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Abstract 

Structural, electronic and optical properties have been determined by using first principle calculation 

for ZnO material. In present study, full potential linearized augmented plane wave method has been 

selected with generalised gradient approximation executed in WIEN2k. Structure of ZnO material 

stabilises in the Wurtzite form of hexagonal closed packed crystal with lattice constant a=3.289Å, c= 

5.307Å. Density of states and band structure diagram of ZnO material shows semiconductor nature 

with a energy band gap of 0.65 eV. Reflectivity, dielectric function, optical absorption and 

conductivity, refractive index, energy loss and extinction coefficient have also been explored as a 

dependence on photon energy incident on ZnO material.  
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INTRODUCTION 

The thin film transistor (TFT) in which a dielectric layer is sandwich between two metal gates has 

been classified as field-effect-transistors (FET). Display devices have become flat and high resolution 

spectrum of colours in present scenario due to metal oxide semiconductor field effect transistor 

(MOS-FET) as well as light-emitting diodes (LEDs) in TFTs based electronic devices [1–3]. Thin 

films based on Zinc oxide (ZnO) are widely used for fabricating such devices due to their exceptional 

electrical, optical characteristics and excellent uniformity available as display devices [4–15]. One of 

the most prestigious characteristics of ZnO material has a huge binding energy (60 meV) for 

excitation. Zinc oxide has a room temperature semiconductor in periodic group II-VI with large direct 

band gap with ultraviolet optical range at which has been reported as potentially application in 

Resistive Random Access Memory [4–6], Gas Sensors [7], Diode Laser [8], Solar Cells [9], LEDs 

[10], Switching Transistors [11] and active-matrix liquid-crystal display (AMLCD) [12]. These 

devices used sunlight to produce electricity through the transparent LCD panel.  

 

ZnO based composites such as electrode, polycrystalline film, and single crystals have been 

challenged to the researchers and society due to grain boundaries. Optical transparency, high electron 

mobility, stability and flexibility at high 

temperature are some of the issues related to ZnO 

thin films [13–15]. ZnO Nano-plates were also 

synthesized by Gupta et al as sensing device 

towards ethanol with minimum detection and high 

response magnitude [16]. Nowadays, density 

functional theory (DFT) has been acclimated to 

investigate the various attributions such as 

electronic band gap and optical properties with 

existing properties of ZnO material. Harun et al. 

fabricated nanoparticles of ZnO [17] and 

compared the electronic results with theoretical 

studies [18]. Matur et al. proposed ZnO:Mg thin 

film using first principle calculation [19] and 
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studied optical properties. Bashyal et al. studied the electronic band gap of ZnO using DFT+U and 

enhance the value of band gap [20]. Researchers are investigating the doping effect on ZnO based 

films theoretically as well as experimentally, because doping enhancing conductivity and electronic 

properties [21–22]. The present study aimed to analyse the structural, electronic and optical properties 

of ZnO material to explore its potential uses in optoelectronics and photonics devices. 

 

EXPERIMENTAL DETAILS  

We have used the WIEN2k package of Code on the basis of full potential linearized augmented 

plane wave (FP-LAPW) in density function theory with GGA (generalised gradient approximation) 

[23]. Energy of-7.0 Ry was used to separate the core and valence electronic state with range of order 

0.00001 Ry for the convergence and 3000 points for k-mesh Brillouin Zone, were taken for ZnO 

material. In the present study, we calculated the ground state properties such as structural, optical and 

electronic properties of ZnO material.  

 

RESULTS AND DISCUSSION  

Structure Properties 

The unit cell of ZnO material consists of four atoms in hexagonal wurtzitestructure. In this 

structure, Zn positions are taken as (X=⅓, Y=⅔, Z=0); (X=⅔, Y=⅓, Z=½ ); and O positions are 

(X=⅔, Y=⅓, Z=⅞ ); (X=⅓, Y=⅔, Z=⅜ ); with space group P63mc as shown in Figure 1(a) and 2x2x2 

supercell of ZnO material is presented in Figure 1(b).  

 

 
Figure 1. (a) Unit cell of ZnO material and (b) 2x2x2 supercell of ZnO material. 

