
www.ejpmr.com        │       Vol 9, Issue 4, 2022.        │       ISO 9001:2015 Certified Journal        │ 

Sakai.                                                                            European Journal of Pharmaceutical and Medical Research 
 

111 

 
 

BLOOD PRESSURE ESTIMATION FROM VOICE SPECTRUM WITH 

CONVOLUTIONAL NEURAL NETWORKS 
 
 

*Motoki Sakai Ph.D. 

 

Associate Professor, College of Engineering, Nihon University, 1 Tokusada Aza-nakagawara, Tamuramachi, 

Koriyama-shi, Fukushima 963-8642 Japan.  

 

 
 

 

 
Article Received on 11/02/2022                                       Article Revised on 03/03/2022                                       Article Accepted on 24/03/2022 

 

 

 

 

 

 

 

 

 

 
 

 

1. INTRODUCTION 

Blood pressure (BP) is a vital sign of respiration, heart 

rate, and body temperature. In particular, high BP, which 

is caused by sleep apnea syndrome, excessive salt intake, 

lack of exercise, etc., is a serious symptom because it 

leads to brain infarct or cardiac infarct.
[1]

 Therefore, we 

must measure our own BP daily. Currently, there are 

many ambulatory BP cuffs and monitors. However, these 

are not necessarily appropriate for healthy people. I-can, 

a general device, is ideal for daily BP measurements. 

 

Cuffless BP estimation methods have been presented in 

previous studies.
[2-6]

 In many of them, BPs were 

estimated using both the ECG signal and pulse wave, 

based on the relationship between the heart and 

cardiovascular systems. However, ECG and pulse wave 

measurement devices, like BP gauges, are not generic for 

ordinary people. In papers.
[3–6]

, Voice signal-based BP 

estimation methods have been proposed in previous 

studies.
[3–6]

 Voice can be recorded by common devices, 

such as a smartphone microphone; it is easy to use 

compared to the BP cuff, ECG, and pulse wave. 

 

There are two reasons for voice signal-based BP 

estimation: one is the influence of vagus nerve activity, 

and the other is a change in the hardness of blood vessels 

around a vocal fold. In general, it is known that the vagus 

nerve regulates the vocal fold and heart, and mental 

stress is often evaluated with speech or BP analysis.
[7–9]

 

as mental stress stimulates the vagus nerve, and the vocal 

fold and heart are affected by the activated vagus nerve. 

On the other hand, literature
[10,11]

 reported that the vocal 

fold is affected by blood flow, and fluctuations 

synchronized with heart activity can be seen in a voice 

spectrogram. From this report, we can hypothesize that 

the hardness of blood vessels varies according to changes 

in the BP level, which influences fluctuations in the 

vocal fold, and then changes the features of the vocal 

spectrum. In fact, studies
[3–6]

 have shown the possibility 

of BP estimation using vocal analysis. 

 

In one study
[3]

, patients with high BP could be 

distinguished from subjects without high BP by using 

vocal analysis to a certain degree, but quantitative BP 

values were not obtained. On the other hand, study
[4]

 

attempted to estimate quantitative BP values from vocal 

signals using a deep learning algorithm. Consequently, 

an accurate estimation of the BP values was obtained. 

However, this study constructed a plurality of networks 

for each specific patient group, and evaluations were 

performed for their groups. For example, neural 

networks have been generated for normal-high BP, 

normal-prehypertension-hypertension, and low BP-

normal-prehypertension-hypertension groups. Such 

artificial grouping can lead to overfitting. Moreover, 

users must know in advance which group is most suitable 

to obtain accurate estimation results. It is not ideal for the 

datasets to be learned for practical use. In our previous 

studies
[5,6]

, we proposed vocal analysis-based BP 

estimation methods using kernel ridge regression (KRR) 

and polynomial models, and accurate estimation results 

were obtained. However, the number of subjects was two 
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(one male and one female), and the parameters of the 

KRR and polynomial model were selected for each 

individual. Thus, this study proposes a common 

convolutional neural network (CNN)- based BP 

estimation method with more subjects. 

 

2. Recording experiment for BP and voice signal 

In this study, BP and voice signals were recorded from 

20 participants (14 men and six women). The ages of 

male subjects ranged from 20 to 24 years, and those of 

female subjects ranged from 20 to 60 years. 

 

We conducted these experiments after obtaining ethical 

approval from the ethical review committee of Tokyo 

Denki University. Before the experiments, informed 

consent was obtained from the subjects. First, the 

purpose of this study and the experimental procedure 

was explained to them. Next, the subjects signed a letter 

of consent if they understood the purpose of this 

research. One trial was conducted according to following 

steps. 

