PHARMACOGNOSTICAL AND PHYSICO-CHEMICAL PROFILE OF

SHIRISHAVALEHA GRANULES

Dilip Prajapati*1, B. J. patgiri2, Harisha C. R.3 and V. J. Shukla4

1Ph.D Scholar, Department of Rasashastra and Bhaishajya Kalpana, I.P.G.T. & R.A., Gujarat Ayurved University, Jamnagar, Gujarat.

2Head & Profesor, Department of Rasashastra and BhaishajyaKalpana, I.P.G.T. & R.A., Gujarat Ayurved University, Jamnagar, Gujarat.

ABSTRACT

Background: Pharmacognosy provides a full understanding of natural products from various herbal sources. Specifically, this area encompasses the study of secondary metabolites, including alkaloids, glycosides, phenolic compounds, tannins, phytosterols, and terpenoids. These compounds have potential medicinal applications for the prevention and treatment of numerous conditions and diseases. **Aim:** To evaluate pharmacognostical and physico-chemical characteristic of Shirishavaleha Granules. **Materials and Methods:** Shirishavaleha Granules consists of ten herbal components viz. Shirisha, Pippali, Priyangu, Kushta, Ela, Nilini, Haridra, Daruharidra, Shunthi, and Nagakesara. The main ingredient Shirisha [Albizzialebbeck Benth] is a drug having multiple actions like Swasahara, Vishahara etc. Recent studies conducted in past reveals the Anti-allergic, Mast Cell Stabilizing and Immuno-modulatory activities of the drug. These activities will be beneficial in pacifying the symptomatology of Tamaka Shwasa. **Results & Conclusion:** On pharmacognostical study, tannin content and combidal crystals of Shirisha bark, starch grains with fibers of Shunthi, black debris and stone cells of Pippali, fragement of scalaris forum vessel and parenchyma cells of Haridra, pitted vessel and prisamatic crystal of Daruharidra, pollan grains of Nagakeshara, epidermal cell and oil globules of Priyangu, pitted vessel of Nilini, fragmented...
of border pitted vessels of Kushta and silica deposition of Sugarcandy were verified. HPTLC showed 5 spots at 254nm and 6 spots at 366nm.

KEYWORDS: Shirishavaleha Granules, Shirisha, Tannin, Sugar Candy.

INTRODUCTION

Ayurveda, an Indian System of medicine is known for its significant contribution in maintaining the health care of human society. However, the scientific evidence to prove the rationale of using these formulations in health care is not well established. The need to explore time tested, though less-scientifically proven, Ayurvedic system of medicine in health care has been realized of late. The World Health Organization estimates that about 80% of the populations living in the developing countries rely almost exclusively on traditional medicine for their primary health care needs. Herbal medicines were in great demand in the developed as well as in developing countries for primary health care because of their wide biological and medicinal activities, higher safety margin, and lower costs. But the most important challenges faced by these formulations arise because of their lack of complete standardization. Herbal medicines are prepared from materials of plant origin which are prone to contamination, deterioration and variation in composition. Therefore, quality control of herbal medicines offers a host of problems. Standardization and quality control have remained grey areas in the preparation of Ayurvedic medicines.

In present study Shirishavaleha Granules was prepared as per the reference of Shirisharista with modification from Bhaishyja Ratnavali. Shirishavaleha Granules consists of ten herbal components viz. Shirisha, Pippali, Priyangu, Kushta, Ela, Nilini, Haridra, Daruharidra, Shunthi, and Nagakesara. Though many of these drugs are non-controversial; it becomes important to evaluate their botanical identity and elimination of possible adulterants, as adulteration with substances which are similar morphologically became a routine practice in recent past Shirisha [Albizia lebbeck Benth.] is a drug having multiple actions like Swasahara, Vishahara etc. recent studies conducted in past reveals Anti-allergic,Mast Cell Stabilizing and Immuno-modulatory activities of the drug. These activities are beneficial in pacifying the symptamatology of Tamaka Shwasa. Earlier study reported the comparative efficacy of Shirishavaleha in Tamaka Shwasa.
MATERIALS AND METHODS

