

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

www.ejpmr.com

Research Article
ISSN 2394-3211
E.IPMR

DEVELOPMENT AND VALIDATION OF ANALYTICAL RP-HPLC METHOD FOR THE ESTIMATION OF AZELNIDIPINE IN BULK AND MARKETED PHARMACEUTICAL DOSAGE FORM

Aedirepally Sreeja Reddy¹*, Vijaya Kuchana², Pasupuleti Sunitha³ and G. Kalyani⁴

¹Department of Pharmaceutical Analysis, Teegala Krishna Reddy College of Pharmacy, Medbowli, Meerpet (V), Balapur (M), Ranga Reddy (Dist), Hyderabad – 500097, Telangana.

²Department of Pharmaceutical Chemistry, Principal and Professor, Teegala Krishna Reddy College of Pharmacy, Medbowli, Meerpet (V), Balapur (M), Ranga Reddy (Dist), Hyderabad – 500097, Telangana.

³Department of Pharmaceutical Analysis, Associate Professor, Teegala Krishna Reddy College of Pharmacy, Medbowli, Meerpet (V), Balapur (M), Ranga Reddy (Dist), Hyderabad – 500097, Telangana.

⁴Department of Pharmaceutical Chemistry, Associate Professor, Teegala Krishna Reddy College of Pharmacy, Medbowli, Meerpet (V), Balapur (M), Ranga Reddy (Dist), Hyderabad – 500097, Telangana.

*Corresponding Author: Aedirepally Sreeja Reddy

Department of Pharmaceutical Analysis, Teegala Krishna Reddy College of Pharmacy, Medbowli, Meerpet (V), Balapur (M), Ranga Reddy (Dist), Hyderabad - 500097, Telangana.

Article Received on 15/11/2023

Article Revised on 05/12/2023

Article Accepted on 26/12/2023

ABSTRACT

A simple, rapid, specific and accurate reverse phase high performance liquid chromatographic method has been developed for the validated of Azelnidipine in bulk as well as in marketed pharmaceutical dosage form. This separation was performed on a Symmetry ODS C18 (4.6×250mm, 5 μ m) column with Methanol: Phosphate Buffer (35:65) v/v as mobile phase at a flow rate of 1.0 mL min-1 with UV detection at 235 nm; the constant column temperature was Ambient. The run time under these chromatographic conditions was less than 8 min. The retention time of Azelnidipine was found to be 2.276min. The calibration plot was linear over the concentration range of 6–14 μ g mL-1 with limits of detection and quantification values of 1.2 and 3.6 ng mL-1 respectively. The mean % assay of marketed formulation was found to be 99.86%, and % recovery was observed in the range of 98-102%. Relative standard deviation for the precision study was found <2%. The developed method is simple, precise, specific, accurate and rapid, making it suitable for estimation of Azelnidipine in bulk and marketed pharmaceutical dosage form dosage form.

KEYWORDS: Azelnidipine, RP-HPLC, Validation, ICH Guidelines.

INTRODUCTION

Azelnidipine is a dihydropyridine calcium channel is marketed by Daiichi-Sankyo pharmaceuticals, Inc. in Japan. It has a gradual onset of action and produces a long-lasting decrease in blood pressure, with only a small increase in heart rate, unlike some other calcium channel blockers.^[1] It is currently being studied for post-ischemic stroke management. Azelnidipine is a vasodilator that induces a gradual decrease in blood pressure in hypertensive patients. Unlike other members of its drug class, Azelnidipine does not induce reflex tachycardia due to vasodilation. This is likely due to the fact that it elicits a gradual fall in blood pressure. Azelnidipine is a vasodilator that induces a gradual decrease in blood pressure in hypertensive patients. Unlike other members of its drug class, Azelnidipine does not induce reflex tachycardia due to vasodilation.^[2] This is likely due to the fact that it elicits a gradual fall in blood pressure. It also exhibits a

prolonged hypotensive effect and has been shown to have a strong anti-arteriosclerotic action in vessels due to its high affinity for vascular tissue and antioxidative activity. Clinical studies have demonstrated that Azelnidipine markedly reduced heart rate and proteinuria in hypertensive patients by inhibiting sympathetic nerve activity. [3] Azelnidipine has also been confirmed to have neuroprotective. cardio-protective. and antiatherosclerotic properties, and has also been found to prevent insulin resistance. The IUPAC name of Azelnidipine is 3-O-(1-benzhydrylazetidin-3-yl) 5-Opropan-2-yl 2-amino-6-methyl-4-(3-nitro phenyl)-1, 4dihydro pyridine-3, 5-dicarboxylate. [4] The Chemical Structure of Azelnidipine is shown in figure-1.

$$\begin{array}{c|c} O \\ N \\ O \\ O \\ \end{array}$$

Fig. 1: Chemical Structure of Azelnidipine.

