

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

www.ejpmr.com

SJIF Impact Factor 7.065

Research Article ISSN 2394-3211 EJPMR

SELVESTER SCORE AS A PREDICTOR OF LEFT VENTRICULAR SYSTOLIC FUNCTION RECOVERY IN ST-SEGMENT ELEVATION MYOCARDIAL INFARCTION (STEMI)

Mahmoud Tantawy, MD¹*, Alaa Ahmed Abdel Fattah¹, Ahmed Fathy Tamara, MD² and Ibrahim Abdel Hamid Ibrahim, MD¹

¹Cardiology Department, Faculty of Medicine –Misr University for Science and Technology. ²Cardiology Department, Faculty of Medicine – Ain Shams University.

*Corresponding Author: Dr. Mahmoud Tantawy, MD

Cardiology Department, Faculty of Medicine -Misr University for Science and Technology.

Article Received on 19/02/2024

Article Revised on 10/03/2024

Article Accepted on 31/03/2024

ABSTRACT

Background: Ischemic heart disease is the most common contributor to left ventricular dysfunction. The extent of left ventricular (LV) function varies considerably among patients with extensive coronary disease of patients at the highest risk for developing left ventricular (LV) dysfunction could serve to inform the use of certain therapies. **Objective:** The aim of this study is to assess the correlation between the Selvester score and the left ventricular dysfunction improvement in patients with anterior STEMI and reduced EF. **Patients and Methods:** This prospective observational study was done on patients with acute anterior STEMI with LVSD. All patients were subjected to full history taking, twelve lead surface ECG, and echocardiography data were performed for all patients. **Results:** The difference in the Selvester Score on discharge and after three months showed no statistically significant correlation with LV dysfunction improvement. The studied patients demonstrated a cut-off point of \geq 7 for the Selvester Score at discharge, the ROC analysis revealed a sensitivity of 85.71% and a specificity of 100.00%. The positive predictive value (+PV) is 100.0%, while the negative predictive value (-PV) is 79.2%. **Conclusion:** Our study and suggest that high selvester score at hospital discharge in patients with STEMI whom underwent primary PCI is associated with poor LV systolic function recovery after 3months.

KEYWORDS: ST-Segment Elevation Myocardial Infarction, left ventricular.

INTRODUCTION

Ischemic heart disease is the most common contributor to left ventricular dysfunction. The extent of left ventricular (LV) function varies considerably among patients with extensive coronary disease (*Gao et al.*, *2012*). Early identification of patients at the highest risk for developing left ventricular (LV) dysfunction could serve to inform the use of certain therapies (*Bhave et al.*, *2012*).

Recent studies have highlighted a fall in acute and longterm mortality following ST-segment elevation myocardial infarction (STEMI) in parallel with greater use of reperfusion therapy, including Percutaneous coronary intervention (PCI) (*Townsend et al., 2016; Puymirat et al., 2012*). However, a problem with this approach is that not all patients with STEMI improve or maintain heart function following PCI. 4.7–8.6% of patients may experience decreased heart function even after undergoing successful primary PCI (*Kelly et al., 2011; Spencer et al., 2002*). Methods of detection and monitoring of left ventricular systolic dysfunction in STEMI patients should be simple, objective, non-invasive, and feasible for common implementation. Two- -dimensional transthoracic echocardiography (TTE) enables the assessment of global and regional left ventricular systolic function(LVSF). Left ventricular ejection fraction (LVEF) is a well-recognized marker of LVSF and an independent prognostic factor (*Oh*, 2007).

Selvester QRS score in Non ischemic dilated cardiomyopathy (NIDCM) might reflect the electrophysiological and pathological changes of myocardial and interstitial tissues. It may be attributed to the structural or functional changes accompanied by the progression of cardiac remodeling or successful reverse remodeling. Thus, we believe that the Selvester QRS scoring system, which is noninvasive and can be evaluated repeatedly using a resting ECG, may be useful for the quantification of myocardial fibrosis in NIDCM (Chaudhry et al., 2017).

Recently, the Selvester QRS score was demonstrated to be a strong predictor of infarct size and poor outcomes in patients with STEMI (*Watanab et al., 2016*).