 

I. Voice was recorded using an voice recorder: an ICD-

TX50 produced by SONY. The voice recorder was kept 

5 cm from the subject‟s mouth, and the subject was 

asked to sustain the sound [a] for 7 s (voice signals were 

sampled at 44.1 kHz, 16-bit resolution). 

II. Immediately following voice recording, the subject‟s 

diastolic BP (DBP) and systolic BP (SBP) were 

measured using a BP gauge (HEM-1010, OMRON). 

 

The trial was repeated several times for each participant. 

The number of trials differed for each subject, ranging 

from 10 to 60. 

 

3. Vocal signal-based BP estimation methods 

3.1 Generation of Input data 

As described above, the voice data was recorded for 7 s. 

These raw data were divided into seven 1 s-segments, of 

which, only six segments were used as learning and test 

data, except for the first 1 s-segment. Each separated 

segment was transformed into a Mel-scale, and a 32 98 

RGB image of the Mel-spectrogram was generated (each 

pixel was normalized by dividing by 256.). Finally, 2258 

images for males and 1976 images for females were 

generated and used as input data for the CNNs described 

below. 

 

From the data of 14 males, seven were selected as 

learning data, and the remaining seven were used as test 

data. For the female data, three data points were selected 

for learning, and the remaining three were used for 

testing. In sum, the number of learning Mel-spectrogram 

images was 1462, and that of test images was 796 for 

males, 992 for learning images, and 984 for females. 

 

3.2 CNN structures 

In this research, four existing and one proposed CNN 

structures were adopted (however, as described below, 

parts of the existing CNN structures were modified.). 

The information on the layers is presented in Table. 1. 

Four existing CNN architectures have been proposed in 

the literature.
[12–15]

 The CNN architecture proposed in
[12]

 

(hereafter referred to as net1) was proposed to identify a 

certain speaker. Reference
[13]

 provided the CNN 

structure (net2) to separate the singing voice. For the 

CNN presented in
[14]

 (net3), the recognition of utterance 

content was attempted. Finally, the CNN presented in
[15]

 

(net4) was developed for voice-activity detection. In fact, 

there are more CNN structures for voice signals besides 

these four CNNs, but this paper presents abstracts for 

only these four architectures and their evaluation results 

because these CNNs yielded better evaluation results to a 

certain degree. 

 

In this research, CNNs were constructed with the images 

described in Section 3.1, and transfer learning and fine-

tuning were not performed. In addition, the output layers 

were changed to regression layers, unlike the CNNs in 

the literature
[12]

 through
[15]

, because these CNNs were 

not developed to estimate BP values. 

 

To train the CNN models, the batch size was set to 128, 

400 epochs were used to train the CNN models, and the 

Adam optimization algorithm was selected (learning rate 

= ). These parameters and optimizers were 

common in the five CNNs listed in Table. 1. 

 

The proposed net was devised by referring to net1 (12), 

which was constructed using two convolutional/max 

pooling, one dropout, flattened, and dense layers. In the 

proposed CNN, the pooling layers were replaced with 

max pooling layers, and the number of feature maps of 

the convolutional layer and stride sides of the pooling 

layers were changed. 

Table 1: Adopted CNN structures. 

Model Layer Structure 

net1 

1 
Convution_2D: number of feature map=32, 

filter size = (5,5), activation function='relu' 

2 Average Pooling_2D: pool size= (2, 2), strides=(1,1) 

3 
Convution_2D: number of feature map=32, 

filter size = (5,5), activation function='relu' 

4 Average Pooling_2D: pool size= (2, 2), strides=(1,1) 

5 Dropout: dropout rate=0.2 

6 Flatten 

7 Dense: number of outputs=1 

net2 1 Convution_2D: number of feature map=64, 
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filter size = (3,3), activation function='relu' 

2 Max Pooling_2D: pool size= (2, 2), strides=(1,1) 

3 
Convution_2D: number of feature map=32, 

filter size = (3,3), activation function='relu' 

4 Max Pooling_2D: pool size= (2, 2), strides=(1,1) 

5 
Convution_2D: number of feature map=128, 

filter size = (3,3), activation function='relu' 

6 
Convution_2D: number of feature map=64, 

filter size = (3,3), activation function='relu' 

7 Flatten 

8 Dense: number of output=1 

net3 

1 
Convution_2D: number of feature map=64, 

filter size = (3,3), activation function='relu' 

2 Max Pooling_2D: pool size= (2, 2), strides=(2,2) 

3 Dropout: dropout rate=0.2 

4 Flatten 

5 Dense: number of output=1 

net4 

1 
Convution_2D: number of feature map=40, filter size = 

(5,5), strides=(2,2), activation function='relu' 

