

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

www.ejpmr.com

<u>Review Article</u> ISSN 2394-3211 EJPMR

A REVIEW ON COMPARENSIVE ANALYSIS OF AZELNIDIPINE AND TELMISARTAN

Gokulraj S*¹, Harsha K. Tripathy², Chandanam Sreedhar³, T. Srinivasa Rao⁴, Manju S. V.⁵ and Abhishek⁶

¹Student, ²Professor, ³Professor and HOD, ^{4,5}Associate Professor and ⁶Student Department of Pharmaceutical Analysis, Karnataka College of Pharmacy, Bangalore- 560064, Karnataka, India.

*Corresponding Author: Gokulraj S

Student, Department of Pharmaceutical Analysis, Karnataka College of Pharmacy, Bangalore- 560064, Karnataka, India.

Article Received on 08/05/2024

Article Revised on 29/05/2024

Article Accepted on 19/06/2024

ABSTRACT

Hypertension is a common disease affecting people of all ages, from adults to the elderly. Single-drug therapy often proves insufficient for managing hypertension, prompting the use of drug combinations. Among these combinations, Azelnidipine and Telmisartan stand out as potent and widely utilized options. This article aims to provide comprehensive details regarding Azelnidipine and Telmisartan, including information on manufacturing and marketing companies, official analytical methods, and various analytical techniques such as RP HPLC, HPLC, UPLC, UV, LC, HPTLC, and LC-MS/MS. The article will also elucidate different analytical methods used in recent studies.

KEYWORDS: Azelnidipine, Telmisartan, RP-HPLC, UV, HPTLC, LC-MS/MS Methods.

INTRODUCTION

Hypertension poses a significant global health concern, affecting over 20% of adults worldwide, with developing countries facing escalating challenges due to changing health needs. The prevalence of chronic disease like hypertension is on the rise, creating a public health crisis, especially among women, adolescents, and older adults. In Iraq, according to the 2006 national survey, 40.4% of adults have elevated blood pressure, making hypertension a critical modifiable risk factor for coronary heart diseases, stroke, congestive heart disease, end-stage renal disease, and peripheral vascular diseases.^[1]

Azelnidipine, a calcium channel blocker, demonstrates a positive antihypertensive effect in individuals with essential hypertension, induces nitric oxide production, enhances histological processes crucial for diabetic wound healing, and serves as a renoprotective agent in hypertensive patients with mild chronic renal disease, partly due to its antioxidant properties. Azelnidipine, a vasodilator used for hypertension, gradually lowers blood pressure in hypertensive patients without causing reflex tachycardia, distinguishing it from other drugs in the same class.^[2]

Telmisartan, also known as TLM, is a type of medication that blocks angiotensin II receptors. This leads to a significant and long-lasting reduction in blood pressure, lasting up to 24 hours. Telmisartan is effective in lowering blood pressure and has additional benefits, including reducing the stiffness of arteries, decreasing left ventricular hypertrophy, preventing the recurrence of atrial fibrillation, and providing protection for the kidneys. Telmisartan, utilized in the management of hypertension as an angiotensin II receptor blocker, exhibits a minimal occurrence of temporary serum aminotransferase elevations; however, there is currently no established association between telmisartan and instances of acute liver injury.^[3]

For hypertensive patients unable to achieve sufficient control with single-drug therapy, combination treatment, such as the preferred combination of angiotensinreceptor blocker and calcium channel blocker, is often necessary. In some cases, a triple combination may be required for effective blood pressure control. A newly available product in the market, Azelikem T-40, Telmiwal-AP, Telma-AZ, and Emdip T-40, offers a fixeddose tablet formulation combining Azelnidipine and Telmisartan, serving as an option for treating hypertension.

