Volume 13, Issue 1, 1175-1192

Research Article

SJIF Impact Factor 7.632 ISSN 2278 - 4357

9

BIOANALYTICAL METHOD DEVELOPMENT, VALIDATION AND STABILITY FOR ESTIMATION OF CHLORTHALIDONE IN HUMAN PLASMA BY USING LC-ESI- MS/MS

Manali Patel*

Assistant Professor, Shree Swaminarayan College of Pharmacy, Department of Pharmaceutical Chemistry, Kalol, Gandhinagar, Gujarat, India.

Article Received on 31 October 2023,

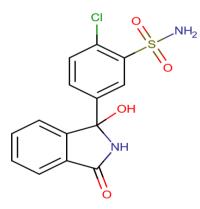
Revised on 20 Nov. 2023, Accepted on 11 Dec. 2023 DOI: 10.20959/wjpps20241-26309

*Corresponding Author Manali Patel Assistant Professor, Shree Swaminarayan College of Pharmacy, Department of Pharmaceutical Chemistry, Kalol, Gandhinagar, Gujarat, India.

ABSTRACT

A simple, rapid and accurate bioanalytical method was developed and validated as per US-FDA guidelines for the estimation of Chlorthalidone in spiked human plasma using liquid-liquid extraction technique. **Results:** Chlorthalidone was well resolved from human plasma interference and internal standard (Chlorthalidone D4) using ZIC®HILIC (100X4.6mm,5µm) column with Methanol: 0.05 Formic acid in water (90:10,v/v) as mobile phase, at a flow rate of 0.900 ml/min. Detection was performed by electrospray ionization (ESI) operated in negative multiple reaction monitoring (MRM) mode. The lower limit of quantitation (LLOQ) of this method was 2071.057 pg/mL and the calibration curves were linear ($r(2)\geq 0.995$) over the concentration range of 2000-1200000 pg/mL for Chlorthalidone. The intra- and inter-day precision and accuracy were well within the acceptable limits. The mean extraction recoveries were found to be about 80% and no matrix effect was observed. Chlorthalidone wws

found to be stable under all relevant storage conditions.


KEYWORDS: Chlorthalidone, Chlorthalidone D4, LC-MS/MS.

INTRODUCTION

Chlorthalidone is a thiazide-like diuretic used for the treatment of hypertension and for management of edema caused by conditions such as heart failure or renal impairment. Chlorthalidone improves blood pressure and swelling by preventing water absorption from the kidneys through inhibition of the Na+/Cl– symporter in the distal convoluted tubule cells in the kidney. The exact mechanism of chlorthalidone's anti-hypertensive effect is under debate, however, it is thought that increased diuresis results in decreased plasma and extracellular fluid volume, decreased cardiac output and therefore overall reduction in blood pressure.^[5]

Chlorthalidone is considered first-line therapy for management of uncomplicated hypertension as there is strong evidence from meta-analyses that thiazide diuretics such as chlorthalidone reduce the risk of stroke, myocardial infarction, heart failure, and cardiovascular all-cause mortality in patients with hypertension.^[1] In particular, the ALLHAT trial confirmed the role of thiazide diuretics as first-line therapy and demonstrated that chlorthalidone had a statistically significant lower incidence of stroke and heart failure when compared to Lisinopril, Amlodipine, or Doxazosin. Further studies have indicated that low-dose thiazides are as good as, and in some secondary endpoints, better than β - blockers, ACE inhibitors, Calcium Channel Blockers or ARBs.

Chlorthalidone has been shown to have a number of pleiotropic effects that differentiate it from other diuretics such as Hydrochlorothiazide. In addition to its antihypertensive effects, chlorthalidone has also been shown to decrease platelet aggregation and vascular permeability, as well as promote angiogenesis in vitro, which is thought to be partly the result of reductions in carbonic anhydrase– dependent pathways. These pathways may play a role in chlorthalidone's cardiovascular risk reduction effects.^[7]

MATERIALS AND METHODS

Reagents and Chemical

Chlorthalidone & Chlorthalidone D4 were kindly provided by the Research Laboratory of Clearsynth Private Limited). HPLC-grade methanol was purchased from Spectrochem.

Formic acid was purchased from Spectrochem. A Milli-Q[®] (Millipore Co., MA, USA) water purification system was used to obtain purified water used for the analysis. Blank human plasma was provided by Salvus Bio-Research Solutions.