AIM OF THE WORK

The aim of this study is to assess the correlation between the Selvester score and the left ventricular dysfunction improvement in patients with anterior STEMI and reduced EF.

PATIENTS AND METHODS

This study was done in the coronary care unit and the coronary catheterization lab unit at the cardiology department at Misr University for Science and Technology (MUST) hospital from August 2022 till February 2023.

• **Patients:** This study was conducted on patients who presented with ST-segment elevation anterior myocardial infarction (anterior STEMI) with left ventricular systolic dysfunction (EF<50%) and who underwent primary percutaneous intervention, The Selvester QRS score and Echocardiography were done for all patients at hospital discharge and three months after to obtain a correlation between the Selvester score and the EF improvement.

Criteria of patient selection

Inclusion criteria: Age > 18 years. Patients presented with chest pain associated with ECG changes fulfilling criteria for diagnosis of anterior ST elevation myocardial infarction within 48 hours of symptom onset (chest pain) or after 48 hours if they had persistent symptoms (chest pain) suggestive of ongoing myocardial ischemia or hemodynamic instability and who also present with new onset left ventricular systolic dysfunction (LVSD) (EF<50%) that underwent primary PCI.

Exclusion Criteria: Patients who presented with STEMI after 48 hours and no evidence suggestive of ongoing ischemia. Patient who underwent thrombolytic reperfusion therapy. Patients are known to have heart failure with reduced ejection fraction before presenting with STEMI. Patients with congenital heart diseases. Patients with previous Coronary Artery Bypass Graft (CABG). Patients who refused to participate in this study.

METHODS

Diagnosis

All patients were subjected to the following Full history taking; focusing on Risk factors for Coronary Artery Disease (CAD): Age. Sex. Smoking status. Diabetes mellitus. Hypertension. Dyslipidemia. Family history of premature CAD. Prior MI. Chronic kidney disease.

Full general examination

Clinical examination; focusing on Killip class on admission: Killip class I includes individuals with no clinical signs of heart failure. Killip class II includes individuals with rales or crackles in the lungs, an S 3 gallop, and elevated jugular venous pressure. Killip class III describes individuals with frank acute pulmonary edema. Killip class IV describes individuals in cardiogenic shock or hypotension (measured as systolic blood pressure < 90 mmHg), and evidence of low cardiac output (oliguria, cyanosis, or impaired mental status). The history and clinical exam were done in a private space to ensure the privacy of the patient and the confidentiality of the data obtained.

Procedural Parameters

All patients received adjuvant medical therapy (loading dose of Aspirin (300 mg), P2Y12 inhibitors (Clopidogrel 600 mg or Ticagrelor 180 mg), and High-Intensity dose of Statins (Atorvastatin or Rosuvastatin) according to the ESC guidelines of STEMI (*Ibanez et al., 2018*). Primary PCI was performed by an expert interventional cardiologist who performs more than 75 primary PCIs per year according to the 2017 ESC guidelines of STEMI. All patients received Heparin (100 IU/Kg) when the coronary anatomy was first defined.

Post-procedural parameters

Twelve lead surface ECGs

Twelve lead surface ECGs (serial): Twelve lead surface ECG at discharge, and 3 months after discharge. Selvester-QRS score was calculated by the researcher and revised blindly by consultant cardiology who did not have any information about the patient.

(*Yontar et al., 2021*). Selvester-QRS score was measured using the ECG recording. The amplitude, duration, amplitude ratio, and notch of Q, R, and S waves were measured in each ECG lead except lead III, the score was individually calculated with each criterion. Using 37 ECG criteria capable of generating a total of 29 points, each point was assigned 3% of the LV mass.