Patients with hypertension are prescribed a combination of Azelnidipine and Telmisartan, which helps regulate blood pressure and improve oxygen circulation, reducing the risk of heart-related chest discomfort. The tablets come in two strengths: 80 mg Telmisartan with 8 mg Azelnidipine and 40 mg Telmisartan with 8 mg Azelnidipine.^[4]

PHYSICAL AND CHEMICAL PROPERTIES OF DRUGS

Azelnidipine, with the IUPAC name 3-1-Benzhydryl-3azetidinyl 5-isopropyl 2-amino-6-methyl-4-(mnitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, is a calcium channel blocker used in the treatment of hypertension. Its molecular formula is $C_{33}H_{34}N_4O_6$, with a molecular weight of 582.6 g/mol and a melting point of 122-123°C. This pale yellow to yellow crystalline powder exhibits insolubility in water, limited solubility in aqueous buffers, and solubility in organic solvents like ethanol, DMSO, and DMF. With a Pka value of 7.89, it is stored at 4°C and functions by inhibiting trans-membrane Ca2+ influx through vascular smooth muscle voltage-dependent channels, thereby relaxing blood vessels and reducing blood pressure.^[5,6,7]

Figure No. 1: Structure of Azelnidipine.^[8]

Telmisartan, with the IUPAC name 2-(4-{[4-Methyl-6-(1-methyl-1H-1,3-benzodiazol-2-yl)-2-propyl-1H- 1,3-benzodiazol-1-yl] methyl} phenyl) benzoic acid, has a molecular formula of $C_{33}H_{30}N_4O_2$ and a molecular weight of 514.629 g/mol. It appears as a white to slightly

yellowish solid with a melting point of 261-263°C. Telmisartan exhibits extremely low water solubility but is freely soluble in highly alkalized solutions and organic solvents such as DMSO (dimethyl sulfoxide) and DMF (dimethyl formamide). With a Pka value of 3.5, 4.1, and 6.0, it is stored below 30°C. This compound is categorized for use in the treatment of hypertension, functioning as an angiotensin II receptor blocker. Its mechanism of action involves blocking a substance in the body that causes blood vessels to tighten, leading to the relaxation of blood vessels. Consequently, Telmisartan lowers blood pressure, enhances the supply of blood, and increases oxygen delivery to the heart by inhibiting the action of certain natural substances that constrict blood vessels, allowing for smoother blood flow and improved cardiac efficiency.^[9,10,11]

Figure No. 2: Structure of Telmisartan.^[12]

That mateutical manufacturing companies and associated brand mormation.					
S no Brand name		Dosage form	Manufacturing	Marketing	
5.110	Di anu name	Dosage IoTIII	company	company	
1	Zahlong T	Azelnidipine 8mg	Akums drugs and	Ince laboratories ltd	
1.	Zeololig 1	Telmisartan 40mg	pharmaceuticals	ipca laboratories nu	
2	Cortal AZ	Azelnidipine 8mg	Synokem	Corona remedies	
۷.	Contel AZ	Telmisartan 40mg	pharmaceuticals	pvt. Ltd	
3	Tolmo AZ	Azelnidipine 8mg	Synokem	Glenmark	
5.	Tellila AZ	Telmisartan 40mg	pharmaceuticals	pharmaceuticals	
4	Emdin T	Azelnidipine 8mg	Synokem	Emcure	
4.	Endp	Telmisartan 40mg	pharmaceuticals	pharmaceuticals ltd	
5	A zouss T	Azelnidipine 8mg	Synokem	JB chemicals and	
э.	AZOVAS I	Telmisartan 40mg	pharmaceuticals	pharmaceuticals ltd	
6	A zuso T	Azelnidipine 8mg	Ajanta	Ajanta	
0.	AZUSA I	Telmisartan 40mg	pharmaceuticals	pharmaceuticals	
7 Talmad A7		Azelnidipine 8mg	Synokem	Medley	
7.	Termed AZ	Telmisartan 40mg	pharmaceuticals	pharmaceuticals.	
0	A gilto T	Azelnidipine 8mg	Synokem	DDC life seienee ltd	
0.	Aziita I	Telmisartan 40mg	pharmaceuticals	KPO me science nu	
0	Unioz T	Azelnidipine 8mg	Synokem	Torrent	
9.		Telmisartan 40mg	pharmaceuticals	pharmaceuticals	
10	Tolmidoz A7	Azelnidipine 8mg	Ausmad life science	Care formulation	
10.	Tellilluoz AZ	Telmisartan 40mg	Austrieu me science	labs pvt. Ltd	
11	Azolikom T 40	Azelnidipine 8mg	Steris healthcare pvt.	Steris healthcare	
11.	Azenkeni –1 40	Telmisartan 40mg	Ltd – india	pvt. Ltd – india	
12	Telminual AP	Azelnidipine 8mg	Intra life india.com –	Intra life india.com	
12.		Telmisartan 40mg	india	– india	
13	Azedax T 40	Azelnidipine 8mg	Daxia healthcare pvt	Daxia healthcare	
13.	Azeuax 1 40	Telmisartan 40mg	ltd	pvt ltd	