EXPERIMENTAL

Table 1: Instruments Used.

S.No.	Instruments and Glass wares	Model		
1	HPLC	WATERS Alliance 2695 separation module,		
1	III EC	Software: Empower 2, 996 PDA detector.		
2	pH meter	Lab India		
3	Weighing machine	Sartorius		
4	Volumetric flasks	Borosil		
5	Pipettes and Burettes	Borosil		
6	Beakers	Borosil		
7	Digital ultra sonicator	Labman		

Table 2: Chemicals Used.

S.No.	Chemical	Brand Names
1	Azelnidipine	Local Market
2	Water and Methanol for HPLC	LICHROSOLV (MERCK)
3	Acetonitrile for HPLC	Merck

HPLC METHOD DEVELOPMENT Preparation of Standard Solution

Accurately weigh and transfer 10 mg of Azelnidipine working standard into a 10ml of clean dry volumetric flasks add about 7ml of Methanol and sonicate to dissolve and removal of air completely and make volume up to the mark with the same Methanol.

Further pipette 0.1ml of the above Azelnidipine stock solutions into a 10ml volumetric flask and dilute up to the mark with Methanol.

Procedure

Inject the samples by changing the chromatographic conditions and record the chromatograms, note the conditions of proper peak elution for performing validation parameters as per ICH guidelines.

Mobile Phase Optimization

Initially the mobile phase^[5] tried was Methanol and Methanol: Water with varying proportions. Finally, the mobile phase was optimized to Methanol: Phosphate Buffer in proportion 35:65% v/v.

Optimization of Column

The method was performed with various C18 columns like, X- bridge column, Xterra, and C18 column. Symmetry ODS C18 (4.6 x 250mm, 5 μ m) was found to be ideal as it gave good peak shape and resolution^[6] at 1ml/min flow.

PREPARATION OF BUFFER AND MOBILE PHASE

Preparation of Potassium dihydrogen Phosphate (KH2PO4) buffer (pH-3.6)

Dissolve 6.8043 of potassium dihydrogen phosphate in 1000 ml HPLC water and adjust the pH 3.6 with diluted orthophosphoric acid. Filter and sonicate the solution by vacuum filtration^[7] and ultra-sonication.

Preparation of Mobile Phase

Accurately measured 350 ml (35%) of Methanol, 650 ml of Phosphate buffer (65%) were mixed and degassed in digital ultra sonicater for 15 minutes and then filtered through 0.45 μ filter under vacuum filtration.

Diluent Preparation

The Mobile phase was used as the diluent. [8]

Method Validation Parameters System Suitability

Accurately weigh and transfer 10 mg of Azelnidipine working standard into a 10ml of clean dry volumetric flasks add about 7mL of Diluents and sonicate to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution)

Further pipette 0.1ml of the above Azelnidipine stock solution into a 10ml volumetric flask and dilute up to the mark with diluents.

Procedure

The standard solution was injected for five times and measured the area for all five injections in HPLC. [9] The %RSD for the area of five replicate injections was found to be within the specified limits.

www.ejpmr.com Vol 11, Issue 1, 2024. ISO 9001:2015 Certified Journal 351

Specificity

Preparation of Standard Solution

Accurately weigh and transfer 10 mg of Azelnidipine working standard into a 10ml of clean dry volumetric flasks add about 7ml of Diluents and sonicate to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution)

Further pipette 0.1ml of the above Azelnidipine stock solutions into a 10ml volumetric flask and dilute up to the mark with diluents.