Apparatus and chromatographic conditions

The quantification of Chlorthalidone in human plasma was carried out with LC–MS/MS system using an Shimadzu SIL-HTC (Shimadzu Corporation, Japan) coupled with an Applied Biosystems API 4000 triple quadrupole mass spectrometer equipped with an electrospray ionization source operated in negative ionization mode. All weighing were done on analytical balance & Microbalance. The analytical column used as a ZIC®HILIC (100X4.6mm,5µm). Methanol: 0.05 Formic acid in water (90:10,v/v) was used as mobile phase. The flow rate was maintained at 0.900 mL/min. The ion spray voltage was set at -4500 V and at a temperature of 500°C.

Preparation of Standard solutions

Preparation of Chlorthalidone Stock Solution For CC (A) (288759.319 ng/mL)

Weighed 3.063 mg of Chlorthalidone and transferred in to 10 mL of volumetric Flask and dissolved in 5 mL Methanol. The volume was made up to the mark with Methanol mixed well. The solution was then transferred into 15 mL tarson tube. It was stored in the refrigerator at 2-8 °C.

Preparation of Chlorthalidone Stock Solution For QC (B) ((287062.399ng/mL)

Weighed 3.045 mg of Chlorthalidone and transferred in to 10 mL of volumetric Flask and dissolved in 5 mL Methanol. The volume was made up to the mark with Methanol mixed well. The solution was then transferred into 15 mL tarson tube. It was stored in the refrigerator at 2-8 $^{\circ}$ C.

Preparation of internal standard

Preparation of Chlorthalidone D4 Internal Standard Stock Solution (99265.480 ng/mL) Weighed 0.502 mg of Chlorthalidone and transferred in to 5 mL of volumetric Flask and dissolved in 2.5 mL Methanol. The volume was made up to the mark with Methanol mixed well. The solution was then transferred into 15 mL tarson tube. It was stored in the refrigerator at 2-8 °C.

Preparation of Chlorthalidone D4 Internal Standard Dilution (1488.9822 ng/mL)

Pipette out 0.750 mL of ISTD into 50 mL volumetric flask and make up the volume up to the mark with diluent (methanol: water, 50:50, v/v). Transfer the solution into 100 mL reagent bottle. Label and store the solution into Refrigerator at 2-8°C.

Plasma sample preparation

Aliquot 200 µL from each sample into prelabeled polypropylene vials.

Add 50 μ L of ISTD dilution solution [Chlorthalidone D4 in Diluent (i.e., Methanol: Water, 50:50 v/v)] to each sample except Blank, for "BLANK" sample add 50 μ L diluent instead of ISTD dilution solution. Vortex the samples for approx. 1 minute on vortexer

Add 50 μ l of 2 %(v/v) Formic acid in water in each sample and vortex the samples for approx. 1 minutes on vortexer.

Add 2 ml of extraction solution (Methyl tert butyl ether: n-Hexane, 80:20, v/v) in each sample and vortex for 3 min. on vortexer.

Centrifuge the samples at 3000 RPM for 5 minutes at $5^{\circ}C \pm 2^{\circ}C$ and transfer the supernatant volume into prelabeled Ria vials.

Evaporate the supernatant volume under nitrogen gas stream at 45°±2° C up to dryness.

Reconstitute the dried samples with 400 μ L of reconstitution solution (Methanol: 0.05 % (v/v) Formic acid in water) (90:10, v/v) and vortex for approx. 30 seconds and transferred the volumes into HPLC vials and injected it.

RESULT AND DISCUSSION

Method validation

System Suitability

To verify that the analytical system would work properly and would give accurate and precise results, the system suitability parameters were performed prior to any parameter and the results obtained were found to be well within the acceptance criteria.

Acceptance criteria: % CV should be within 5% and 2% for area and RT respectively for analyte and ISTD(s). % CV of Area Ratio should be within 5%.

Sr. No.	Drug		IST	D	Area Ratio	
Sr. 110.	Area	RT	Area	RT	Area Kauo	
	164492	2.403	53486	2.393	3.075	
G (1.11)	165726	2.401	54897	2.394	3.019	
	164049	2.407	54856	2.400	2.991	
System suitability	163450	2.409	55364	2.401	2.952	
	166622	2.406	54765	2.397	3.042	
	167287	2.407	55296	2.403	3.025	
Mean	165271	2.406	54777	2.398	3.017	
S.D.	1517.41	0.00	678.44	0.00	0.04	
% CV	0.9	0.1	1.2	0.2	1.4	

Table 1: System suitability for LC-MS/MS method.