Table No. 1: Pharmaceutical manufacturing companies and associated brand information.^[13,14]

S.no	Drug and Pharmacopoeia	Method	Description	Reference number
1.	AZELNIDIPINE INDIAN PHARMACOPOEIA (IP) (2022)	LIQUID CHROMATOGRAPHY	 ✓ Colum: A Stainless-Steel Column 25 Cm X 4.6 Mm, Packed with Octadecylsilane Bonded to Porous Silica (5 Pm), ✓ Column Temperature: 40°C ✓ Mobile Phase: A mixture of 35 Volumes of a Buffer solution Prepared By dissolving 3.0 g of potassium Dihydrogen Orthophosphate In 1000 ml of water. ✓ Adjusted to Ph 5.5 With Orthophosphoric Acid, 45 Volumes of Acetonitrile And 20 Volumes of methanol, ✓ Flow Rate: 1 ml Per minute, ✓ Spectrophotometer: 220 nm, ✓ Injection Volume:10 µL. 	[15]
2.	TELMISARTAN INDIAN PHARMACOPOEIA (IP) (2022)	LIQUID CHROMATOGRAPHY	 ✓ Colum: A Stainless-Steel Column 12.5 Cm X 4.0 Mm, Packed with Octadecylsilane Bonded to Porous Silica (5 Pm) ✓ Column Temperature: 40°C ✓ Mobile Phase: (A). Dissolve 2.0 g of potassium dihydrogen Phosphate And 3.8 g of Sodium Pentane sulphonate Monohydrate in Water, ✓ Adjusted to Ph 3.0 With Orthophosphoric Acid and Dilute to 1000ml with water, ✓ (B). A Mixture of 20 Volumes of methanol and 80 Volumes of Acetonitrile, ✓ Flow Rate: 1 ml per minute ✓ Spectrophotometer: 230 nm ✓ Injection Volume: 10 µL. 	[16]

Table No. 2: Official I	Method of Azeln	idipine and Telmisartan.

Table No. 3: Analytical Methods for Azelnidipine and Telmisartan in Bulk and Pharmaceutical Dosage Forms.

S.no	Title/method	Method description	Ref.no	Year of published
RP-H	PLC Methods			
1.	RP-HPLC method development and validation for simultaneous estimation of azelnidipine and telmisartan in pharmaceutical dosage form by Q by D approach	Colum: C-18 250 x 4.6 mm, Partical size: 5μ Mobile phase: 0.01N Ortho Phosphoric Acid: Acetonitrile ratio of 53.8:46.2V/V Flow rate: 0.9 ml/min	17	December 2023
2.	Method development and validation of azelnidipine and telmisartan in human plasma using RP-HPLC	Colum: Std Inertsil C-18 (150 x 4.8 mm, 5m) Mobile phase: Buffer Disodium Hydrogen Phosphate: Acetonitrile (65:35) Flow rate: 1.0 ml/min Temperature: 30°C Wavelength: 228nm Retention time: Azelnidipine 2.139 min and Telmisartan 2.422 min and Internal Standard 3.025 min.	18	March 2023
3.	RP-HPLC Method for Determination of Azelnidipine and Telmisartan in Pharmaceutical Dosage Form	Colum: Intersil C-18 column (250 × 4.6mm, 5μm) Mobile phase: 70% acetonitrile and 30% 5 millimolar phosphate buffer pH 4.6. Flow rate: 1mL/min.	19	February 2023

