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Abstract 

Several engineering fields have increased their use of metal matrix composites (MMCs) in the past 

few years. Due to the increase in composites, the demand for accurate machining has also become 

important. Specifically, pertaining to biomaterial applications, accuracy factor with desired surface 

finish is critical. While the near-net shape manufacturing process has advanced, MMCs frequently 

require post-mould machining to achieve surface quality, and dimensional tolerances. In the present 

study, a zinc MMC (ZMMC) is fabricated and its mechanical properties are tested. Taguchi's 

orthogonal array (L18) is used to determine the machineability of novel Zn/(Ag+Fe)-MMC. As part of 

the current work, an artificial neural network (ANN) is implemented to model and optimize materials 

removal rate (MRR), overcut (Oc), and tool wear (TW) during electrochemical discharge machining 

(ECDM) of novel Zn/(Ag+Fe)-MMC. In order to obtain the response/output values, ECDM micro-

drilling experiments were conducted under different input control factors such as pulse-on-time, 

current, pulse-off-time, and feed rate. It identified that 4-16-3-3 was the best architecture for the ANN 

model. The root mean square error (RMSE) from the optimization model was used to evaluate 

performance. Based on regression coefficients between experimental and model predictions and the 

correlation coefficient (R-value) between the ANN predictions and experimental results, the 

performance of the model was evaluated. The overall R-index was assessed as 0.98722. During the 

experiment it was found that training, validation and testing results are 98.782%, 98.122% and 

98.505%, respectively. ANN modelling and prediction analysis succeeded in replacing conventional 

method of regression analysis in field of machining hybrid materials. 
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electrochemical discharge machining, correlation coefficient, prediction 

 

 

INTRODUCTION 

Artificial intelligence (AI), specifically artificial neural networks (ANNs), has allowed 

manufacturing to make revolutionary progress. However, neural networks (NNs) received less 

attention in the field of AI application in the production industry. Most important features of ANNs 

are: (i) self–adaptive behavior improves the 

network's ability to learn and to predict, allowing it 

to adapt forecasts to changing ecological 

conditions; (ii) from speech and natural language 

processing to imaging and biomedical engineering, 

parallel computing has a profound impact on many 

disciplines and applications. Hence, they can be of 

significant benefit for today's computer integrated 

smart factories and manufacturing, in the context 

of Industry 4.0. Manufacturers are making rapid 

changes in their manufacturing processes due to 

shifting customer demands and shorter product 
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lifetimes. To adapt to these changes, manufacturing technologies must be versatile. The solution to 

this problem can be achieved by using artificial neural networks. There are a wide variety of 

applications of ANN, including classification, forecasting, modelling, optimization, and recognition 

etc. These applications are relevant to a wide range of real-life problems in sectors including aviation, 

automotive, defense, engineering, and medical [1, 2]. Simulating the structures and functions of 

biological neural networks and neurons, ANNs are basic models of the human central nervous system 

[3]. ANNs by their nature do not work serially but work more like a parallel mode, where each 

component of the network performs a separate function and is dispersed throughout all of the  

neurons [4]. 

 

Thus, ANNs work in a similar manner to enormous parallel dispersed processors, which consist of 

simple processing neurons and increase the number of computing resources available [5]. Many 
researchers around the world are conducting ongoing research into manufacturing processes, such as 

drilling, milling, turning, laser cutting, electrochemical discharge machining (EDM), and plasma arc 
cutting, etc. [6, 7]. Soft computation methods are applied to model and quality objectives were 

optimized, such as dimensional accuracy, delamination factors, materials removal rate (MRR), and 

residual stress and surface roughness characteristics, for example [8–11]. A high degree of complexity 
and uncertainty characterizes the laser cutting (LC) process due to the complex thermomechanical and 

physical processes developed during the machining process [12, 13]. In other words, conventional 
models that are based on machining theory and analytical models to estimate LC quality 

characteristics work perfectly for a specific set of processes, defined conditions, and specific 
technologies [14]. Machine learning (ML) techniques like ANN, genetic algorithm and fuzzy logic 

serve as a black box and are unaffected by the process itself, making them an excellent choice for 
control, modelling, monitoring, and optimization of such applications [15–18]. McDonnell et al. [16] 

used ANN with three identical blocks for parameters optimization for wear control applications, 
followed by two full-connected layers and a finally, single activation layer. A 1*e–5 learning rate was 

chosen, lower than average. The study concluded that the proposed approach to laser process 
optimization can be used in a widespread series of fields and help to cut the cost and time associated 

with it. Design phase comprises a number of factors that affect its performance are included. The 
factors can be grouped into six general categories, based on Madíc and Radovanovíc [19]: dataset for 

the ANN, iterations’ number, type of transfer function, initialization of weight (variable weights or 
equal as per requirement), training algorithm, and ANN’s architecture. Undoubtedly, a systematic 
approach has not been found to select the optimal training parameters of an ANN. In most cases, the 

process involves trial-and-error experiments, which require knowledge and time of each participant 
[12]. Through literature review, number of hidden layers are determined. Then proceeding with a 

simulation of ANNs of various sizes (3, 4, 5, . . ., N) follows, with the aim of obtaining the least mean 
squared error (MSE) and root MSE (RMSE) performance [12]. 

