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1. INTRODUCTION 
Iron is essential for almost all living organisms as it is 

involved in a wide variety of important metabolic 

processes. However, Iron is not always readily available; 

therefore, micro organisms use various Iron uptake 

systems to secure sufficient supplies from their 

surroundings. Iron is the fourth most abundant element in 

Earth’s crust.
[1]

  

 

It is a transition metal which exist in two oxidation 

states, Fe(III) and Fe(II). Variable valence of Iron allows 

it to play a key role in the oxidation-reduction 

reactions.
[2,3]

 Iron is essential for various metabolic 

processes like tri-carboxylic acid cycle, electron 

Transport Chain, oxidative phosphorylation and 

photosynthesis. Recently it has also been noted that Iron 

plays an important role in the microbial bioflim 

formation as it regulates the biosynthesis of porphyrins, 

vitamins, antibiotics, toxins, cytochromes, Siderophores, 

pigments and aromatic compounds, and Nucleic acid 

synthesis.
[4]

 At physiological pH (7.35-7.40), The ferrous 

form (Fe
2+

) of Iron is soluble, while the ferric from (Fe
3+

) 

is insoluble.
[5]

  

 

At this stage several report suggested  by different 

scientists in which the concentration of dissolved ferrous 

Iron to be around 10
-10

 – 10
-9

 M
[6]

 while the required 

level of ferrous Iron by living organisms is around 10
-7

 to 

10
-5

 M. Micro organisms produce certain organic 

compounds with low molecular masses to survive under 

such Iron-depleted environment called siderphores. 

Siderophores (Greek sideros meaning Iron and Phores 

meaning bearer) are small high affinity Iron chelating 

compounds secreted by micro organisms such as 

bacteria, Fungi, and also grasses. Siderphores are amonst 

the strongest soluble Fe
3+

 binding agents known. 

Siderophores first binds with iron (Fe
3+

) tightly and then 

the Siderophores Iron complex moves into the cell 

through the cell membrane using the specific siderophore 

receptors.Once Siderophores bound to ferric Iron moves 

to cytosol, the Fe(III) ion gets reduced to Fe(II) ion and 

the ferrous form of Iron becomes free from the 

Siderophores. After release of Iron, Siderophores either 

get degraded or recycled by excretion through efflux 

pump system. Bacterial cell utilizes Fe(II)state and 

numbers of growing bacterial cells increases. as shown  

in Fig.1. 
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ABSTRACT 

Iron is an essential for the growth of almost all living micro organisms because it acts as Catalyst in enzymatic 

processes, oxygen metabolism, electron transfer and DNA and RNA syntheses. Siderophores are organic 

compounds with low molecular masses that are produced by micro organisms and plants growing under low Iron 

conditions. The primary function of these compounds is to chelate the ferric Iron [FeIII] from different terrestrial 

and aquatic habitas and thereby make it available for microbial and plant cells. Siderophores have received much 

attention in recent years because of their potential roles and applications in various fields like environmental, 

Agriculture, Biosensors, medical field etc. Their significance in these applications is because Siderophores have the 

ability to bind a variety of metals in addition to Iron and they have a wide range of chemical structures of specific 

properties.  
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Fig. 1: Siderophore-mechanism. 

 

Siderophores usually form a stable hexadentate 

octahedral complex Preferentially with Fe
3+

 compared to 

other naturally occurring abundant metal ions, although 

if there are fewer than six donor atoms water can also 

coordinate.  

 

Siderophores have numerous applications in different 

fields like ecology, medical field, Agriculture, Biosensor 

and bioremediation.  

 

At present more than 500 Siderophores were reported, of 

which 270 were well characterized
[7]

 while the rest 

remain uncharacterized and their functions are yet to be 

determined.
[8]

 

 

2. Classification of Siderophores on the basis of 

chemical and structural features.  