		Wavelength: 255nm		
		Linearity: 10-50µg/ml AZL and 20-100µg/ml TEL		
	RP-HPLC–PDA Approach for Concurrent	Colum: Agilent C-18 column (150×4.6 mm, 5) Mobile phase: 0.1% V/V ortho phosphoric acid in water and acetonitrile ($40:60 \text{ v/v}$) Flow rate: 1 ml/min		December
4.	Analysis of Telmisartan and Azelnidipine in Bulk and Commercial Tablets w7	Wavelength: 260 nm Retention times: Azelnidipine 2.2 min and Telmisartan 2.9 min Linearity: Azelnidipine 2–12 µg/mL and Telmisartan 20–120 µg/mL	20	2022
5.	Development And Validation of RP-HPLC Method For Simultaneous Estimation of Telmisartan and Azelnidipine in Their Combined Marketed Formulation	Column: C-8 150 x 4.6 mm, Zodiac. Particle size: 5μ Mobile phase: 0.1% Formic Acid buffer Acetonitrile (50:50 v/v) Flow rate: 1 ml per minute Wavelength:257 nm Retention time: Telmisartan 6.16 min and Azelnidipine 8.94 min.	21	August 2022
6.	Advanced forced degradation technique for simultaneous estimation of azelnidipine and telmisartan implementing AQbD approach in its tablet dosage form	Colum: Phenomanax Luna C-18 (5 μ m, 150 mm × 4.6 mm) Mobile phase: water and methanol 50: 50 (v/v) Wavelength: 256 nm Detector: PDA detector Linearity: 4-12 µg mL-1 (r2 = 0.998) Azelnidipine and 20-60 µg mL-1 (r ² = 0.997) Telmisartan	22	June 2022
7.	Analytical Method Development and Validation of Azelnipidine and Telmisartan by RP HPLC Method	Colum: C-18 (4.6 x 150 mm, 5 mm) Mobile phase: Buffer 0.01 N KH2PO: Acetonitrile Flow rate: 1 ml/min Wavelength: 290 nm Retention time: Azelnipidine 2.131 min and Telmisartan 2.593 min.	23	March 2022
8.	Development and validation of RP-HPLC method for the simultaneous estimation of azelnidipine and telmisartan in bulk and pharmaceutical dosage form	Colum: RP-Purosnosphere C-18 column (5 μm, 4.6mm, 250 mm) Mobile phase: methanol: acetonitrile: water (40:30:30) Flow rate: 1.0 mL/min Wavelength: 225 nm	24	March 2022
9.	Method development & validation of stability indicating RP-HPLC method for simultaneous estimation for Azelnipidine & Telmisartan in bulk & pharmaceutical dosage form	Colum: C-18 (100mm x 4.6 mm) Particle size: 2.5 μm Mobile phase: Methanol 75 ml and 25 ml (pH 4.3 0.1% OPA with TEA) Flow rate: 0.8 ml/min Wavelength: 249 nm. Retention time: Azelnidipine 3.20 min and Telmisartan 6.23 min	25	February 2022
10.	Stability Indicating RP-HPLC Method Development and Validation for simultaneous estimation of Azelnidipine and Telmisartan in Bulk and Pharmaceutical Dosage Form	Colum: Std Denali C-18 (150mm x 4.6 mm, 5μ) Mobile phase: 0.1% OPA: Acetonitrile in the ratio of 60:40	26	January 2022