Preparation of Sample Solution

Weight 10 mg equivalent weight of Azelnidipine sample into a 10mL clean dry volumetric flask and add about 7mL of Diluent and sonicate to dissolve it completely and make volume up to the mark with the same solvent. Further pipette 0.1ml of Azelnidipine above stock solution into a 10ml volumetric flask and dilute up to the mark with diluent.

Procedure

Inject the three replicate injections of standard and sample solutions and calculate the assay^[10-12] by using formula:

%ASSAY =

Linearity and Range

Accurately weigh and transfer 10 mg of Azelnidipine working standard into a 10ml of clean dry volumetric flasks add about 7ml of Diluents and sonicate to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution)

Preparation of Level – I (6ppm of Azelnidipine)

Take 0.6ml of stock solution in to 10ml of volumetric flask and make up the volume up to mark with diluents and sonicate the solution for bubble entrapment using ultrasonicator.

Preparation of Level – II (8ppm of Azelnidipine)

Take 0.8ml of stock solution in to 10ml of volumetric flask and make up the volume up to mark with diluents and sonicate the solution for bubble entrapment using ultrasonicator.

Preparation of Level – III (10ppm of Azelnidipine)

Take 0.1ml of stock solution in to 10ml of volumetric flask and make up the volume up to mark with diluents and sonicate the solution for bubble entrapment using ultrasonicator.

Preparation of Level – IV (12ppm of Azelnidipine)

Take 0.12ml of stock solution in to 10ml of volumetric flask and make up the volume up to mark with diluents and sonicate the solution for bubble entrapment using ultrasonicator.

Preparation of Level – V (14ppm of Azelnidipine)

Take 0.14ml of stock solution in to 10ml of volumetric flask and make up the volume up to mark with diluents and sonicate the solution for bubble entrapment using ultrasonicator.

Procedure

Inject each level into the chromatographic system^[13] and measure the peak area.

Plot a graph of peak area versus concentration (on X-axis concentration and on Y-axis Peak area) and calculate the correlation coefficient. [14]

PRECISION

Repeatability

Preparation of Azelnidipine Product Solution for Precision

Accurately weigh and transfer 10 mg of Azelnidipine working standard into a 10ml of clean dry volumetric flasks add about 7ml of Diluents and sonicate to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution)

Further pipette 0.1ml of the above Azelnidipine stock solutions into a 10ml volumetric flask and dilute up to the mark with diluents.

Procedure

The standard solution was injected for six times and measured the area for all six injections in HPLC. The %RSD for the area of six replicate injections was found to be within the specified limits.

Intermediate Precision

To evaluate the intermediate precision^[15] (also known as Ruggedness) of the method, Precision was performed on different days by maintaining same conditions.

Procedure

Analyst 1

The standard solution was injected for six times and measured the area for all six injections in HPLC. The %RSD for the area of six replicate injections was found to be within the specified limits.

Analyst 2

The standard solution was injected for six times and measured the area for all six injections in HPLC. The %RSD for the area of six replicate injections was found to be within the specified limits. [16]

Accuracy

For Preparation of 50% Standard Stock Solution

Accurately weigh and transfer 10 mg of Azelnidipine working standard into a 10ml of clean dry volumetric flasks add about 7mL of Diluents and sonicate to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution)

352

Further pipette 0.05ml of the above Azelnidipine stock solution into a 10ml volumetric flask and dilute up to the mark with diluents.

For Preparation of 100% Standard Stock Solution

Accurately weigh and transfer 10 mg of Azelnidipine working standard into a 10ml of clean dry volumetric flasks add about 7mL of Diluents and sonicate to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution)

Further pipette 0.1ml of the above Azelnidipine stock solution into a 10ml volumetric flask and dilute up to the mark with diluents.

For Preparation of 150% Standard Stock Solution

Accurately weigh and transfer 10 mg of Azelnidipine working standard into a 10ml of clean dry volumetric flasks add about 7mL of Diluents and sonicate to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution)

Further pipette 0.15ml of the above Azelnidipine stock solution into a 10ml volumetric flask and dilute up to the mark with diluents.

Procedure

Inject the Three replicate injections of individual concentrations (50%, 100%, 150%) were made under the optimized conditions.^[17] Recorded the chromatograms and measured the peak responses. Calculate the Amount found and Amount added for Azelnidipine and calculate the individual recovery and mean recovery values.