Autosampler Carry Over

Carry over is the appearance of the analyte when a blank containing no analyte is injected. Carry over is observed when a blank is injected immediately after a high concentration of the analyte. Carry over should be checked at starting of the validation and during the validation if any part of the instrument is changed.

Design of the experiment

To check the carryover of the Autosampler one aqueous higher standard, one lower standard and mobile phase (MP) was processed according to extraction procedure. The processed sample was injected in the following sequence to check the carryover.

Acceptance criteria

Carryover of the analyte in MP should be less than or equal to 20.00% of the analyte area of AQ lower standard (LLOQ) STD 1.

Carryover of the analyte in MP should be less than or equal to 5% of the IS area of AQ lower standard (LLOQ) STD1.

Sample name	Analyte Area	% of Interfering analyte Area	ISTD Area	% of Interfering ISTD Area
RS	0	0.0	0	0.0
AQ STD 8	3505368	NA	50431	NA
RS	0	0.0	0	0.0
RS	0	0.0	0	0.0
AQ STD 1	7980	NA	56976	NA

Table 2: Auto Sampler carry over for LC-MS/MS method.

Selectivity

Screening and selectivity was done using six normal blank matrix lot and one lipemic, one Haemolyse lot of plasma and the result was found within the acceptance limits. No interferences from the plasma matrix were observed at the retention time of the analyte and ISTD. The results obtained were within acceptance criteria, not any interfering peak was found within $\pm 10\%$ of the retention times of analyte and ISTD.

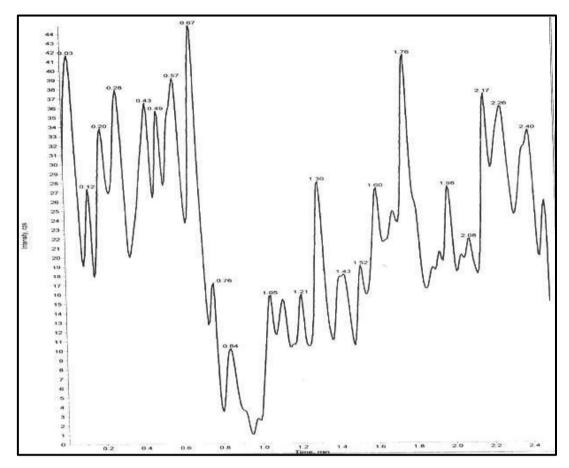


Figure 8.8.2: Chromatogram of blank plasma.

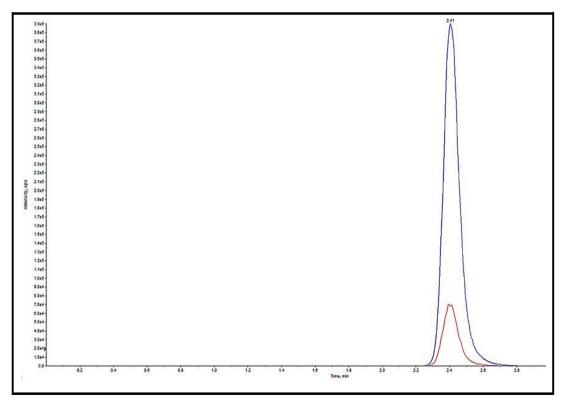


Figure 8.8.3: Chromatogram of LLOQ.

		Chlo	rthalidone		Chlort	halidone D4	
Sr. No	Blank Plasma	Interference at RT of Analyte	LLOQ area	% LLOQ	Interference at RT of ISTD	IS area	% IS
1	LOT-1	309	6385	4.8	0	49891	0.0
2	LOT-2	0	6160	0.0	0	55357	0.0
3	LOT-3	0	6705	0.0	0	52502	0.0
4	LOT-4	0	6920	0.0	0	54792	0.0
5	LOT-5	0	6358	0.0	0	50750	0.0
6	LOT-6	0	6666	0.0	0	51715	0.0
7	LOT-7(H)	0	6577	0.0	0	49091	0.0
8	LOT-8(L)	0	6812	0.0	0	53786	0.0
		Mean	6573		Mean	52236	
		S.D.	255.16		S.D.	2287.13	
		% CV	3.9		% CV	4.4	

Table 3: Results of selectivity.