Procurement of raw drugs

The raw materials viz. stem bark of *Albezzia lebbeck* Benth was freshly collected from Botanical Garden, Sasois, GAU, Jamnagar. They were shade dried and utilized for present study. All *Prakshepa dravya* like *Pippali* (*Piper longum* Linn.), *Haridra* (*Curcuma longa* Linn.), *Priyangu* (*Callicarpa macrophylla* Vahl.), *Shunthi* (*Zingiber officinale* Roscoe.), *Kushtha* (*Saussurea lappa* C. B. Clarke), *Daruharidra* (*Berberis aristata* DC.) and *Ela* (*Elettaria cardemomum* Maton.) were procured from the Pharmacy, Gujarat Ayurved University, Jamnagar, Gujarat; where as *Nilini* (*Indigofera tinctoria* Linn.) was collected from local area of Jamnagar and *Nagakesara* (*Mesua ferrea* Linn.) from Udupi, Karnataka. The ingredients & part used in preparation of final product are listed in Table no.1

Table 1: Ingredient of *Shirishavaleha* Granules.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Botanical Name</th>
<th>Part</th>
<th>Quantity in gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Shirisha</td>
<td>Albizia lebbeck Benth.</td>
<td>Dried Bk.</td>
<td>1250</td>
</tr>
<tr>
<td>2 Pippali</td>
<td>Piper longum Linn.</td>
<td>Dried Fr.</td>
<td>25</td>
</tr>
<tr>
<td>3 Priyangu</td>
<td>Callicarpa macrophylla Vahl.</td>
<td>Dried Fl.</td>
<td>25</td>
</tr>
<tr>
<td>4 Kushtha</td>
<td>Saussurea lappa C. B. Clarke</td>
<td>Dried Rt.</td>
<td>25</td>
</tr>
<tr>
<td>5 Ela</td>
<td>Elettaria cardemomum Maton.</td>
<td>Dried Sd.</td>
<td>25</td>
</tr>
<tr>
<td>6 Nilini</td>
<td>Indigofera tinctoria Linn.</td>
<td>Dried Rt.</td>
<td>25</td>
</tr>
<tr>
<td>7 Haridra</td>
<td>Curcuma longa Linn.</td>
<td>Dried Rz.</td>
<td>25</td>
</tr>
<tr>
<td>8 Daruharidra</td>
<td>Berberis aristata DC.</td>
<td>Dried St.</td>
<td>25</td>
</tr>
<tr>
<td>9 Shunthi</td>
<td>Zingiber officinale Roscoe.</td>
<td>Dried Rz.</td>
<td>25</td>
</tr>
<tr>
<td>10 Nagakesara</td>
<td>Mesua ferrea Linn.</td>
<td>Dried Stmn.</td>
<td>25</td>
</tr>
<tr>
<td>11 KhndaSharkara</td>
<td>Sugar-candy</td>
<td>-</td>
<td>5000</td>
</tr>
<tr>
<td>12 Jala</td>
<td>Water (R.O)</td>
<td>-</td>
<td>12.500 l</td>
</tr>
</tbody>
</table>

Preparation of drug

Shirishavaleha Granules was prepared in Rasashastra and Bhaishhya Kalpana Department, IPGT&RA, Gujarat Ayurved University, Jamnagar. For the preparation of *Shirishavaleha* Granules, *Yavakuta* (Coarse powder) of *Shirisha* was added with ten times of potable water in a stainless steel vessel and soaked over the night. Next morning, it was heated on mild flame until the volume of the liquid (*Kwatha*) was reduced to 1/4th. *Khanda Sharkara* (Sugar candy) was added to *Kwatha* and it was boiled till the appearance of 3 thread consistency. After this, the vessel was removed from the fire and stirred continuously to reduce the temperature. When the temperature was reduced to 75-80°C, fine powder of *Prakshepa dravya* (ingredients numbered 2-10 of Table-1) in fine powder form were added and stirred well to
get a homogenous blend. The blended mass was passed through 10# sieve to obtain granules dried at room temperature. Granules were packed in food grade plastic containers.

