 0.414$  in monsoon.

#### **Total aminoacid content in Fruits**

Total aminoacid content in the fruits varied from the minimum of  $0.40 \pm 0.001$  in summer to the maximum of  $1.25 \pm 0.001$  in monsoon. On the other hand, total aminoacid content in the control fruits varied from the minimum of  $0.728 \pm 0.001$  in monsoon to the maximum of  $0.85 \pm 0.001$  in summer.

## Vitamin A content in Fruits

Vitamin A content in the cement polluted rice fruits reported similar data  $0.25 \pm 0.001$  during summer and monsoon. On the other hand, Vitamin A content in the control fruits varied from the minimum of  $0.48 \pm 0.414$  in summer to the maximum of  $0.51 \pm 0.002$  in monsoon.

## Vitamin B<sub>1</sub> content in Fruits

Vitamin  $B_1$  content in the cement polluted rice fruits varied from the minimum of  $0.12 \pm 0.001$  in summer to the maximum of  $0.16 \pm 0.001$  in monsoon. On the other hand, Vitamin  $B_1$  content in the control fruits varied from the minimum of  $0.38 \pm 0.001$  in summer to the maximum of  $0.40 \pm 0.003$  in monsoon (Table: 1).

 Table: 1 Bio-nutritional analysis of the cement polluted and non-cement polluted Rice Fruits in summer and monsoon

| S. No | Biochemical            | $A_1$          | $\mathbf{A_2}$ | $A_3$           | $A_4$            |
|-------|------------------------|----------------|----------------|-----------------|------------------|
| 1.    | Starch                 | $0.92\pm0.016$ | $0.64\pm0.414$ | $0.99\pm0.006$  | $0.59\pm0.414$   |
| 2.    | Carbohydrate           | $0.78\pm0.001$ | $0.42\pm0.001$ | $0.80\pm0.414$  | $0.82\pm0.428$   |
| 3.    | Total aminoacid        | $0.85\pm0.001$ | $0.40\pm0.001$ | $0.728\pm0.001$ | $1.25\pm0.001$   |
| 4.    | Vitamin A              | $0.48\pm0.414$ | $0.25\pm0.001$ | $0.51\pm0.002$  | $0.25\pm0.001$   |
| 5.    | Vitamin B <sub>1</sub> | $0.38\pm0.001$ | $0.12\pm0.001$ | $0.40\pm0.003$  | $0.16 \pm 0.001$ |

#### **Correlation co-efficient analysis**

Starch and Vitamin A content are positively correlated  $(0.99)^{**}$  at 0.01 level of significant whereas, carbohydrate

 $(0.87)^*$  and Vitamin B<sub>1</sub>  $(0.87)^*$  showed 0.05 level of significant (Table: 2).

| Table: 2 Correlation co        | o-efficient for | bio-nutritiona | l analysis | of cement | polluted an | nd non-cemen | t polluted Rice |
|--------------------------------|-----------------|----------------|------------|-----------|-------------|--------------|-----------------|
| Fruits in summ <u>er and n</u> | nonsoon         |                |            |           |             |              |                 |

| S.No | Biochemical            | $A_1$  | $A_2$  | $A_3$      | A <sub>4</sub> |
|------|------------------------|--------|--------|------------|----------------|
| 1    | Starch                 | 0.59   | 0.50   | 0.99**     | 0.99**         |
| 2    | Carbohydrate           | 0.59   | 0.43   | $0.87^{*}$ | 0.05           |
| 3    | Total aminoacid        | -0.009 | 0.02   | 0.30       | -0.18          |
| 4    | Vitamin A              | -0.41  | 0.99** | 0.99**     | -0.08          |
| 5    | Vitamin B <sub>1</sub> | 0.35   | 0.01   | $0.90^{*}$ | 0.02           |

## **Multiple Regression Analysis**

Multiple regression analysis revealed that the bionutrients are highly dependent against the variables,  $R^2$ value (0.987326291) and multiple R (0.972356732) in the control rice during summer whereas, the  $R^2$  value (0.955673275) and multiple R (0.963267135) in the cement polluted rice during summer. On the other hand, the bio-nutrients are highly dependent against the variables  $R^2$  value (0.977783281) and multiple R (0.967321832) in the control rice,  $R^2$  value (0.966532503) and multiple R (0.955548967) in the cement polluted rice during monsoon (Table: 3).

 Table: 3 Multiple Regression Analysis for bio-nutritional parameters

| Variables      | R Square value | Multiple R  |  |  |
|----------------|----------------|-------------|--|--|
| $A_1$          | 0.987326291    | 0.972356732 |  |  |
| $A_2$          | 0.955673275    | 0.963267135 |  |  |
| A <sub>3</sub> | 0.977783281    | 0.967321832 |  |  |
| $A_4$          | 0.966532503    | 0.955548967 |  |  |

## Table: 4 Multiple Linear Regression Analysis for bio-nutritional parameters

| A <sub>1</sub> | $Y=0.8992$ ; $X_1$ + -20.2733; $X_2$ + -526; $X_3$ + 22.3076; $X_4$ +-33.2882; $X_5$                                           |
|----------------|--------------------------------------------------------------------------------------------------------------------------------|
| A2             | $Y=1.7736; X_1+7.8734; X_2+9.8367; X_3+10.8486; X_4+15.3248; X_5$                                                              |
| A <sub>3</sub> | Y= 0.2953; X <sub>1</sub> + 32998; X <sub>2</sub> + 3.2557; X <sub>3</sub> + 26.4782; X <sub>4</sub> + 10.8392; X <sub>5</sub> |
| $A_4$          | $Y = 0.2954; X_1 + 2.9321; X_2 + 2.8324; X_3 + 3.9993; X_4 + -3.8293; X_5$                                                     |

## CONCLUSION

Bio-nutritional analysis of the cultivated rice variety – Kannagi around Thalaiyuth Sankar cement factory revealed that the fall out of cement dust on the rice plants reflect that the cultivation of rice around the cement factory is dangerous, as far as the health of consumers is concerned.

## REFERENCE

 Asubiojo. O.I, P.O Aina, A.F Oluwole, W. Arshed, O.A. Akande and N.M Spyrou, 1991. Effects of cement pollution on the elemental composition of soils in the neighbourhood of two factories. *Water Air Soil. Poll*, 57: 819-828.

- 2. Ade- Ademilua and Umebese, 2007. The growth of *Phaseolus vulgaris*. L. in a cement site rich in heavy metals. *Pak. J. Biol. Sci.* 10(1): 182-185.
- 3. Singh, 1981, Certain responses of wheat plant to cement dust pollution. *Environ. Pollu*, 24(1): 75-81.