DDR SELECTIVITY

(1% spiking of Mixed DDR solution in Blank plasma). The interference in BLANK was compared with the response of the respective extracted LLOQ samples. DDR SELECTIVITY (Drug metabolite)experiment performed in the presence of 1% spiking solution of DDR drug. DDR SELECTIVITY experiment performed in the presence of 1% spiking solution of mix solution of Paracetamol, Caffeine, Ibuprofen, Diclofenac, Ranitidine, Cetirizine, Domperidone, NicotineDDR drugs.

Acceptance criteria: Any significant interference peak corresponds to analyte and internal standard peak should not be present in Blank samples. If interfering peak observed at the retention time of analyte, area of interfering peak should be $\leq 20\%$ of analyte area obtained at LLOQ samples. If interfering peak observed at the retention time of internal standard, area of interfering peak should be $\leq 5\%$ of internal standard area obtained at LLOQ sample.

Table 4:	Results	of DDR	selectivity.
----------	---------	--------	--------------

			Chlorthalidone D4				
Sr. No	Blank Plasma	Interference at RT of Analyte	LLOQ area	% LLOQ	Interference at RT of ISTD	IS area	% IS
1	LOT-1	0	8076	0.0	0	63058	0.0
2	LOT-2	0	7733	0.0	0	62730	0.0
3	LOT-3	143	7914	1.8	0	63547	0.0
4	LOT-4	0	7929	0.0	0	62032	0.0
5	LOT-5	0	8017	0.0	0	63387	0.0
6	LOT-6	0	6975	0.0	0	61919	0.0

Mean	7774	Mean	62779	
S.D.	408.40	S.D.	683.72	
% CV	5.3	% CV	1.1	

Bench top stability

Six aliquots each of the low and high quality control samples were kept at room temperature $(22\pm5^{\circ}C)$ after spiking into Plasma. After completion of 06 Hrs. the samples were extracted and analyzed against freshly processed calibration curve and batch qualifying QC samples.

Acceptance criteria: The % Accuracy for all QC(s) should be within 85-115% of its nominal Concentration. The % CV for all QC(s) concentration at each concentration level should be less than or equal to 15%. At least 67% of all QC(s) should be within acceptance limits. At least 50% of all QC(s) at each level should be within acceptance limits.

Sr No	LQC	HQC	
Sr. No.	(6.072 ng/ml)	(963.826 ng/ml)	
1	5.766	943.917	
2	5.929	940.015	
3	5.877	956.948	
4	5.866	938.483 986.615	
5	5.877		
6	5.802	929.278	
Mean	5.853	949.209	
S.D.	0.0588	20.4153	
%CV	1.0	2.2	
% Nominal	96.4	98.5	
% Mean Change	-3.6	-1.5	

Table 5: Bench top stability for LQC & HQC.

Freeze and Thaw Stability

The freeze and thaw stability of analyte were determined after five freeze and thaw cycles. Six aliquots each of low and high quality control samples were stored at $-30\pm10^{\circ}$ C and $-70\pm20^{\circ}$ C and subjected to five freeze thaw cycles at a minimum interval of 12 Hrs. after completion of first cycle of minimum 24 Hrs. After the completion of five cycles the samples were analyzed against freshly processed calibration curve samples and batch qualifying QC samples.

Acceptance criteria: The % Accuracy for all QC(s) should be within 85-115% of its nominal Concentration. The % CV for all QC(s) concentration at each concentration level should be less than or equal to 15%. At least 67% of all QC(s) should be within acceptance limits. At

For 5 Cycles at -30 ± 10 °C For 5 Cycles at -70 \pm 20 °C Sr. No. HOC LOC HOC LOC 963.826 963.826 6.072 6.072 940.352 926.240 1 5.648 5.663 2 5.814 942.487 5.832 905.926 3 5.570 915.895 5.405 912.983 4 917.525 5.634 932.872 5.541 5 5.636 945.460 5.448 928.134 5.842 902.300 5.778 931.675 6 5.691 929.894 920.414 Mean 5.611 S.D. 0.1102 17.1844 0.1751 9.9380 %CV 1.9 1.8 3.1 1.1 93.7 96.5 92.4 95.5 % Accuracy

Table 6: Freeze and Thaw Stability for LQC & HQC.

least 50% of all QC(s) at each level should be within acceptance limits.

Whole blood stability

Sample of clinical study for analysis of Chlorthalidone will be collected from healthy human. The blood will be collected from the healthy human after administration of tablet containing Chlorthalidone. After collection of blood samples, sample will be centrifuged and plasma layer of the sample will be collected and stored in freezer at -20 °C. So from the collection time of samples to separation of the plasma layer Analyte will be present in the blood. Therefore it is necessary to establish the stability of the Analyte in blood for that period of time.