		Flow Rate: 1.0 ml/min		
		Buffer: 0.1%OPA.		
		Column temperature: 30°C		
		Wavelength: 242.0nm		
		Retention time: Azelnidipine and		
		Telmisartan 2.116 min & 3.188mins		
		Colum: Hyperchrom ODS C-18		
		HPLC Column (250mm v 4 6mm)		
		Duffore 0.05M Detection		
		Builer: 0.05M Potassium		
	Method development and validation for the	dihydrogen orthophosphate		October
11.	simultaneous determination of azelnidipine and	(KH_2PO_4)	27	2021
	telmisartan in tablet dosage form by RP- HPLC	Mobile phase: Buffer (pH-4.0):		2021
		Methanol (60:40)		
		Flow rate: 1ml/min		
		Wavelength: 215 nm		
		Colum: inertsil C-18 Column (150		
		x 4 6 mm x 5 um		
		$x = 4.0$ mm $x = 5 \mu m$		
		Colum temperature: 40 C		
	Investigation of Drug-Excipient Compatibility	Flow rate: 1.5 mL/min	• •	August
12.	Studies Using Validated RP-HPLC Method for	Injection volume: 10 µL	28	2021
	Azelnidipine and Telmisartan Tablets	Run time: 12.0 minutes.		2021
		Wavelength: 254 nm		
		Mobile phase: Acetonitrile and		
		buffer		
		Colum: Inertsil C-18 (150×4.6		
		Column Oven Temperature:		
	A Stability Indicating RP-HPLC Method	40°C		
13	Validation for Simultaneous Estimation of	Flow Rate: 1.5 ml/min	29	May
15.	Azelnidipine and Telmisartan in a Fixed-dose	Mobile Phase: Acetonitrile and	2)	2021
	Combination	Buffer		
		Volume: 10 µl		
		Run Time: 12.0 Minutes		
		Wavelength: 254 nm		
		Colume Hypershrom ODS C 19		
		Column (250mm a 4 (mm))		
		Column (250mm x 4.6mm)		
		Buffer: 0.05M Potassium		
	Stability Indicating Rn-HPI C Method	dihydrogen ortho phosphate		
	Development and Validation for the	Mobile phase: Buffer (pH-4.0):		Mov
14.		Methanol (60:40)	30	1viay 2021
	Simultaneous Estimation of Telmisartan and	Flow rate: 1ml/min		2021
	Azelnidipine in Tablet Dosage Form	Wavelength: 215nm		
		Retention time: Telmisartan 3.440		
		minutes and Azalnidining 5 602		
		minutes and Azennurphie 5.095		
TTPT		minutes		
HPL	2 Miethod	a b a c c c c c c c c c c	1	
		Colum: C-18 Kromasil stationary		
		column (5 μ m, 250 mm \times 4.6 mm)		
		Mobile phase: 0.1M NaH2PO4		
		solution (pH 3.5) and methanol		
	Telmisartan and azelnidipine quantification	(50:50)		
15.	employing HPLC stratagem; stability	Flow rate: 1.0 m1/min	31	2022
	investigation on telmisartan and azelnidipine	Wowelength: 256 mm		2022
	-	vvavelengtn: 250 nm		
		Detector: PDA device sensor		
		Retention time: TLM 2.225 min		
		and AEL 3.178 min		
RP-U	PLC Method			
	Stability indicating RP-UPLC method	Colum: UPLC BEH C-18 column		Oatshar
16.	development and validation for the simultaneous	$(1.7 \ \mu m, 100 \times 2.1 \ mm)$	32	october
	estimation of telmisartan and azelnidinine in	Mobile phase: Phosphate buffer		2023
L		I I I I I I I I I I I I I I I I I I I	1	1