Pharmacognostical study

1. Organoleptic Study

Organoleptic evaluation can be done by means of sense organs which provide simplest and quickest means to establish the identity of a particular drug. The finished product evaluated by organoleptic characters like taste, odour, colour and touch. Powder characteristics of the sample were identified with the help of Pharmacognosy laboratory, I.P.G.T. & R.A., Gujarat Ayurved University, Jamnagar, Gujarat, India.

2. Microscopy of Shirishavaleha Granules:

The finished product was identified and authenticated by the Pharmacognosy laboratory, IPGT&RA, Jamnagar. The identification was carried out based on the morphological features of the individual drugs i.e. ingredients of Shirishavaleha Granules. Microphotographs were taken by using carl-Zeiss trinocular microscope attached with camera.

Physico-chemical analysis

Shirishavaleha Granules was analyzed using various standard physico-chemical parameters such as Loss on drying, Ash value, water soluble extract, alcohol soluble extract, pH, Total Sugar Content.

High Performance Thin Layer Chromatography (HPTLC)

HPTLC was performed as per the guideline provided by API. Methanol extract of drug sample was used for the spotting. The colour and Rf values of resolved spots were noted.

Chromatographic conditions

- Application mode : CAMAG Linomat V Hamilton Syringe
- Development chamber : CAMAG Twintrough chamber (20x10 cm2)
- Plates : Precoated silica gel GF254 plates.
- Chamber saturation : 30 min
- Development distance : 10 cm
- Development time : 30 min
- Scanner : Camag TLC Scanner III
- Scanning mode : Linear at 254 nm and 366 nm
Detection: Deuterium lamp, Mercury lamp
Photo documentation: Camag reprostar
Data system: Cats software (Ver. 3.17)
Drying device: Oven
UV Spectrum: 200 nm to 800 nm
Mobile Phase: Toluene: Ethylacetate: formic acid (7:2:1)
Spray reagent: Anisaldehyde Sulphuric Acid reagent

OBESERVATIONS AND RESULTS

Organoleptic characters of Shirishavaleha Granules

Organoleptic characters of *Shirishavaleha* Granules such as colour, odour, taste etc. examined by sensory organs and results are depicted in Table 2. It showed that the colour of *Shirishavaleha* Granules was chocolate brown. Sweet taste was found with Astringent taste and is granular in appearance.

Table 2: Organoleptic characters of Shirishavaleha Granules.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparsa (Consistency)</td>
<td>Rough & Granular</td>
</tr>
<tr>
<td>Rupa (Colour)</td>
<td>Dark brownish</td>
</tr>
<tr>
<td>Rasa (Taste)</td>
<td>Madhura, Kashaya</td>
</tr>
<tr>
<td>Gandha (Odour)</td>
<td>Characteristic</td>
</tr>
</tbody>
</table>

Microscopic characters of Shirishavaleha Granules

Diagnostic character of *Shirishavaleha* Granules were observed more number of stone cells with tannin content and cuboidal crystals of *Shirisha bark*, starch grains with fibers of *Shunthi*, black debris and stone cells of *Pippali*, fragment of scleroids Scalariform vessel and parenchyma cells of *Haridra*, pitted vessel and prisamatic crystal of *Daruharidra*, pollen grains of *Nagakeshara*, epidermal cell and oil globules of *Priyangu*, pitted vessel of *Nilini*, fragmented of border pitted vessels of *Kustha* and silica deposition of Sugar candy. The product was stained with phloroglucinol and hydrochloride acid and to observe the epidermal cells of *Priyangu*, corkin surface of *Shunthi* and mesocarp cells of *Pippal.*[Fig 1].