Design of the experiment

The fresh K3EDTA blood was collected. The spiking solution of HQC and LQC were spiked in fresh K3EDTA blood. The spiked blood samples were kept in to the ice cold water bath maintained at room temperature for 2 hrs. After 2 hrs, the spiking solution of HQC and LQC were spiked in blood and consider this sample as comparison or fresh sample and previously spiked sample as stability samples. Both comparison and stability HQC and LQC samples were centrifuged at 3000 rpm, for 15min and 5°C. The plasma layer was separated from the centrifuged samples. Six aliquots from stability and comparison samples of HQC and LQC were processed as per the extraction procedure.

Acceptance criteria

The % CV at each level should be within 15%.

The % change at each level should be within $\pm 15\%$.

		Area Ratio					
	L	QC	HQC				
	0 Hrs.	2 hours	0 Hrs.	2 hours			
	0.54146	0.54833	80.32567	82.85563			
	0.53636 0.57384		80.65157	81.74546			
	0.54529 0.59371		82.00059	82.94083			
	0.55264	0.58289	82.74003	82.21943			
	0.55055	0.58187	84.67778	81.84267			
	0.54358	0.56728	80.99486	81.78049			
Mean	0.544980	0.574653	81.898417	82.230752			
SD	0.005974	0.015691	1.630226	0.544732			
% CV	1.1	2.7	2.0	0.7			
% Accuracy	10	5.4	100.4				
% Change	5	.4	0	.4			

Table 7: Whole blood stability for LQC & HQC.

Auto sampler stability

During validation or study sample analysis of the sample, it might be possible that processed sample will not be analyzed immediately after completion of sample processing. In such a case processed samples are required to store in refrigerator at 2-8 °C. So the stability of the processed samples need to be evaluated at the above mentioned storage condition.

Design of the experiment

Auto sampler stability experiment processed HQC and LQC samples of the precision and accuracy were stored in refrigerator at 2-8 °C. After completion of desired storage period should be at least 24 hrs or longer duration, spiked HQC and LQC were retrieved for comparison samples. The comparison samples and freshly spiked calibration standard samples were processed as per the procedure. Compare the change in the nominal concentration of the HQC and LQC of stability samples with that of comparison samples.

Acceptance criteria

The % accuracy (nominal) for all QC should be within 85-115% of its nominal concentration. The % CV for all QC concentration at each concentration level should be less than or equal to 15%. At least 67% of all QC should be within acceptance limits.

At least 50% of QC at each level should be within acceptance limits.

LQC.	HQC.
6.072	963.826
6.201	1010.061

Table 8: Auto sampler stability for LQC & HQC.

	6.368	1012.321
	5.907	1020.377
	5.730	1014.979
	6.170	1010.740
	6.082	1010.602
Mean	6.076	1013.180
SD	0.2272	3.9522
% CV	3.7	0.4
% Accuracy	100.1	105.1
% Change	0.1	5.1

Stock solution stability and working solution stability Design of the experiment

Compare the analytical area results of stability solutions with freshly prepared solutions area results.

Acceptance criteria

The mean (%) change in area of the stability samples and comparison samples should be 90-110 % for both analyte and ISTD.

If above acceptance criteria are not meet then experiment should be repeated if on investigation any processing error is found or should be repeated for relevant shorter storage period or storage temperature.

Factor	W1 (O	LD) (mg)	3.08			0.9994			
Factor	W2 (N	EW) (mg)	3.08						
	COMP	ARISON	LTSS	L	LTWS STSS		ST	STWS	
	LLOQ ULOQ		18 DAYS 18	18 DAYS 18 HOURS		06	06 HOURS		
	_	_	HOURS	LLOQ	ULOQ	HOURS	LLOQ	ULOQ	
	7518	4083837	4018591	7747	3983369	4016624	7616	4058865	
	7556	3986668	4007727	7767	3978907	4016332	7604	4014604	
	7810	3969428	3998315	7638	4011344	3963671	7534	4014199	
	7115	4018177	3981552	7521	3978882	4020485	7611	3945176	
	7241	4000694	4027392	7621	3969658	3976279	7822	4001328	
	7625	3904315	4012851	7859	4001406	3979019	7404	4009298	
Mean	7478	3993853	4007738	7692	3987261	3995402	7599	4007245	
SD	255.91	58992.94	16153.70	121.44	15780.25	25133.81	135.97	36493.63	
% CV	3.4	1.5	0.4	1.6	0.4	0.6	1.8	0.9	
	% Stabil	ity	100.4	102.9	99.9	100.1	101.7	100.4	
	% Change		0.4	2.9	-0.1	0.1	1.7	0.4	
	Remark		Stable in methanol at 2-8°C.	:Water (n Methanol 50:50) at 2- °C	Stable for 06 hrs. in methanol at RT.	Methan	r 06 hrs. in ol :Water 50) RT	

Table 9: Stock & Working Solution Stability for analyte.