Lead	Duration (msec.)	Points	Amplitude Ratios	Points	Max Leads Points
Ι	Q≥30	(1)	R/Q≤1	(1)	2
т	Q≥40	(2)			2
11	Q≥30	(1)			2
AVL	Q≥30	(1)	R/Q≤1	(1)	2
AVF	Q≥50	(3)	R/Q≤1	(2)	5

<u>www.ejpmr.com</u>

	Q≥40	(2)			
	Q≥30	(1)	R/Q≤2	(1)	
	Any Q	(1)			
V1	Q≥50	(2)			4
	Q≥40	(1)	$R/S \ge 1$	(1)	
V2	Any Q or R≤20 R≥60 R≥50	(1) (2) (1)	R/S≥1.5	(1)	4
V3	Any Q or R≤30	(1)			1
V4	Q≥20	(1)	R/Q or R/S \leq 0.5 R/Q or R/S \leq 1	(2) (1)	3
V5	Q≥30	(1)	R/Q or R/S≤1 R/Q or R/S≤2	(2) (1)	3
V6	Q≥30	(1)	R/Q or R/S≤1 R/Q or R/S≤3	(2) (1)	3

Echocardiography data: Transthoracic echocardiography was performed by using a GE Vivid E9 echo machine, Recordings were taken on patients positioned in the left lateral decubitus position. Echocardiography was performed by experienced cardiologists who were blinded to other data. All measurements were performed according to the latest guidelines. Left ventricular ejection fraction (LVEF) was calculated according to the Modified Simpson's method, eye balling method (*Yontar et al., 2021*). Echocardiography was done at hospital admission and three months after.

Ethical Consideration: Agreement for this study was obtained from the ethical committee, approval number (2022/0012) in addition, informed consent was obtained from patients after adequate provision of information regarding the study requirements, purpose, and risks. The study was approved by the Ethics Committee of the Faculty of Medicine Misr University Science and Technology. There were adequate provisions to maintain the privacy of participants and the confidentiality of the data were as follows. We put code numbers to each

participant with the name and address kept in a special file. We hide the patients' names when we use the research. We used the results of the study only in a scientific manner and did not use it in any other aims.

Sample Size calculation: Sample size calculation was based on the difference in the no-reflow phenomenon observed in patients with high QRS scores (\geq 4) than in those with low QRS scores retrieved from previous (*Uyarel et al., 2006*).

Using G*power version 3.0.10 to calculate sample size based on the difference of 31%, 2-tailed test, α error =0.05, and power 80.0% the total sample size was 50 cases at least.

RESULTS

This study was conducted on 54 patients who presented with ST-segment elevation anterior myocardial infarction (anterior STEMI) with left ventricular systolic dysfunction (EF<50%) and who underwent primary percutaneous intervention.

 Table 1: Demographic data and characteristics of the studied patients.

		Total no. $= 54$
	Mean \pm SD	55.83 ± 11.80
Age (years)	Range	21 - 86
Sou	Female	16 (29.6%)
Sex	Male	38 (70.4%)
Smolring Status	No	22 (40.7%)
Shloking Status	Yes	32 (59.3%)
DM	No	26 (48.1%)
DM	Yes	28 (51.9%)
HTN	No	25 (46.3%)
HIN	Yes	29 (53.7%)
Dualinidamia	No	21 (38.9%)
Dyshpidenna	Yes	33 (61.1%)
Equily Up of IUD	No	37 (68.5%)
	Yes	17 (31.5%)
Drior MI	No	44 (81.5%)
	Yes	10 (18.5%)
CKD	No	45 (83.3%)

www.ejpmr.com

	Yes	9 (16.7%)
Duration of symptoms/	Median (IQR)	5.5 (2 – 18)
Ischemic Time (hrs)	Range	0.25 - 72
	Ι	25 (46.3%)
Killin Class	II	13 (24.1%)
Kinip Class	Yes 9 (16. Median (IQR) 5.5 (2) Range 0.25 (46) II 13 (24) III 7 (13) IV 9 (16)	7 (13.0%)
	IV	9 (16.7%)

Table (2): Relation of improvement with demographic data and characteristics of the studied patients.