Limit of Detection and Limit of Quantification (LOD & LOO)

Preparation of 0.95µg/ml Solution (For LOD)

Accurately weigh and transfer 10 mg of Azelnidipine working standard into a 10ml of clean dry volumetric flasks add about 7ml of Diluents and sonicate to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution).

Further pipette 0.0095ml of the above Azelnidipine stock solutions into a 10ml volumetric flask and dilute up to the mark with diluents.

Preparation of 2.9µg/ml Solution (For LOQ)

Accurately weigh and transfer 10 mg of Azelnidipine working standard into a 10ml of clean dry volumetric flasks add about 7ml of Diluents and sonicate to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution)

RESULTS AND DISCUSSION

Optimization of Analytical Method Optimized Chromatographic Conditions

Mobile phase ratio:Methanol: Phosphate Buffer (35:65) V/VColumn:Symmetry ODS C18 (4.6×250mm, 5μm)Column temperature:Ambient

Further pipette 0.029ml of the above Azelnidipine stock solutions into a 10ml volumetric flask and dilute up to the mark with diluents.

Robustness

The analysis was performed in different conditions to find the variability of test results. [18] The following conditions are checked for variation of results.

For Preparation of Standard Solution

Accurately weigh and transfer 10 mg of Azelnidipine working standard into a 10ml of clean dry volumetric flasks add about 7mL of Diluents and sonicate to dissolve it completely and make volume up to the mark with the same solvent. (Stock solution)

Further pipette 0.1ml of the above Azelnidipine stock solution into a 10ml volumetric flask and dilute up to the mark with diluents.

Effect of Variation of Flow Conditions

The sample was analyzed at 0.9 ml/min and 1.1 ml/min instead of 1ml/min, remaining conditions are same. 10µl of the above sample was injected and chromatograms were recorded.

Effect of Variation of Mobile Phase Organic Composition

The sample was analyzed by variation of mobile phase i.e. Methanol: Phosphate Buffer was taken in the ratio and 40:60, 30:70 instead (35:65), remaining conditions^[19] are same. 10µl of the above sample was injected and chromatograms were recorded.

353

www.ejpmr.com Vol 11, Issue 1, 2024. ISO 9001:2015 Certified Journal

Fig. 2: Optimized Chromatographic Condition.

Method Validation

Method validation^[20] is the process used to confirm that the analytical procedure employed for a specific test is suitable for its intended use. Results from method

validation can be used to judge the quality, reliability and consistency of analytical results; it is an integral part of any good analytical practice.

System Suitability

Table 3: Results of System Suitability for Azelnidipine.

A Results of System Sultusmey for Azemaipine.								
S.No. Peak Name RT		Area (µV*sec)	Height (µV)	USP Plate Count	USP Tailing			
1	Azelnidipine	2.277	1652847	185647	6589	1.24		
2	Azelnidipine 2.277		1653658	186254	6587	1.26		
3	Azelnidipine 2.267		1654521	185475	6584	1.28		
4	Azelnidipine 2.265	2.265	1653564	186594	6582	1.29		
5	Azelnidipine 2.277		Azelnidipine 2.		1658745	185684	6895	1.24
Mean			1654667					
Std. Dev.		2355.764						
% RSD			0.142371					

Specificity

The ICH documents define specificity as the ability to assess unequivocally the analyte in the presence of components that may be expected to be present, such as impurities, degradation products, and matrix components.

Analytical method was tested for specificity²¹ to measure accurately quantitates Azelnidipine in drug product. %ASSAY =

The % purity of Azelnidipine in pharmaceutical dosage form was found to be 99.40%.

Linearity

Table 4: Data for Linearity of Azelnidipine.

Concentration	Average
μg/ml	Peak Area
6	1078475
8	1461129
10	1808358
12	2211573
14	2593778

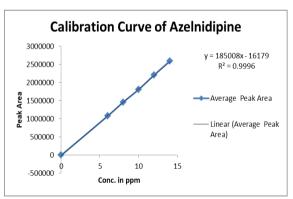


Fig. 3: Linearity Curve of Azelnidipine.