Factor	W1 (OLD)	0.50	- 1.0000			
ractor	W2 (NEW)	0.50				
		LTSS	LTWS	STSS	STWS	
	COMPARISO N	18 DAYS 18 HOURS	18 DAYS 18 HOURS	06 HOURS	06 HOURS	
	88868	88369	89299	88227	87914	
	87824	88662	87049	87956	87470	
	82881	83296	81808	81666	83027	
	82383	82297	82393	81295	80847	
	83162	83048	82902	83055	82294	
	82063	82518	81219	82099	83066	
Mean	84530	84698	84112	84050	84103	
SD	2998.50	2979.76	3274.99	3186.66	2897.16	
% CV	3.5	3.5	3.9	3.8	3.4	
0/	6 Stability	100.2	99.5	99.4	99.5	
0	% Change	0.2	-0.5	-0.6	-0.5	
	Remark	Analyte was stable in methanol at 2- 8°C for 18 days 18 hours.	Analyte was stable in Methanol: Water (50:50) at 2-8°C for 18 days 18 hours.	Analyte was stable for 06 hours in methanol at room temperature	Analyte was stable for 06 hrs. in Methanol: Water (50:50) at room temperature.	

Table 10: Stock & Working Solution Stability for ISTD.

Table 11: Within-batch or intra-batch precision and accuracy.

Result Table ID		LOQ QC	LQC.	MQC.	HQC.
Result Table ID	QC-ID	2.125	6.072	481.913	963.826
	1	2.142	5.648	469.479	940.352
	2	2.140	5.814	478.475	942.487
	3	2.080	5.570	465.855	915.895
	4	1.873	5.634	476.273	932.872
PA 01	5	1.926	5.636	436.759	945.460
FA VI	6	2.040	5.842	467.051	902.300
	Mean	2.034	5.691	465.649	929.894
	SD	0.11	0.11	15.02	17.18
	% CV	5.5	1.9	3.2	1.8
	% Accuracy	95.7	93.7	96.6	96.5
% Mean C	Change	-4.3	-6.3	-3.4	-3.5
	1	2.121	5.841	487.892	924.897
	2	2.186	5.898	489.241	945.681
	3	2.118	5.848	490.824	929.403
	4	2.206	5.995	480.381	918.522
PA 02	5	2.165	5.860	483.479	925.211
	6	2.052	5.998	493.737	947.092
	Mean	2.141	5.907	487.592	931.801
	SD	0.06	0.07	4.90	11.83
	% CV	2.6	1.2	1.0	1.3
	% Accuracy	100.8	97.3	101.2	96.7

% Mean C	% Mean Change		-2.7	1.2	-3.3
	1	2.043	5.815	467.005	920.815
	2	2.074	5.863	477.177	939.012
	3	1.928	5.702	494.230	925.784
	4	1.998	5.678	419.815	969.320
PA 03	5	2.090	5.713	495.926	963.342
PA 03	6	2.066	6.149	495.654	968.245
	Mean	2.033	5.820	474.968	947.753
	SD	0.06	0.18	29.49	21.97
	% CV	3.0	3.0	6.2	2.3
	% Accuracy	95.7	95.8	98.6	98.3
% Mean C	% Mean Change		-4.2	-1.4	-1.7
	1	2.134	6.081	539.252	1016.191
	2	1.985	6.199	507.943	998.817
	3	2.168	6.116	506.098	945.657
	4	1.938	6.337	512.691	1011.403
PA 04	5	2.262	6.535	531.387	982.131
FA 04	6	2.002	6.335	497.336	1001.369
	Mean	2.082	6.267	515.785	992.595
	SD	0.13	0.17	16.12	25.84
	% CV	6.0	2.7	3.1	2.6
	% Accuracy	98.0	103.2	107.0	103.0
% Mean Change	-2.0	3.2	7.0	3.0	

 Table 12: Between Batch Accuracy and Precision.