r		1	1	
	their bulk and solid dosage forms	Acetonitrile (70: 30 v/v) Wavelength: 240nm Retention time: Telmisartan 2.946 and Azelnidipine 5.635		
LIOU	JID CHROMATOGRAPHY METHOD		l	
17.	Quantification of Telmisartan and Azelnidipine Combination in Using Liquid Chromatography: Stability studies	Colum: Supel cosil C-18 column (250 mm, 4.6 mm, & 5 μm) Mobile phase: 0.10M Na2 SO4 (pH 3.6) and acetonitrile (pH 3.6) as 55:45v/v Flow rate: 1.00 mL/minute Wavelength: 258nm Injected volume: 10 μL Run time: 8 minutes. Retention time: 2.8 and 3.7	33	October 2023
HPT	LC Method	1	1	1
18.	Development and Validation of HPTLC Method for Simultaneous Estimation of Azelnidipine and Telmisartan	Stationary phase: Pre coated silica gel G60-F254 aluminum sheet. Mobile phase: Toluene: Acetonitrile: Formic acid (5:4.5:0.5 % V/V/V) Linearity: 200-700 ng/ band for Azelnidipine and 1000-3500 ng/band for Telmisartan R ² value: 0.9961 Azelnidipine and 0.9971 Telmisartan	34	June 2023
UV-S	Spectrophotometric Method	·		
19.	Advanced UV spectrophotometric method development and validation for simultaneous estimation of Azelnidipine and Telmisartan in Pharmaceutical Dosage Form	Apparatus: Shimadzu UV-1700 double beam spectrophotometer Software: Shimadzu UV-Probe 2.10 Solvent: Methanol Linearity: 2 μg/ml to 12 μg/ml for AZL and 10 μg/ml to 50 μg/ml for TEL	35	March 2023
20.	Ultraviolet Spectrophotometric Method Development and Validation for Simultaneous Quantification of Azelnidipine and Telmisartan in Pharmaceutical Dosage Form	Wavelength (λ max): Azelnidipine 245 nm and Telmisartan 296 nm Solvent: methanol Linearity: (r ²) 0.9999 Azelnidipine and 0.9987 Telmisartan Concentration range: 1-6 μg/mL Azelnidipine and 5-30 μg/mL Telmisartan	36	August 2022
21.	First- order derivative and UV- spectrophotometric methods for simultaneous determination of telmisartan and azelnidipine in bulk and tablet dosage form	(Method A) Wavelength of telmisartan: 324 nm Wavelength of azelnidipine: 220 nm (Method B) Wavelength of telmisartan: 220 nm Wavelength of azelnidipine: 244 nm Linearity: 16-80 µg/ml for TEL and 3.2-16 µg/ml for AZEL	37	April 2021
LC-M	IS/MS Method		[1
22.	Development and validation of LCMS/MS method for simultaneous estimation of azelnidipine and telmisartan in tablet and characterization of degradant by LC- MS/MS	Colum: Hypersil, BDS, C-18, (150mm x 4.6mm, 5μm) Mobile phase: buffer (pH-5): methanol Ion transitions: MRM transition of Azelnidipine 583.300→496.200 Da and Telmisartan 515.100→499.500	38	May 2023

Da. Linearity: 0.4-1.2 µg/ml for Azelnidipine and 2.0-6.0 µg/ml Talmiserton	
Telmisartan.	
Run time: 10 min.	

CONCLUSION

This article has provided a comprehensive exploration and elucidation of the advancements in the combined analysis of azelnidipine and telmisartan up to the present day. The review encompasses an in-depth examination of various analytical methods employed for the simultaneous determination of azelnidipine and telmisartan, shedding light on the diverse approaches and techniques applied in both bulk and pharmaceutical dosage forms. This comprehensive study delves into a detailed review and analysis of various analytical methods encompassing UV, HPLC, RP-HPLC, UPLC, LC, HPTLC, and LC-MS/MS, specifically focusing on their application in the analysis of Azelnidipine and Telmisartan. The research incorporates exhaustive details on manufacturing processes, general assay methods, and drug specifications, providing a comprehensive understanding of the analytical methodologies employed in pharmaceutical analysis.

REFERENCE

- 1. https://extranet.who.int/ncdccs/Data/IRQ_D1_Hyper tension-MOH.pdf
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 65948, Azelnidipine.
- 3. Chandappa, Lalitha N., Mubeen G. and E. Tejaswini. Development and validation of RP-HPLC method for simultaneous determination of Azelnidipine and Telmisartan in tablets. *World journal of pharmacy and pharmaceutical sciences*, 2022; 11(11): 565-576.
- Spandana, K. V. L. D., & Subhashini, N. J. P. Telmisartan and Azelnidipine quantification employing HPLC stratagem; stability investigation on Telmisartan and Azelnidipine. *International Journal of Applied Pharmaceutics*, 2022; 14(1): 261-265.
- 5. https://en.wikipedia.org/wiki/Azelnidipine
- 6. https://go.drugbank.com/drugs/DB09230
- https://pubchem.ncbi.nlm.nih.gov/compound/Azelni dipine
- 8. https://www.echemi.com/products/pd1805144991azelnidipine.html
- 9. https://go.drugbank.com/drugs/DB00966
- 10. https://pubchem.ncbi.nlm.nih.gov/compound/Telmis artan
- 11. https://en.wikipedia.org/wiki/Telmisartan
- 12. https://www.researchgate.net/figure/Structuralformula-of-telmisartan_fig1_331255203
- 13. https://www.1mg.com/generics/telmisartanazelnidipine-509412
- 14. https://www.netmeds.com/generics/azelnidipine-8-