Physicochemical parameters of Shirishavaleha Granules

Physicochemical parameters of *Shirishavaleha* Granules such as Ash value, water soluble extracts, ash value, total sugar content, alcohol soluble extract, pH, Loss on Drying was done. Results are shown in Table no.3.
Table 3: Physico-chemical Parameter of Shirishavaleha Granules

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Shirishavaleha Granules</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH of 5% aqueous sol.</td>
<td>6.23</td>
</tr>
<tr>
<td>LoD at 110°C (% w/w)</td>
<td>4.6</td>
</tr>
<tr>
<td>Total ash value</td>
<td>1.27</td>
</tr>
<tr>
<td>Water soluble extractive (% w/w)</td>
<td>93.09</td>
</tr>
<tr>
<td>Methanol Soluble extractive (% w/w)</td>
<td>40.25</td>
</tr>
<tr>
<td>Sugar content (%)</td>
<td></td>
</tr>
<tr>
<td>Total sugar</td>
<td>73.51</td>
</tr>
<tr>
<td>Reducing sugar</td>
<td>16.23</td>
</tr>
<tr>
<td>Non-reducing sugar</td>
<td>57.28</td>
</tr>
</tbody>
</table>

HPTLC Study

Chromatogram shows 4 prominent spots at 254nm and 5 spots at 366nm. [Fig.-2]

<table>
<thead>
<tr>
<th>Chromatogram</th>
<th>No. of spots</th>
<th>Max. Rf value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shirishavaleha Granules</td>
<td>254 nm</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>366 nm</td>
<td>5</td>
</tr>
</tbody>
</table>

a. Shirishavaleha Granules
b. Border Pitted vessels of Kustha
c. Cork cell of Shunthi
d. Cork cell with Tannin content of Shirisha
e. Crystals fibers of Daruhridra
f. Epidermal cell of Priyangu
g. Epidermal cell of Ela
h. Oil Globules of Priyangu
i. Parenchyma cells of Haridra
Figure 1: Microscopy of *Shirishavaleha* Granules.

- j. Fibers of *Shunthi*
- k. Border Pitted vessel of Nilini
- l. Black debris of *Pippali*

Figure 2: HPTLC of *Shirishavaleha* Granules at 254 nm and 366 nm.

At 254 nm

At 366 nm
DISCUSSION
The sweetness in Shirishavaleha Granules is due to addition of Sugar candy, which makes it more palatable and masks the Astringent taste of drugs. Most of the Granules contains Madhura Dravya and Prakshepa Dravyac as base ingredients. Here, the use of Madhura Dravya is of great importance because it reduces the Tikta, Katu, Kashaya taste of drug, ultimately making it more palatable, and it also nourishes all Dhatus along with Oja.[13] Prakshepa Dravya (adjuvant) serves specific functions, e.g. Pippali (Piper longum Linn.) acts as a bioavailability enhancer,[14] and is anti-bacterial.[15]

The results shows that the finished product studied under the microscope revels that the presence of the ingredients cellular characters i.e. Finished product considered as genuine and authentication. Stone cells with tannin content and cuboidal crystals, starch grains with fibers, black debris, stone cells prismatic crystals were important microscopic characters which were observed in the finished product revels that the product consists all the ingredients.

pH shows that the 5% w/v aqueous solution of the sample was Slightly acidic in nature i.e. 6.23 (Table no.3). As tannin is weak in acidic nature,[16] the acidic pH of final product may be due to rich tannin content in final product. In Shirishavaleha Granules less moisture i.e. 4.6% may be due to more heating duration during process. Water Soluble Extractive value was found 93.09%, which shows more bio availability in the body. Water-soluble extractive value plays an important role in evaluation of crude drugs. Less extractive value indicates addition of exhausted material, adulteration or incorrect processing during drying or storage or formulating.[17] Total sugar content (%) 73.51 was found in Shirishavaleha Granules. Sugar act as self-preservative and also provides palatability to the formulation.

HPTLC for Shirishavaleha Granules is not mentioned in API. So HPTLC done in current attempt cannot be comparable but may be taken as preliminary standards for this sample.

CONCLUSION
Pharmacognostical study findings confirm that all characters were found in ingredient drugs of Shirishavaleha Granules. The physicochemical analysis are inferred that the formulation meets maximum qualitative standards and all the parameters discussed here may be useful in scientific evaluation, identification and authentication of the Shirishavaleha Granules.
REFERENCES
11. Ayurvedic Pharmacopoeia of India PDF-1, Govt. of India, Ministry of health and family welfare, Delhi, 2007; 5appendix-2.2.9: 214.