2 
Convution_2D: number of feature map=20, filter size = 

(5,5), strides=(2,2), activation function='relu' 

3 
Convution_2D: number of feature map=10, filter size = 

(5,5), strides=(2,2), activation function='relu' 

4 Dropout: dropout rate=0.2 

5 Flatten 

6 Dense: number of output=1, kernel_initializer='normal' 

proposed net 

1 
Convution_2D: number of feature map=60, filter size = 

(5,5), strides=(1,1), activation function='relu' 

2 Max Pooling_2D: pool size= (2, 2), strides=(2,2) 

3 
Convution_2D: number of feature map=16, filter size = 

(5,5), strides=(2,2), activation function='relu' 

4 Max Pooling_2D: pool size= (2, 2), strides=(2,2) 

5 Dropout: dropout rate=0.2 

6 Flatten 

7 Dense: number of output=1, kernel_initializer='normal' 

 

4. Evaluations and results 

In this study, the mean absolute error (MAE) was 

adopted as the evaluation index. The definition of MAE 

is shown in Eq. (1). 

,    (1) 

where  and  are the measured and estimated 

one, respectively.  means the number of test datasets. 

Considering the difference between male and female 

voice pitches, CNN models were constructed based on 

gender. Additionally, CNN models constructed using 

both male and female datasets were constructed to 

indicate the effectiveness of the CNN models constructed 

by gender. Tables 2–4 show the MAE between the 

measured and estimated BPs for all subjects, female, and 

male. 

 

Table. 2: MAE errors between true and estimated BP values for all subjects. 

 net1 net2 net3 net4 proposed net 

SBP 11.8 12.2 16.7 12.8 12.6 

DBP 13.2 18.1 14.6 13.7 13.8 

 

Table. 3: MAE errors between true and estimated BP values for female subjects. 

 net1 net2 net3 net4 proposed net 

SBP 11.9 12.1 8.5 12.7 10.7 

DBP 10.4 10.5 10.31 8.6 11.0 
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Table. 4: MAE errors between true and estimated BP values for male subjects. 

 net1 net2 net3 net4 proposed net 

SBP 8.8 6.4 13.7 8.3 6.8 

DBP 16.6 16.1 17.3 18.1 18.1 

 

Figures 1 and 2 show examples of mel-spectrogram plots 

for two male and two female subjects. In Figures 1 and 2, 

the top shows high SBPs and the bottom shows low 

SBPs. 

 

 
Figure. 1: Examples of Mel-Spectrogram plot for male subjects. 

 

 
Figure. 2: Examples of Mel-Spectrogram plots for female subjects. 
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5. DISCUSSION 

From Figures 1 and 2, we cannot find clear and common 

features to distinguish high SBP from low SBP. 

However, overall, figures 1 and 2 show that Mel-

spectrograms of low SBP do not have frequency bands 

that have higher energy compared to those of high SBP. 

Tables 2 through 3 show that there are no CNN models 

that effectively estimate male SBP, male DBP, female 

SBP, and female DBP. In SBP estimations, the net3 

yielded lowest MAE (8.5 mmHg) for females, and the 

proposed net yielded the lowest MAE (6.8 Â mmHg) for 

males. In DBP estimations, the net4 yielded lowest MAE 

(8.6 mmHg) for females, and the net2 yielded lowest 

MAE (16.1 mmHg) for males. On the other hand, Table 

2 shows that there were no CNN models that could 

estimate an MAE of less than 10.0 mmHg, which 

indicates that the CNN model should be constructed not 

for both male and female data but separately for male 

and female data. 

 

In this study, male DBPs could not be properly 

estimated. The reason for this might be that the CNN 

structures and hyperparameters were selected to increase 

the estimation accuracy of male SBP. In short, the CNN 

structures and hyperparameters were not optimized for 

male DBP, female SBP, and DBP. Therefore, in future 

work, we plan to determine the CNN architectures 

separately for male SBP, male DBP, female SBP, and 

female DBP. 

 

6. CONCLUSION 

This study aimed to estimate SBP and DBP from vocal 

signals using CNN models. Vocal and BP data were 

recorded from 20 subjects and four CNN architectures, 

whose output layers were modified from the existing 

ones, and one proposed architecture was used to estimate 

BPs. As a result, there were no CNN models that could 

effectively estimate both SBP and DBP for men and 

women, but this study showed that there were 

appropriate CNN structures for male SBP, male DBP, 

female SBP, and female DBP estimation. 
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