DECH T TADIE ID		LOQ QC	LQC	MQC	HQC
RESULT TABLE ID	QC-ID	2.125	6.072	481.913	963.826
	1	2.142	5.648	469.479	940.352
	2	2.140	5.814	478.475	942.487
PA 01	3	2.080	5.570	465.855	915.895
FA VI	4	1.873	5.634	476.273	932.872
	5	1.926	5.636	436.759	945.460
	6	2.040	5.842	467.051	902.300
	1	2.121	5.841	487.892	924.897
	2	2.186	5.898	489.241	945.681
PA 02	3	2.118	5.848	490.824	929.403
FA 02	4	2.206	5.995	480.381	918.522
	5	2.165	5.860	483.479	925.211
	6	2.052	5.998	493.737	947.092
	1	2.043	5.815	467.005	920.815
	2	2.074	5.863	477.177	939.012
PA 03	3	1.928	5.702	494.230	925.784
PA 03	4	1.998	5.678	419.815	969.320
	5	2.090	5.713	495.926	963.342
	6	2.066	6.149	495.654	968.245
	1	2.134	6.081	539.252	1016.191
PA 04	2	1.985	6.199	507.943	998.817
	3	2.168	6.116	506.098	945.657

	4	1.938 2.262	6.337 6.535	512.691 531.387	1011.403 982.131
	6	2.002	6.335	497.336	1001.369
	Mean	2.072	5.921	485.998	950.511
	SD	0.10	0.25	25.92	31.79
	% CV	4.8	4.3	5.3	3.3
	% Accuracy	97.5	97.5	100.8	98.6
% Mean Change	-2.5	-2.5	0.8	-1.4	

Recovery

Recovery for analyte and internal standard is performed by comparing the area of extracted samples at three different concentrations (LQC, MQC and HQC) with un-extracted matrix that represents recovery.

% Recovery Mean peak area response of extracted samples X 100

Mean peak area response of unextracted samples

Table 13: Recovery – ISTD.

	RECOVERY - ISTD							
SR NO	Extracted	Extracted Sample	Aqueous Sample					
SKINU	Sample	(Abs. Recovery)	(Total Recovery)					
1	66625	71886	66994					
2	64603	69692	66980					
3	60022	68524	65577					
4	61443	68429	60675					
5	62608	68548	60446					
6	62034	66925	59519					
7	55777	68309	62232					
8	55823	64541	63983					
9	53857	64543	64310					
10	58079	64163	57077					
11	57829	63510	57136					
12	56883	64051	56940					
13	55748	63688	59692					
14	51524	61262	59584					
15	52052	61278	60456					
16	55418	60643	60059					
17	55292	60160	53714					
18	56123	60185	54795					
Mean	57874	65019	60565					
SD	4195.21	3599.24	3884.34					
% CV	7.2	5.5	6.4					
% Recovery		89.0	95.6					

<u>www.wjpps.com</u>

1188

L

		LQC RESPONS	E
	Extracted	Unextracted Sample	Aqueous Sample
	Sample	(Absolute)	(Total)
	22214	25411	23658
Recovery 01	21749	24258	24568
·	20036	23921	24123
	21021	24288	22072
	20942	24509	22172
	21234	23711	22934
Mean	21199	24350	23255
SD	746.22	592.57	1031.04
% CV	3.5	2.4	4.4
%Recovery		87.1	91.2
		MQC RESPONS	E
	Extracted	Unextracted Sample	Aqueous Sample
	Sample	(Absolute)	(Total)
	1543128	1955934	1797781
Recovery 01	1548676	1851358	1826786
	1498964	1861432	1819264
	1582074	1819697	1651913
	1585433	1825622	1646616
	1592566	1828145	1639663
Mean	1558474	1857031	1730337
SD	35549.83	51084.46	92887.48
% CV	2.3	2.8	5.4
% Recovery		83.9	90.1
-		HQC RESPONS	E
	Extracted	Unextracted Sample	Aqueous Sample
	Sample	(Absolute)	(Total)
	2923647	3612152	3408208
Recovery 01	2762855	3504704	3424304
-	2743132	3498445	3456548
	2886330	3405014	3389390
	2900753	3393421	3119491
	3013950	3420013	3119400
Mean	2871778	3472292	3319557
SD	102341.19	83397.12	156565.22
% CV	3.6	2.4	4.7
%Recovery		82.7	86.5

Ruggedness

Ruggedness experiment was established by performing Precision and Accuracy batch having six replicates at four concentrations of quality control samples

(LOQ QC, LQC, MQC and HQC) by different column Acceptance criteria

The % accuracy (nominal) for all QC should be within 85-115% of its nominal value except LOQ QC where it should be within 80-120% of its nominal concentration.