mg-telmisartan-40-mg

- 15. The Indian Pharmacopoeia, Government of India, Ministry of Health and Family welfare; 9th Edition., The Indian pharmacopeia commission, Ghaziabad, 2022; II: 1553-1554.
- The Indian Pharmacopoeia, Government of India, Ministry of Health and Family welfare; 9th Edition., The Indian pharmacopeia commission, Ghaziabad, 2022; III: 3726-3727.
- 17. R. S. Sakhare, M. D. Padole, S. S. Tondare, A. H. Gaherwar, M. H. Muratkar and N. P. Savant, RP-HPLC method development and validation for simultaneous estimation of azelnidipine and telmisartan in pharmaceutical dosage form by QbD approach. *International Journal of Pharmaceutical Sciences and Research (IJPSR)*, 2023; 14(12): 5760-5770.
- Padmavathi Sakinala, Shruthi Mareedu, Kameswara Rao Sankula, Shaik Abdul Rahaman, Ramu Bhadramraju, M.Showreelu, method development and validation of azelnidipine and telmisartan in human plasma using RP-HPLC. Section A-Research Paper. *Eur. Chem. Bull.*, 2023; 12(5): 5626–5659. 5658.
- Panda, M., Dadi, V., Rao Yarraguntla, S., & Rao K, V. P., RP-HPLC method for determination of azelnidipine and telmisartan in pharmaceutical dosage form. *Research Journal of Pharmacy and Technology*, 2023; 509–513.
- Godela, R., Gummadi, S., Pathak, S. et al. RP-HPLC–PDA Approach for Concurrent Analysis of Telmisartan and Azelnidipine in Bulk and Commercial Tablets. *Chemistry Africa*, 2023; 6: 393–403.
- Mayur Anant Jawanjal, Lokesh R. Gandhi, Nitin. S. Bhajipale, Development And Validation Of RP-HPLC Method For Simultaneous Estimation Of Telmisartan And Azelnidipine In Their Combined Marketed Formulation, *International Journal of Creative Research Thoughts (IJCRT)*, 2022; 10(8).
- 22. Bera, A., & Shah, K., Advanced forced degradation technique for simultaneous estimation of azelnidipine and telmisartan implementing AQbD approach in its tablet dosage form. *International Journal of Health Sciences*, 2022; 6(S8): 866–883.
- 23. Vangallu Spandana, Siddartha, Analytical Method Development and Validation of Azelnipidine and Telmisartan by RP HPLC Method, *Research and Reviews: Journal of Pharmaceutics and Nanotechnology*, 2022; 10(2): 2347-7849.
- 24. Mr. Kolte Durgesh R, Prof. Nemade Mahesh S., Prof. Rane Sachin S., Prof. (Dr.) Chaudhari Rajesh Y., Prof. (Dr.) Patil Vijay R. Development and validation of RP- HPLC method for the

simultaneous estimation of azelnidipine and telmisartan in bulk and pharmaceutical dosage form. International Journal of current science (Ijcspub), 2022; 12(1): 250-257.