		Total no. = 54
	Mean \pm SD	55.83 ± 11.80
Age (years)	Range	21 - 86
Sou	Female	16 (29.6%)
Sex	Male	38 (70.4%)
Smolving Status	No	22 (40.7%)
Smoking Status	Yes	32 (59.3%)
DM	No	26 (48.1%)
DM	Yes	28 (51.9%)
UTN	No	25 (46.3%)
HIN	Yes	29 (53.7%)
Dualinidamia	No	21 (38.9%)
Dyshpidenna	Yes	33 (61.1%)
Family Ux of IUD	No	37 (68.5%)
Faining HX of IHD	Yes	17 (31.5%)
Drior MI	No	44 (81.5%)
	Yes	10 (18.5%)
CKD	No	45 (83.3%)
CKD	Yes	9 (16.7%)
Duration of symptoms/	Median (IQR)	5.5 (2 – 18)
Ischemic Time (hrs)	Range	0.25 - 72
	Ι	25 (46.3%)
Killin Class	II	13 (24.1%)
Kimp Class	III	7 (13.0%)
	IV	9 (16.7%)

P-value > 0.05: Non-significant; P-value < 0.05: Significant; P-value < 0.01: Highly significant, *: Chi-square test; •: Independent t-test.

Primary PCI		Improved	Not improved	Test	D voluo	Sig
		No. = 19	No. = 35	value	r -value	Sig.
Door to balloon time/	Mean ± SD	47.89 ± 15.12	66.57 ± 19.99	2 5 5 2 .	0.001	цс
Reperfusion Time (min.)	Range	20-75	20 - 120	-5.552•	0.001	пз
	Ι	2 (10.5%)	5%) 10 (28.6%)			
TIMI flow post-stenting	II	6 (31.6%)	18 (51.4%)	8.202*	0.017	S
	III	11 (57.9%)	7 (20.0%)			
	0	2 (10.5%)	7 (20.0%)		0.000	
MBC nest stanting	Ι	1 (5.3%)	14 (40.0%)	11 726*		цс
wibG post stenting	Π	7 (36.8%)	9 (25.7%)	11.720	0.008	пз
	III	I 9 (47.4%) 5 (14.3%)				
Duration of symptoms/	Median (IQR)	2 (1.5 – 6)	10(2-48)	-2.620≠	0.009	HS
Ischemic Time (hrs)	Range	0.5 - 24	1 – 72			

P-value > 0.05: Non-significant; P-value < 0.05: Significant; P-value < 0.01: Highly significant, *: Chi-square test; •: Independent t-test.

I

L

		Improved	Not improved	Testesless	Devalue	C:a	
		No. = 19	No. = 35	1 est value	P-value	51g.	
Before							
Eabo (EE)	Mean \pm SD	33.05 ± 9.83	29.54 ± 9.51	1 280.	0.206	NC	
ECHO (EF)	Range	17-45	10-45	1.280•	0.200	IND	
ECC (Salvester Seems)	Median (IQR)	4 (4 – 6)	11 (9 – 12)	5 025-	<0.001	UC	
ECG (Servester Score)	Range	0-7	1-13	-3.033∓	<0.001	пз	
After 3 months							
Eabo (EE)	Mean \pm SD	48.89 ± 10.03	33.57 ± 9.50	5 552.	<0.001	UC	
ECHO (EF)	Range	27-70	15-50	5.552•	<0.001	пз	
ECC (Salvester Seems)	Median (IQR)	4(2-4)	10 (8 - 11)	5 270-	<0.001	UC	
ECG (Servester Score)	Range	0-6	2-12	-3.3787	<0.001	пз	
Difference	Difference						
Eabo (EE)	Median (IQR)	15 (13 – 18)	5(0-6)	5 624-	<0.001	UC	
ECHO (EF)	Range	7-27	0-21	-3.024∓	<0.001	пз	
ECG (Selvester Score)	Median (IQR)	-1(-2-0)	-1 (-1 - 0)	-0.724≠	0.469	NS	

Table (4): Relation	between	improvement	and	QRS	selvester	score	ECG	bat	discharge	and	after	3	months
follow-up among the	studied j	patients.							_				

P-value > 0.05: Non-significant; P-value < 0.05: Significant; P-value < 0.01: Highly significant, •: Independent t-test; \neq : Mann-Whitney test.

ROC curve for ECG (Selvester Score) at discharge detecting non-improvement among the studied patients.

Cut off point	Cut off point AUC		Specificity	+PV	-PV	
>7	0.916	85.71	100.00	100.0	79.2	

Figure (1): ROC curve for ECG (Selvester Score) at discharge detecting non-improvement among the studied patients.