Linearity Plot

The plot of Concentration (x) versus the Average Peak Area (y) data of Azelnidipine is a straight line.

$$Y = mx + c$$

Slope (m) = 18500

Intercept (c) = 16179

Correlation Coefficient (r) = 0.999

Validation Criteria: The response linearity²² is verified if the Correlation Coefficient is 0.99 or greater.

www.ejpmr.com Vol 11, Issue 1, 2024. ISO 9001:2015 Certified Journal 354

Conclusion: Correlation Coefficient (r) is 0.99, and the intercept is 0.16179. These values meet the validation criteria.

Precision

The precision^[23] of an analytical procedure expresses the closeness of agreement (degree of scatter) between a series of measurements obtained from multiple sampling

of the same homogeneous sample under the prescribed conditions.

Repeatability

Obtained Six (6) replicates of 100% accuracy solution as per experimental conditions. Recorded the peak areas and calculated % RSD.

Table 5: Results of Repeatability for Azelnidipine.

S. No	Peak Name	Retention time	Area (µV*sec)	Height (µV)	USP Plate Count	USP Tailing
1	Azelnidipine	2.293	1658954	186958	1.26	6785
2	Azelnidipine	2.276	1658745	187548	1.27	6854
3	Azelnidipine	2.286	1659865	189854	1.26	6852
4	Azelnidipine	2.277	1653254	186985	1.25	6784
5	Azelnidipine	2.280	1654781	189542	1.24	6895
6	Azelnidipine	2.293	1661324	187586	1.28	6965
Mean			1657821			
Std. Dev			3120.433			
%RSD			0.188225			

Intermediate Precision

Analyst-1

Table 6: Results of Intermediate Precision for Azelnidipine.

S.No.	Peak Name	RT	Area	Height	USP Plate	USP
S.NO.	Peak Name	K I	(µV*sec)	(μV)	Count	Tailing
1	Azelnidipine	2.274	1678541	186589	6587	1.26
2	2 Azelnidipine		1685985	186598	6321	1.26
3	Azelnidipine	2.267	1685745	186985	6385	1.25
4	4 Azelnidipine 5 Azelnidipine 6 Azelnidipine		1685987	187854	6580	1.26
5			1698526	187549	6721	1.27
6			1685943	186598	6637	1.26
Mean			1686788			
Std. Dev.			6463.466			
% RSD			0.383182			

Analyst 2

Table 7: Results of Intermediate Precision Analyst 2 for Azelnidipine.

S.No.	Peak Name	RT	Area (μV*sec)	Height (µV)	USPP late count	USP Tailing
1	Azelnidipine	2.277	1665847	167481	6854	1.25
2	Azelnidipine	2.255	1658989	167854	6785	1.26
3	Azelnidipine	2.265	1659845	167895	6854	1.24
4	Azelnidipine	2.255	1665964	167854	6895	1.26
5	Azelnidipine	2.253	1659863	168585	6459	1.25
6	Azelnidipine	2.252	1665986	167859	6456	1.26
Mean			1662749			
Std. Dev.			3501.766			
% RSD			0.210601			

Accuracy: Accuracy at different concentrations (50%, 100%, and 150%) was prepared and the % recovery²⁴ was calculated.

Table 8: The Accuracy Results for Azelnidipine.

%Concentration (at specification Level)	Area	Amount Added (ppm)	Amount Found (ppm)	% Recovery	Mean Recovery
50%	109068.3	5	5.021	100.420%	
100%	202187	10	10.054	100.540%	100.72%
150%	297032.3	15	15.181	101.206%	

Limit of Detection

The detection limit^[25] of an individual analytical procedure is the lowest amount of analyte in a sample which can be detected but not necessarily quantitated as an exact value.

LOD=
$$3.3 \times \sigma / s$$

Where

 σ = Standard deviation of the response

S = Slope of the calibration curve

Result

 $=0.95 \mu g/ml$

Ouantitation Limit

The quantitation limit^[26] of an individual analytical procedure is the lowest amount of analyte in a sample which can be quantitatively determined.

$LOQ=10\times\sigma/S$

Where

 σ = Standard deviation of the response

S = Slope of the calibration curve

Result

 $= 2.9 \mu g/ml$

Table 9: Results of LOD and LOO.