Depending on the oxygen ligands for Fe(III) 

coordination, chemical properties and structural features 

siderophores have been classified into three main 

categories, namely Hydroxamates, Catecholates and 

Carboxylates as shown in Table-1 and Fig.-2. 
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2.1 Hydroxamate Siderophores 

Hydroxamate Siderophores are produced by Bacteria and 

Fungi. Most hydroxamate groups, C(=O) N- (OH) R, 

where R is an amino acid or a derivative. Each 

hydroxamate group provides two oxygen molecules, 

which form a bidentate ligand with Iron, Each 

hydroxamate is capable of forming a hexadentate 

octahedral complex with ferric ion with a binding 

constant in the range of 10
22

 to 10
32

 M
–1

.
[9-10]

 This strong 

binding between ferric Iron and Siderophores protects 

the complexes against hydrolysis and Enzymatic 

degradation in the environment. The hydroxamate type 

of Siderophores can be detected by different methods 

like Neilands spectrophotometric assay.
[11]

 Electrospray 

ionization mass spectrometry, (Saky’s assay and 

modified overlaid chrome azurol S (O-CAS) assay.
[12,13]

 

 

 
 

2.2 Catecholate (Phenolates) Siderophores 

Such type of siderophore is found only in bacteria.
[14]

 

Each Catecholate group provides two oxygen atoms for 

Chelation with Iron so that a hexadentate octahedral 

complex is formed as in the case of the hydroxamate 

siderophore.
[15]

 Certain Bacteria can produce either 

catecholate siderophore alone or mixed siderophores 

where Catecholate  is one of the member. For example 

Erwinia Carotovora bacteria can produce only 

Catecholate siderophore whereas some members of 

Pseudo-monas produce a mixed siderophore consisting 

of both Catecholates and hydroxamates.
[16]

  

 

The several methods for the detection of Catecholate 

siderophores are Neilands spectrophotometric assay in 

which Catecholate siderophore binds with FeCl3 and 

forms a wine colored complex which showed maximum 

absorbance at 495 nm, HPLC (High-performance liquid 

Chromatography, Electro spray ionization mass 

spectrometry (ESI-MS) and O-CAS assay.
[17-19]

 

 

 

2.3 Carboxylate (Complexones) Siderophores 
Carboxylate type of siderophores is produced by micro 

organisms including Bacteria and Fungi. Carboxylate 

siderophore binds to Iron through carboxyl and hydroxyl 

groups.
[20,21]

 It consists of Citric acid or β–

hydroxyaspartic acid that binds with Iron such as in 

staphyloferrin A, excreted by Staphylococcus aureus that 

consists of one D-Ornithine and two citric acid residues 

linked by two amide bond.  

 

Carboxylate siderophores can be detected by a 

spectrophotometric test in which the siderophore copper 

complex is formed which is scanned for absorption 

maximum between 190 and 280nm
[22]

 other methods for 

the detection of Carboxylate siderophore are O-CAS 

assay, High-Performance liquid Chromatography and 

Mass Spectrometry.
[23]

 

 

 
 

3. Applications of Siderophores 

Siderophore is biological molecule produced by micro 

organisms having wide applications which are discussed 

as follows: 

 

3.1 Agriculture: In the field of Agriculture different 

types of siderophores promote the growth of several 

plant speices and increase their yield by enhancing the 

Iron uptake to plants
[24]

 Most soil micro organisms can 

promote mineral weathering by the production of 

siderophores. Siderophores provide an efficient Fe-

acquisition system because of its high affinity for Fe(III) 

complexation by means of mineral dissolution 

Inoculation of soil with Pseudobactin produced by 

Pseudomonas Putida increases growth and yield of 

various plants
[25,26]

 Powell etal (1980)
[27]

 stated that 

hydroxamate siderophores are present in various soils 

and they are also produced in aquatic environments. 

Further excessive accumulation of heavy metals in toxic 

to most plants and Contaminates the soil which result 

decreased soil microbial activity and soil fertility, and 

yield losses.
[28]

 To remove this problem hydroxamate 

type siderophore present in soil play an important role to 

immobilize the metals. Pseudomonas species can 

enhance plant growth by producing Pyoverdine 

siderophores. Escherichia Coli from endo-rhizosphere of 

sugarcane (Saccharum Sp.) and rye grass (Lolium 
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Perenne) is associated with maximum siderophore 

production and thus enhances plant growth.
[29]

 It has 

been reported that siderophores produced by Aspergillus 

niger, Penicillium Citrinum and Trichoderma harzianum 

increases the shoot and root lengths of chick peas (Cicer 

arietinum) Besides microbial siderophores, plants can 

also synthesize phyto-siderophore which can chelate the 

Iron directly.
[30]

 Some Siderophores which are produced 

by Azadirachat indica Chelates Fe(III) from soil with 

high affinity and thus suppresses the growth of several 

Pathogens.
[31]

 

 

Soils may become Contaminated by the rapid 

accumulation of heavy metals and metalloids. 