- 25. Jadhav, S. D., Lokhande, P. B., Narwade, V. L., Ghodke, M. V., Desai, R. S., & Mote, P. R. Method development & validation of stability indicating RPhplc method for simultaneous estimation for azelnipidine & telmisartan in bulk & pharmaceutical dosage form. World journal of pharmaceutical and medical research (wjpmr), 2022; 8(3): 216-222.
- D. Basava Chaitanya, M. Ajitha. Stability Indicating RP-HPLC Method Development and Validation for simultaneous estimation of Azelnidipine and Telmisartan in Bulk and Pharmaceutical Dosage Form. World Journal Pharmaceutical Science, 2022; 10(01): 121-127.
- Agrawal, S., & Nizami, T. Method development and validation for the simultaneous determination of azelnidipine and telmisartan in tablet dosage form by RP- HPLC. *International Journal of Pharmaceutical Sciences and Medicine (IJPSM)*, 2021; 6(10): 26–36.
- Kumar, M., Chandra, U., Garg, A., & Gupta, P. Investigation of drug-Excipient Compatibility studies using validated RP-HPLC method for azelnidipine and telmisartan tablets. *Journal of Pharmaceutical Research International*, 2021; 33(41B): 233–242.
- Kumar, M., Chandra, U., Garg, A., & Gupta, P. A stability indicating RP-HPLC method validation for simultaneous estimation of Azelnidipine and Telmisartan in a fixed-dose combination. *International Journal of Pharmaceutical Sciences* and Drug Research, 2021; 13(03): 288–294.
- Parikh Mansi Brijeshbhai, Dr. Pankti Dalwadi, Ms. Neetu Dharu, Stability Indicating Rp-Hplc Method Development and Validation for the Simultaneous Estimation of Telmisartan and Azelnidipine in Tablet Dosage Form, *International Journal of All Research Education and Scientific Methods (IJARESM)*, 2021; 9(5): 1082-1090.
- Spandana, K. V. L. D., & Subhashini, N. J. P. Telmisartan and azelnidipine quantification employing HPLC stratagem; stability investigation on telmisartan and azelnidipine. *International journal of applied pharmaceutics*, 2022; 14(1): 261–265.
- 32. Eslawath, U. R., Kannappan, N., Venkateshwarlu, L., Smith, A. A., Stability indicating RP-UPLC method development and validation for the simultaneous estimation of Telmisartan and Azelnidipine in their bulk and solid dosage forms. *Biochemical and Cellular Archives*, 2023; 23(2): 1243-1251.
- Andrews, B. S. A., Abbaraju, V. D. N. K., Lakshman, S., Sreeram, & Vijayalakshm, K. Quantification of Telmisartan and Azelnidipine combination in using liquid chromatography:

Stability studies. *Oriental Journal of Chemistry*, 2023; 39(5): 1302–1312.

- Kachhiya, H., Tandel, J., Rupchandani, I., Velani, A., Patel, S., Patel, K., & Zala, N. (2023). Development and validation of HPTLC method for simultaneous estimation of Azelnidipine and Telmisartan. *In Journal of Advances in Drug Discovery and Development*, 2023; 1(1): 28-38.
- 35. Suthar and Mashru, Advanced UV Spectrophotometric Method Development and Validation for Simultaneous Estimation of Azelnidipine and Telmisartan in Pharmaceutical Dosage Form, Indian J Pharm Drug Studies, 2023; 2(1): 27-32.
- 36. Roja, P., Eswarudu, M. M., & Srinivasa Babu, P., Method development and validation for simultaneous quantification of Azelnidipine and Telmisartan in pharmaceutical dosage form by UV. *International Journal of Pharmaceutical Sciences Review and Research*, 2022; 75(2): 168–173.
- 37. Yuvasri, S., Murugan, S., & Vetrichelvan, T., Firstorder derivative and UV-spectrophotometric methods for simultaneous determination of Telmisartan and Azelnidipine in bulk and tablet dosage form. *European Journal of Biomedical AND Pharmaceutical sciences*, 2021; 8(5): 290-294.
- 38. Hiral Jagadish Prajapati, Mr. Dhaval Patel, Dr. Chaitanya Bhatt, Mr. Nishith Patel, Dr.Vanita Marvaniya, development and validation of lcms/ms method for simultaneous estimation of azelnidipine and telmisartan in tablet and characterization of degradant by LC-MS/MS, *International Journal of Novel Research and Development*, 2023; 8(5): 580-585.