LOD	0.95925344
LOQ	2.906828605

SE of Intercept = Excel Function (Data Analysis \rightarrow Regression)

SD of Intercept = SE of Intercept * \sqrt{N}

LOD = 3.3 * (SD of Intercept/Slope)

LOQ = 10 * (SD of Intercept/Slope)

Robustness: The robustness was performed for the flow rate variations from 0.9 ml/min to 1.1ml/min and mobile phase ratio variation from more organic phase to less organic phase ratio for Azelnidipine. The method is robust^[27] only in less flow condition. The standard of Azelnidipine was injected by changing the conditions of chromatography. There was no significant change in the parameters like resolution, tailing factor, asymmetric factor, and plate count.

Table 10: Results for Robustness.

Parameter Used for Sample Analysis	Peak Area	Retention Time	Theoretical Plates	Tailing Factor
Actual Flow rate of 1.0 mL/min	1658242	2.312	6569	1.24
Less Flow rate of 0.9 mL/min	1854215	2.458	6865	1.35
More Flow rate of 1.1 mL/min	1758468	2.032	6254	1.32

Stability Studies

The specificity of the method can be demonstrated by applying stress conditions using acid, alkaline, peroxide, thermal, UV, water degradations. The sample was

exposed to these conditions the main peak of the drug was studied for peak purity that indicating the method effectively separated the degradation products^[28] from the pure active ingredient.

Table 11: Results of Forced Degradation Studies for Azelnidipine.

S.No.	Stress	Peak Area	% of Degraded	% of Active	Total % of
5.110.	Condition	reak Area	Amount	Amount	Amount
1	Standard	1658242	0	100%	100%
2	Acidic	1331734.15	19.69	80.31	100%
3	Basic	1594233.85	3.86	96.14	100%
4	Oxidative	1394747.34	15.89	84.11	100%
5	Thermal	1575827.37	4.97	95.03	100%
6	Photolytic	1345331.73	18.87	81.13	100%
7	Water	1360090.08	17.98	82.02	100%

SUMMARY AND CONCLUSION

The analytical method was developed by studying different parameters. First of all, maximum absorbance was found to be at 235nm and the peak purity was excellent. Injection volume was selected to be 10μl which gave a good peak area. The column used for study was Symmetry ODS C₁₈ (4.6×250mm, 5μm) because it was giving good peak. Ambient temperature was found to be suitable for the nature of drug solution. The flow rate was fixed at 1.0ml/min because of good peak area and satisfactory retention time. Mobile phase is Methanol: Phosphate Buffer pH-3.6 in the ratio of 35:65 v/v was fixed due to good symmetrical peak. So this mobile phase was used for the proposed study. Methanol

was selected because of maximum extraction sonication time was fixed to be 10min at which all the drug particles were completely soluble and showed good recovery. Run time was selected to be 8min because analyze gave peak around 2.276 and also to reduce the total run time. The percent recovery was found to be 98.0-102 was linear and precise over the same range. Both system and method precision was found to be accurate and well within range. The analytical method was found linearity over the range of 6-14ppm of the Azelnidipine target concentration. The analytical passed both robustness and ruggedness tests. On both cases, relative standard deviation was well satisfactory.