Table (5): Univariate and multivariate	logistic regression	ı analysis for	factors	associated	with non-im	provement
among the studied patients.						

	Univariate				Multivariate (Backward: Wald)					
	D voluo	Odds ratio	95% C.	I.for OR	D voluo	Odds ratio	95% C.I.for OR			
	P-value	(OR)	Lower	Upper	r -value	(OR)	Lower	Upper		
Sex (male)	0.009	5.370	1.526	18.903	1	-	_	-		
Smoking Status	0.016	4.286	1.309	14.032	1	-	_	-		
DM	0.032	3.667	1.120	12.001	1	-	_	-		
HTN	0.019	4.153	1.260	13.689	0.042	15.536	1.104	218.545		
Dyslipedemia	0.038	3.437	1.068	11.068	1	-	_	-		
Family Hx of IHD	0.024	6.375	1.273	31.920	0.071	20.749	0.775	555.602		
Duration of symptoms/	0.012	1 738	1 3 8 5	16 211						
Ischemic Time >5 (hrs)	0.015	4.730	1.365	10.211	-	_	_	_		
Killip Class	0.011	2.506	1.237	5.076	0.011	10.286	1.690	62.617		

Door to balloon time/	0 000	5.370	1.526	18.903	0.012	130.268	2.907	5836 734
Reperfusion Time >45 (min.)	0.009							5650.754
TIMI flow post stenting	0.011	0.311	0.126	0.769	0.039	0.110	0.013	0.896
MBG post stenting	0.006	0.394	0.203	0.766	_	_	_	_

Га	ble (6): Relation of Selvester Score at	t discharge with other studied]	parameter	s among	g the st	udied j	patie	nts.

		ECG (Selvester Score) before		Test volue	D voluo	Sig	
	Μ		Range	Test value	r-value	Sig.	
Ser	Female	6 (4 – 10)	2 - 13	1 522	0.128	NS	
Sex	Male	10 (5 – 11)	0 - 13	-1.323•			
Smalting Status	No	5.5 (4 - 10)	2 - 13	2,000	0.046	S	
Shloking Status	Yes	10 (6 - 11.5)	0 – 13	-2.000•			
DM	No	6 (4 – 10)	0 – 13	2 680.	0.007	HS	
	Yes	10 (6.5 – 12)	3 – 13	-2.089•			
LITNI	No	6 (4 – 10)	0 – 13	1.692.	0.092	NS	
HIN	Yes	10 (6 – 11)	1 – 13	-1.085*			
Dyslipidemia	No	6 (4 – 10)	2 - 13	2 246	0.019	S	
	Yes	10 (6 – 12)	0 – 13	-2.540•			
Family Hx of IHD	No	6 (4 – 11)	0 - 13	1 202	0.196	NS	
	Yes	10 (9 – 11)	1 – 13	-1.292•			
Prior MI	No	7.5 (4 – 11)	0 – 13	2 721.	0.006	HS	
	Yes	11 (10 – 13)	6 – 13	-2.731•			
СКД	No	8 (5 – 11)	0 – 13	0.700	0.484	NS	
	Yes	10 (10 – 11)	3 – 13	-0.700•			
Killip Class	Ι	5 (4 – 8)	1 – 12		0.001	HS	
	II	11 (10 – 11)	3 – 13	16 621≠			
	III	11 (7 – 12)	0 - 12	10.031+			
	IV	11 (10 – 13)	3 – 13				
TIMI flow post-stenting	Ι	9.5 (4.5 – 11)	1 – 12		0.185	NS	
	II	10 (6.5 – 11)	3 – 13	3.380≠			
	III	6 (4 – 10)	0 – 13				
	0	9 (4 – 11)	4 - 12		0.107	NS	
MBG post stenting	Ι	10 (9 – 11)	1 – 13	6 0024			
	II	9.5 (4.5 - 12.5)	3 – 13	0.092≠	0.107	TND	
	III	5.5 (3 - 7)	0-13				

P-value > 0.05: Non-significant; P-value < 0.05: Significant; P-value < 0.01: Highly significant, •: Mann-Whitney test; \neq : Kruskal-Wallis test

LIMITATIONS

Our study is observational in nature with the known limitations of this kind of studies including selection bias, slow investigation and expensive. The results were obtained from a single medical center with a relatively small sample size.