siderophores play an important role in detoxifying heavy 

metal Contaminated samples by binding to wide array of 

toxic metals e.g. Cr
3+

, Al
3+

, Cu
++

, Eu
3+

, Pb
++

 etc.
[32]

 

Molybdenum has been found to regulate production of 

azotobactin and Catecholate siderophore in Azobacter 

Vinelandil
[33]

 Pyochelin, a siderophore produced by 

Pseudomonas aeruginosa can Chelate a variety of metals 

like Ag
+
, Al

3+
, Cd

++
, Co

++
, Cu

++
, Hg

2+
, Mn

2+
, Ni

2+
 and 

Zn
++

 and prevents the entry of these metals into the 

bacteria.  

 

3.2 Medical Field: Siderophores have important 

applications in the medical field to fight against 

antibiotic-resistant bacteria and in the treatment of 

several human diseases and infections. These are as 

follows:  

 

Selective drug delivery-Trojan horse strategy.
[34,35]

 

(Siderophore-antibiotic Conjugates-sideromycins) is the 

potentially powerful application that uses the Iron 

transport abilities of siderophores to carry durgs into 

cells by preparation of conjugates between siderophores 

and antimicrobial agents. It uses siderophores as 

mediators to facilitate the cellular uptake of antibiotics. 

This interaction of antibiotic with siderophore results in a 

formation of siderophore antibiotic Conjugates known as 

sideromycins. Nature has provided examples for 

siderophore-antibiotics such as Albomycins, ferrimycins, 

danomycins, salmycins (isolated from Strephtomyces 

and Actinomyces) microcins (isolated from enteric 

bacteria).  

 

Albomycins blocks protein synthesis by inhibiting t-

RNA synthetase in E.coli Danomycins and Salmycins-

inhibit protein synthesis in Gram Positive bacteria. 

 

Ferrimycins inhibit Gram positive bacteria by altering 

protein biosynthesis Microcins- inhibit E.coli and 

Klebsiella SPP.
[36, 37]

 Some siderophores have been used 

in the treatment of Iron overload diseases. In acute Iron 

intoxication and Chronic Iron overload diseases 

siderophores are used as chelating agents which are able 

to bind with Iron to produce complexes that lead to 

formation of ferrioxamine. The ferrioxamine is soluble in 

water and readily excreted through the kidneys it binds 

with Iron in the blood and enhances its elimination via 

urine and faeces. Thus it can be used to decrease the iron 

overload in the body. In the treatment of β-Thalassemia 

and certain other anemia like sickle cell anemia, Periodic 

whole blood transfusions are required. As there are no 

specific physiological mechanisms for Iron removal in 

humans repeated transfusion therapy results in a steady 

build up of Iron. Desferal is the drug used for the 

treatment of Thalassemia major and sicle cell anemia.
[38-

41]
 

 

Some siderophores have been found to be useful in the 

treatment of malaria caused by Plasmodium 

falciparum.
[42]

 for example, The siderophore produced by 

Klebsiella Pneumoniae
[43]

 and the siderophore 

desferrioxamine B, produced by streptomyces pilosus, 

have anti malarial activity against plasmodium 

falciparum
[44]

 Desferrioxamine B enters inside the Prasite 

and causes intracellular depletion of Iron. This agent 

conjugates with methyl anthranilic acid and shows 10 

fold greater invitro activity against P.Falciparum, which 

could be increased further by using nalidixic acid as a 

Conjuagte against multi-drug resistant P.Falciparum. 

This Conjugate exhibits its action similar to the metal-

catlyzed oxidative DNA damage.
[45,46]

  

 

Siderophore potential used as Iron Chelators in the 

treatemtn of cancers. Iron acts as a carrier of oxygen 

inside the human body. Iron found in hemoglobin, in 

Iron-Sulfur clusters or in other proteins plays a vital role 

in a variety of physiological and cellular functions like 

transport of oxygen, electron transport, energy 

metabolism and change in hydrogen per oxide levels.
[47] 

Due to rapid proliferation cancer cells requires higher 

Iron concentration than normal cells for their growth and 

development. Recently use of certain Iron Chelators such 

as siderophores has been reported to decrease the growth 

of cancerous cells. For example desferrioxamines have 

been reported to significantly decrease the progression of 

aggressive tumors in patients with neuroblastoma or 

leukemia. Desferioxamine E produced by 

Actinobacterium was reported to reduce the viability of 

malignant melanoma cells significantly several other 

siderophores namely dexrazoxame, O-trensox, 

desferriexochelins, desferrithiocin and tachpyridine are 

used as Iron Chelators in Cancer therapy.
[48-51]