BIBLIOGRAPHY

- 1. https://go.drugbank.com/drugs/DB09230
- 2. https://pubchem.ncbi.nlm.nih.gov/compound/Azelni dipine
- 3. https://en.wikipedia.org/wiki/Azelnidipine
- https://medicaldialogues.in/generics/azelnidipine-2722518
- 5. Dr. Kealey and P.J Haines, Analytical Chemistry, 1st edition, Bios Publisher, 2002; P1-7.
- 6. A. Braith Wait and F. J. Smith, Chromatographic Methods, 5th edition, Kluwer Academic Publisher, 1996; 1-2.
- Andrea Weston and Phyllisr.
 Brown, HPLC Principle and Practice, 1st edition Academic press, 1997; 24-37.
- 8. Yuri Kazakevich and Rosario Lobrutto, HPLC for Pharmaceutical Scientists, 1st edition, Wiley Interscience A John Wiley & Sons, Inc., Publication, 2007; 15-23.
- 9. Chromatography, (online). URL:http://en.wikipedia.org/wiki/Chromatography.
- Meyer V.R. Practical High-Performance Liquid Chromatography, 4th Ed. England, John Wiley & Sons Ltd, 2004; 7-8.
- 11. Sahajwalla CG a new drug development, Vol 141, Marcel Dekker Inc., New York, 2004; 421–426.
- 12. Introduction to Column. (Online),URL:http://amitpatel745.topcities.com/index_files/study/columncare.pdf
- 13. Detectors used in HPLC (online)URL:http://wiki.an swers.com/Q/What_detectors_are_used_in_HPLC
- Detectors (online), URL:http://hplc.chem.shu.edu/NEW/HPLC_Book/D etectors/det_uvda.html
- Detectors (online), URL:http://www.dionex.com/enus/webdocs/64842-31644-02_PDA-100.pdf
- 16. Detectors (online), URL:http://www.ncbi.nlm.nih.gov/pubmed/8867705
- 17. Detectors (online), URL:http://www.chem.agilent.com/Library/applicati ons/59643559.pdf
- Detectors (online), URL:http://hplc.chem.shu.edu/new/hplcbook/detect or
- 19. Draft ICH Guidelines on Validation of Analytical Procedures Definitions and terminology. Federal Register, vol 60. IFPMA, Switzerland, 1995; 1126.
- Code Q2B, Validation of Analytical Procedures;
 Methodology. ICH Harmonized Tripartite
 Guidelines, Geneva, Switzerland, 1996; 1-8.
- 21. Introduction to analytical method validation (online), available from: URL: http://www.standardbase.hu/tech/HPLC%20validati on%20PE.pdf.
- 22. Data elements required for assay validation, (online) available from: URL: http://www.labcompliance.com/tutorial/methods/def ault.aspx.

- 23. Snyder LR practical HPLC method development, 2nd edition. John Wiley and sons, New York, 1997; 180-182.
- 24. Skoog D A, West D M, Holler FJ: Introduction of analytical chemistry. Sounder college of publishing, Harcourt Brace college publishers, 1994; 1-5.
- 25. Sharma B K, Instrumental method of chemical analysis Meerut, 1999; 175-203.
- 26. Breaux J and Jones K: Understanding and implementing efficient analytical method development and validation. Journal of Pharmaceutical Technology, 2003; 5: 110-114.
- 27. Willard, H. y. Merritt L.L, Dean J.A and Settle F.A "Instrumental Methods of Analysis" 7th edition CBS publisher and distributors, New Delhi, 1991; 436-439.
- 28. ICH Q2A, "Validation of Analytical Methods, Definitions and Terminology", ICH Harmonized tripartite guideline, 1999.
- 29. Dr. Sushil D. Patil1*, Dr. Rishikesh S Bachhav2, Dr. Pavan B. Udavant3 ,Dr. Sapana P. Ahirrao4 , Dr. Deepak S.bhambere4, Development and Validation of Stability Indicating RP-HPLC Method for Azelnidipine for bulk drug, Nat. Volatiles & Essent. Oils, 2021; 8(5): 11151-11157.
- 30. Megha G. Gore * and Pratap S. Dabhade, RP-HPLC Method Development and Validation of Azelnidipine, Gore and Dabhade, IJPSR, 2016; 7(12): 5111-5114.
- 31. D. Prabhakar1*, J. Sreekanth2, K.N. Jayaveera3, Method Development and Validation of Azelnidipine by RP-HPLC, International Journal of ChemTech Research, 2017; 10(10): 418-423.
- 32. Sneha Ubale*, Dr. M.S.Kalshetti, Bhavana Habib, Jyoti Mittha, Sagar Adlinge, Development and Validation of RP-HPLC Method for Quantification of Azelnidipine in Tablet, International Journal of Creative Research Thoughts (IJCRT), © 2021 IJCRT, July, 2021; 9(7): f797-f802.
- 33. *Snehal D. Jadhav, Prachi B. Lokhande, Vaibhav L. Narwade, Mahananda V. Ghodke, Rutuja S. Desai and Prerna R. Mote, Method Development & Validation of Stability Indicating Rp-Hplc Method for Simultaneous Estimation for Azelnidipine & Telmisartan in Bulk & Pharmaceutical Dosage Form, World Journal of Pharmaceutical and Medical Research, wjpmr, 2022; 8(3): 216–222.