RECOMMENDATIONS

More clinical trials with larger sample sizes and more data are needed for further evaluation .More studies are needed to proof the effectiveness of using selvester score as a simple predictor for LV systolic dysfunction recovery after primary PCI .It is vital to define higherrisk patients for early intervention and close follow-up after discharge in acute coronary syndromes.

CONCLUSION

Selvester score wasn't used before as a predictor of LV systolic function recovery with STEMI patients, so it is the first time to use in Our study and suggest that high selvester score at hospital discharge in patients with

I

STEMI whom underwent primary PCI is associated with poor LV systolic function recovery after 3months.Our findings may aid in the clinical management of patients with STEMI in the early stages of their hospitalization, patients with high selvester score are high risk for developing congestive heart failure and arrhythmias so they need close monitoring and early aggressive medical treatment.

REFERENCES

 Bhave, P. D., Hoffmayer, K. S., Armstrong, E. J., Garg, S., Patel, A., MacGregor, J. S., & McCabe, J. M. (2012): Predictors of depressed left ventricular function in patients presenting with ST-elevation myocardial infarction. The American journal of cardiology, 109(3): 327-331.

1

- Chaudhry, U., Platonov, P. G., Jablonowski, R., Couderc, J. P., Engblom, H., Xia, X., ... & Borgquist, R. (2017): Evaluation of the ECG based Selvester scoring method to estimate myocardial scar burden and predict clinical outcome in patients with left bundle branch block, with comparison to late gadolinium enhancement CMR imaging. Annals of Noninvasive Electrocardiology, 22(5): e12440.
- Gao, Z., Xu, B., Yang, Y. J., David, E. K., Yuan, J. Q., Chen, J., & Gao, R. L. (2012). Clinical and angiographic correlates of left ventricular dysfunction in patients with three vessel coronary disease. Chinese medical journal, 125(23): 4221-4225.
- Ghayal, P., Mathur, A., Hashim, H., Raskin, A., Di Giorgio, C., Mazza, V., et al. (2014): Predictive value of Selvester score in estimating infarct size in patients undergoing primary percutaneous coronary intervention. Journal of the American College of Cardiology, 63: A153-A153.
- Ibanez, B., James, S., Agewall, S., et al. (2018): 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with STsegment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J, 39: 119-177.
- Kelly, D. J., Gershlick, T., Witzenbichler, B., Guagliumi, G., Fahy, M., Dangas, G., & Stone, G. W. (2011). Incidence and predictors of heart failure following percutaneous coronary intervention in STsegment elevation myocardial infarction: the HORIZONS-AMI trial. American heart journal, 162(4): 663-670.
- Oh, J. K. (2007). Echocardiography in heart failure: beyond diagnosis. European Journal of Echocardiography, 8(1): 4-14.
- Puymirat, E., Simon, T., Steg, P. G., Schiele, F., Gueret, P., Blanchard, D., & Danchin, N. (2012): Association of changes in clinical characteristics and management with improvement in survival among patients with ST-elevation myocardial infarction. Jama, 308(10): 998-1006.
- Spencer, F. A., Meyer, T. E., Gore, J. M., & Goldberg, R. J. (2002). Heterogeneity in the management and outcomes of patients with acute myocardial infarction complicated by heart failure: the National Registry of Myocardial Infarction. Circulation, 105(22): 2605-2610.
- Townsend, N., Wilson, L., Bhatnagar, P., Wickramasinghe, K., Rayner, M., & Nichols, M. (2016). Cardiovascular disease in Europe: epidemiological update 2016. European heart journal, 37(42): 3232-3245.
- Watanabe, N., Isobe, S., Okumura, T., Mori, H., Yamada, T., Nishimura, K., & Murohara, T. (2016). Relationship between QRS score and microvascular obstruction after acute anterior myocardial infarction. Journal of Cardiology, 67(4): 321-326.

I