  

 

Siderophores are used for the removal of transuranic 

elements such as Aluminium and Vanadium. The 

development of electricity generation by Nuclear energy 

has led to increase human exposure to transuranic 

elemtns. Aluminium overload occurs in patients with 

dialysis encephalopathy (a major complication of long 

term dialysis which is caused by the accumulation in the 

brain). Siderophores such as desferol can be used to treat 

chronic aluminum overload desferol mobilizes and 

Chelates aluminium bound to the tissues by forming an 

aluminoxamine comples, which is freely soluble in water 

and is readily excreted through urine or feces. Desferol 

can also eliminate vanadium from the body. It was 

reported that in rats, desferal reduced the vanadium 
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content in kidney by 20% in lungs by 25% and in liver 

by 26%.
[52-54]

 

 

Siderophore from Klebsiella Pneumoniae has been used 

in cosmetics as deodorant.  

 

3.3 Biosensor: A biosensor is a molecule coupled to an 

electrical device such as a Transducer, amplifier or noise 

filter in order to increase the signal to noise ratio that 

allows detection of various types of responses through 

specifically engineered system. Pyoverdines are yellow 

green water soluble fluorescent siderophores 

characterized by the following properties (a) They form a 

strong complex with Fe(III) and have a weak negligible 

affinity for Fe(II) (b) The Fe(III) complexes have very 

high stability constants (approximately k=10
32

) These 

characteristics make Pyoverdine a promising agent for 

the construction of optical biosensors using the 

siderophores with an exceptional Fe(III)- binding 

constant would be an ideal choice for the molecular 

recognition element of the sensor that could be applied in 

the determination of Fe bioavailability in oceanic water 

or soils. The concentration of Iron present in the ocean 

has been determined by using a siderophores as 

biosensor Azobactin produced by A. Vinelandii has been 

used as an optical biosensor for Fe(III) in a modified 

design that depends on the encapsulation of the 

azobactins in soil gel matrices without significant loss of 

its fluorescence signal. N-Methylanthranyl 

desferrioxamine (MA-DFB), a chemical derivative of 

desferrioxamine B(DFB) siderophore has been 

investigated to have a potential role as an environmental 

chemosensor in natural water. Thus, it could be 

hypothesized that some of the uncharacterized 

siderophores may turn out to be novel and potential 

biosensor.
[55-59]

  

 

4. Concluding remarks and future 

Iron is an element for the growth of almost all living 

microorganisms because it acts as a catalyst in enzymatic 

processes, oxygen metabolism, electron transfer and 

DNA and RNA synthesis. It has become clear that 

siderophores represent cental organic compounds in Fe 

uptake in many microorganisms and plants.  

 

Understanding the chemical structures of different 

siderophores and the membrane receptors involved in Fe 

uptake has opened new areas for research. The wide 

applications of siderophores reveals that it holds the 

promise to be implemented as a potential agent in 

different areas including Agriculture, bioremediation, 

biosensor and medical science.  

 

The relationship between siderophores and microbial 

structure in environment with low Fe bioavailability i.e. 

oceans and some soil conditions are still unknown 

combining metagenomics with detailed chemical 

analysis will reveal important information that could be 

used to improve the current applications and develop 

new applications for siderophores.  

 

Table 1: List of Micro organism which which can produce different types of siderophores. 

Classification of 

Siderophores 
Name of Siderophores 

Siderophores producing 

micro organism 

Hydroxamate 

Ferribactin 

Ferrichrome 

Desferrioxamine Fusasinine 

Omibactin 

Pseudomonas fluorescens 

Ustilago Sphaerogena 

Streptomyces Pilosus 

Fusarium roseum 

Burkholderia Cepacia 

Catecholate 

Enterobactin 

Salnochelins 

Vibriobactin 

Enterobactin 

Bacillibactin 

Escherichia Coli 

Salmonella enterica 

Vibrio Cholerae 

Streptomyces Sp. 

Bacillus Subtilis 

Carboxyl ate 

Rhizobactin 

Staphyloferrin A and B 

Rhizoferrin 

Rhizoferrin 

Rhizoferrin 

Rhizobium Meloti 

Staphylococcus aureus 

Rhizopus microsporus 

Mucor Mucedo 

Phycomyes niteus 
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