 

Volume optimised of ZnO material via energy versus volume curve presented in Figure 2 and find 

equilibrium lattice constant where energy minimise and also the minimum volume of unit cell at the 

stable state for further calculations. Optimised lattice constant for ZnO material and compared with 

previously reported data has been reported (Table 1). It shows that the optimised lattice constant is 

well matched with the previously obtained lattice constant. The c/a ratio is 1.614 for ZnO material 

which is well matched with experimentally obtained lattice constant by Harun et al. [18]. The choice 

of different exchange correlation function gives the different interface boundaries therefore the lattice 

parameter can be varied accordingly as reported in Table 1. 

(a) (b) 
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Figure 2. Volume optimization curve of ZnO material. 

 

Table 1. Obtained lattice Parameter with various Approximations (exchange correlation function) 

Approximation Optimised Lattice 

Constant (Present Study) 

Lattice constant (Previous 

Reported) 

GGA-PBE a=3.289Å, c=5.307Å a=3.284 Å, c=5.296 Å [17] 

a=3.249 Å, c=5.206 Å [21] 

a=3.289 Å, c=5.308 Å [22] 

GGA-PBESol  a=3.239 Å, c=5.227 Å [17] 

GGA-PBE + U  a=3.254 Å, c=5.234 Å [17] 

 

Electronic Properties 

The calculated density of states (DOS) for ZnO material is similar for both spin up and spin down 

as shown in Figure 3. Zero energy shows Fermi energy level (EF) while positive energy represents 

conduction band and negative energy as valence band. Total DOS is represented with black line while 

the red line and blue line show the density of states of Zn and O respectively. Total DOS shows 

semiconducting characteristics near EF. An energy band gap of approximately 0.65 eV is observed at 

EF which is the difference of energy between minimum of conductance band and maximum of 

valence band energy. Figure 4 represents the band structure of ZnO that is identical for both spin up 

and spin down. This band diagram indicates the energy band gap of 0.65 eV at the gamma line which 

also matches with the DOS. Observed energy band gap compared with the previously reported band 

gap is shown in Table 2. Value of band gap reported 0.83 eV by Ul Haq et al. using Perdew-Burke-

Ernzerhof generalised gradient approximation (PBE-GGA) [23, 24] and 0.79 eV by Yaakob et al. 

using Local Density Approximation (LDA) [25]. The experimental energy band gap of ZnO material 

is 3.3 eV and 34. eV was reported by x-ray spectroscopy [26] and UV-spectroscopy [27], respectively. 

The variation in energy band gap is observed as the exchange correlation function treated in the 

simulation may relate the defects, surface and interface characteristics during the experimental 

fabrication process [28]. This energy band gap at room temperature gives the electron’s excitation 

from valence to conduction band which lies in Infrared regions.  
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Figure 3. Density of States for ZnO material. 

 

 
Figure 4. Band Structure of ZnO material. 

 

Table 2. Obtained energy band gap with various approximation (exchange correlation function) 

Approximation Energy band gap (Present Study) Energy band gap (Previous Reported) 

GGA-PBE 0.65 eV 0.83 eV [24] 

LDA  0.79 eV [25] 

LDA + U  1.15 eV [25] 

Experimental  3.3 eV [26], 3.4 eV [27] 
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Optical Properties 

We have obtained the variation of optical parameters with respect to the incident energy in range 

between 0 to 13.6 eV such as real dielectric function (ε1), imaginary dielectric function (ε2), optical 

conductivity (σ), reflectivity (R), index of refraction (n), loss of energy (L), extinction coefficient (K) 

and coefficient of absorption (I) for ZnO material in the Figure 5. The dielectric function (ɛ) depends 

on frequency (ω) as equation 1 [29–31]: 

ɛ(𝜔) = ɛ1(𝜔) + 𝑖ɛ2(𝜔) (1) 

Here ɛ1 is real and ɛ2 is imaginary dielectric functions that are vary with incident photon energy as 

shown in Figure 5(a) and 5(b) respectively. Peaks of interband absorption are observed in the whole 

spectral range. Value of ɛ1 is 4.95 at zero energy and it reaches its maximum value of 5.59 at 0.80 eV 

that means the maximise degree of polarisation requires this energy. The peaks in the IR range (0 to 

1.6 eV) indicate the presence of small energy band gaps in the band structure and DOS of the ZnO 

material. Interband absorption bands are initiate in the ultra-violet energy ranges. The next peak of ɛ1 

has been observed at 8.69 eV and after this energy its value decreases and becomes zero at 10.27 eV. 