The % CV for QC samples at each concentration level should be less than or equal to 15% except LOQ QC where it should be less than or equal to 20%.

At least 67% of all QC should be within acceptance limits.

At least 50% of all QC at each level should be within acceptance limits.

	LOQ QC.	LQC.	MQC.	HQC.
QC-ID	2.125	6.072	481.913	963.826
1	2.123	5.748	471.364	912.676
2	2.152	5.795	474.953	956.742
3	2.170	5.690	494.540	933.300
4	2.170	5.677	418.276	986.329
5	2.129	5.784	497.427	955.083
6	2.114	5.939	490.942	989.305
Mean	2.143	5.772	474.584	955.573
SD	0.02	0.09	29.56	29.74
% CV	1.1	1.6	6.2	3.1
% Accuracy	100.8	95.1	98.5	99.1
% Mean Change	0.8	-4.9	-1.5	-0.9

Reinjection reproducibility

Reinjection reproducibility is performed to validate that the result produced can be reproduced by injecting the same samples again within the stability of the samples. When instrument failure occurs the samples might be required to reinject and because of this reason it is required to validate reinjection.

Reinjection reproducibility was performed by injecting the already acquired six set of HQC and LQC of precision and accuracy immediately after completion of Precision and Accuracy sequence. The % change will be evaluated by comparing with previously injected samples.

Acceptance criteria

The % Accuracy for all QC samples should be within 85-115% of its nominal concentration. The % CV for all QC concentration at each level should be less than or equal to 15%. At least 67% of all QC samples should be within the limits. The % change in accuracy at each level of re-injected QC sample should be within \pm 15 % of comparison with earlier injected value.

Origina	al values	Reinjected values		
LQC.	HQC.	LQC.	HQC.	
6.072	963.826	6.072	963.826	
5.648	940.352	5.663	926.240	
5.814	942.487	5.832	905.926	
5.570	915.895	5.405	912.983	

Patel.

% Change			-1.3	-1.0
% Accuracy	93.7	96.5	92.4	95.5
% CV	1.9	1.8	3.1	1.1
SD	0.1102	17.1844	0.1751	9.9380
Mean	5.691	929.894	5.611	920.414
	5.842	902.300	5.778	931.675
	5.636	945.460	5.448	928.134
	5.634	932.872	5.541	917.525

CONCLUSION

The method for estimation of Chlorthalidone from human plasma by LC-MS/MS was validated for performance characteristics related to accuracy, precision, linearity, selectivity, stability of the drug in biological matrix at ambient and at freezing conditions, stability of drug in extracted media. The method is linear over the concentration studied. The method is selective in presence of plasma interferences. Hence, % interference is Zero. Recovery is consistent at higher, middle and at lower level. % CV for recovery is well within acceptance criteria for all three QC levels studied. The results are precise for all three sets of QC and for LLOQ. Accuracy also holds well with all replicates of all QC levels and LLOQ lying within acceptance criteria for back-calculated concentration. Precision and accuracy also holds good on intra batch basis. % Difference(s) in the back calculated concentration obtained with fresh and stability samples for the following stability studies is within +15 %. Stability of Chlorthalidone and Chlorthalidone D4 (IS) in Mobile Phase when placed in auto sampler. Stability of Chlorthalidone in Biological matrix at ambient temperature. Stability of Chlorthalidone in Biological matrix subjected to freeze- thaw cycles. Method is also validated to re-inject any sample whenever re-injection required. The bioanalytical method validation report indicates the suitability of the method for analysis of subject samples.

ACKNOWLEDGMENT

Author is thankful to the Zydus Cadila Healthcare Pvt. Limited, Ahmedabad for providing necessary facilities to carry out the experiment.

REFERENCES

- 1. Introduction to hypertension, Adam Felman "Everything you need to know about hypertension" "https://www.medicalnewstoday.com/articles/150109.php " July 2019
- 2. "Drug profile for Chlorthalidone https://www.drugbank.ca/drugs/DB00310
- 3. Drug profile for Chlorthalidone https://pubchem.ncbi.nlm.nih.gov/compound/Chlorthalidone

Patel.

4. S. Department of Health and Human Services, Food and Drug Administration., Guidance for Industry, Bioanalytical Method Validation, May 2001.