This negative value of ɛ1 is correlated to the limiting tunability of current to producing commercial 

application of ZnO material at higher energy [29].  

 

The maximum value of ɛ2 is 5.30 observed at 9.40 eV. It is correlated to dielectric losses of ZnO 

material. After this energy, material has been absorbing the energy and optical conductivity starts to 

decrease as shown in Figure 5(c). Small peak of σ is observed at 5.89 eV and the maximum value of σ 

is observed as 6635 per ohm per cm at 9.38 eV. After that, the energy value of σ fluctuates up and 

down that shows the instability at high energy and results in enhancement of reflectivity. 

 

 
Figure 5. Optical parameters as a function of the energy of incident photons for ZnO material. 

 

Refractive index (n) varies with energy as Figure 5(e) with 2.22 at zero energy. Maximum value of 

n was observed 2.42 at 0.80 eV similar to real dielectric constant ɛ1 and decreases from 2.11 after the 

energy 9.10 eV. Energy loss of ZnO also increases with increasing the incident energy as shown in 

Figure 5(f). It observed that energy loss has maximum values where the conductivity has minimum at 

the energy points in the UV region i.e. 7.1 eV, 10.7 eV, 11.5 eV, 12.3 eV and 12.8 eV. Excitation 

coefficient (K) is a property that tells how strongly ZnO material absorbs or reflects electromagnetic 

radiation at a particular energy that is also represented in Figure 5(g). Its high value at high energy 
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tends to increase in the reflectivity (R) in Figure 5(d) as well as the absorption (I) in Figure 5(h). The 

reflectivity from the ZnO surface has observed 0.14 in a wide energy range from zero to 8.3 eV. The 

value of R starts to enhance and becomes more than 0.25 at incident energy of 9.1 eV and above 

energy. Transparency of ZnO will be high when reflectivity is less, this makes it a prominent material 

for display devices. 

 

Variation of Optical conductivity in terms of per unit second of ZnO is also obtained and shown in 

Figure 6. The Initial value of σ is zero till 0.65 eV which also correlates the DOS in which we have 

observed the electronic transition band gap of 0.65 eV near to Fermi Energy. The value of σ increases 

on increasing incident energy. It shows that material is optically conductive in presence of visible 

light (nearly 1.63 to 3.26 eV) and ultraviolet light (nearly 3.2 to 100 eV). Major peaks of optical 

conductivity have been observed at 5.8 eV, 9.1 eV, 11.2 eV, 11.7 eV, 12.4 eV and 13.0 eV in the UV 

region. These optical characteristics of ZnO material show the high intensity of visible and UV 

radiations make it prominent for the manufacturing of optoelectronic devices such as LED, solar cell 

etc. 

 

 
Figure 6. Optical conductivity per second as a function of the energy of incident photons for ZnO 

material. 

 

CONCLUSION 

Electronic, structure and optical properties of ZnO material computed with the help of density 

function theory in WIEN2k code. Structure of ZnO material stabilises in the Wurtzite form of 

hexagonal closed packed lattice. Observed value has 0.65 eV of direct energy band gap for ZnO 

which shows the semiconductor nature of materials with the help of DOS and band structure 

calculations. Optical parameters such as real dielectric function and imaginary dielectric function, 

index of refraction, optical conductivity, reflectivity, energy loss, absorption and extinction coefficient 

are discussed with variation of incident photon energy from 0-13.6 eV for the various applicability of 

the ZnO material. Optical conductivity of ZnO is conductive in presence of visible and ultraviolet 

light and prominent material and possible application in optoelectronic devices. Real dielectric 

function shows a wide range of energy to polarise the ZnO material. Reflectivity has observed less 

than 0.25 in the range of 0-10 eV that is good for display devices. Finally, we hope that this study 

helps researchers to make semiconductor devices such as MOSFET, TFT, LED, solar cell etc. with 

necessary amendments like doping and surface morphology that might tune the electronic, structural 

and optical properties as per need of the future generation. 
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