 

Modelling by using these methods does not always lead to the desired results. In addition, 

according to the literature, most research on optimization of neural networks focuses on optimizing 
only the MSE and RMSE. As well, optimizing only a single objective of an ANN at a time is typically 

not implemented concurrently with optimizing multiple objectives simultaneously utilizing multi-
objective optimization techniques [20]. Additionally, ANN methodology is opted to replace existing 

regression analysis technique for even small dataset. An attempt is made to use ANN model in 
mechanical engineering field specially focusing machining studies which are conventionally utilizing 

regression analysis. 
 

In this study, novel Zn/(Ag+Fe)-MMC is developed using liquid stir casting parameters. 
Afterwards, fabricated slab underwent micro-drilling under four different input parameter conditions. 

THree different types of output parameters were extracted. Further, these features were used for multi 

objective optimization using ANN. As the final step, predictive analysis is performed to measure 
RMSE and compared with experimental observations. Figure 1 represents methodology used to carry 

out ANN modelling. 
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Figure 1. Methodology followed to model artificial neural network (ANN) for developing Zn/(Ag + 

Fe)-metal matrix composite (MMC). 

 

ECDM PROCESS 

Electrical discharge machining is combined with electrochemical machining to form 

electrochemical discharge machining. ECDM is a process that involves electrochemical reactions and 

electrical spark discharges (ESDs) to remove material. One of the most significant electrolysis 

processes is the formation of a gas film. Gas film formation is key because sparks/discharges occur 

within the film, which ultimately improves machining performance. As bubbles coalesce to form 

larger bubbles as current density increases, an electric field is detected at the wire electrode surface. A 

high enough potential difference can break the electric field during electrochemical reactions, causing 

sparks to be generated. Electrical discharges result in discontinuous sparking, subsequently removing 

material from the workpiece. A spark that results in an electrical charge striking the work material 

raises the material's temperature to its melting point. In addition to promoting chemical reactions, high 

temperatures also boost electrolyte reactions. ECDM removed material from the workpiece by 

melting, vaporizing, and chemically action. 

 

Experimental Details of Micro-Drilled Surface of Novel Zn/(Ag+Fe)-MMC Using ECDM Setup  

Details of Work Piece  

The zinc metal matrix composite (ZMMC) was fabricated utilizing liquid stir casting. Nanoparticles 

were reinforced after being pre-heated. Figure 2 represents different views of fabricated MMC. 

 

An investigation developed in this area focuses on ZMMCs reinforced with 1 wt% of silver and 1 

wt% of iron nanoparticles. A sample with a width of 32 mm, a length of 80 mm, and having a 

thickness of 6 mm is selected for micro-drilling using ECDM setup as shown in Figure 3. In recent 
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years, zinc alloys have gained a lot of attention. They are used in automobile, biomedical, electronic, 

pharmaceutical, medical, and marine applications due to their low friction, light weight, and corrosion 

resistance [21]. Consequently, ZMMCs need to be investigated. 

 

 
Figure 2. After fabrication, top and side view of metal matrix composite (MMC).   

 

 
Figure 3. Experimental setup of electrochemical discharge machining (ECDM). 

 

Microstructure Analysis 

Optical microscopy was used for microstructure at 200× magnification as shown in Figure 4(a). 

Uniform distribution of particles is clearly visible with some cluster formations. Accumulation of Fe 

particles around Ag particles can be seen. Clear zinc dendritic formations are visible throughout the 

matrix. Into dendritic zones, Fe particles are visible as confirmed by scanning electron microscopy 

(SEM) as shown in Figure 4(b). SEM is performed at scale of 100 µm magnification. Base material 

(zinc) is present in area having dark gray shades, while black shade is due to Ag nanoparticles. Fe 

particles are present in vicinity of Ag particles depicting whitish shade. Energy dispersive 

spectroscopy (EDS) mapping is also provided as shown in Figure 4(c) at 100 µm magnification. 

 

Experimental Setup and Constructing Taguchi Orthogonal Array 

This study used Taguchi's orthogonal array (L18) to determine the machineability of novel 

Zn/(Ag+Fe)-MMC. Analyses and optimizations were performed with MATLAB. In order to micro-

drill with a brass cutting tool of 400 μm in diameter with the selected process parameters, four 
parameters, namely, pulse-on-time (Ton), pulse-off-time (Toff), feed rate (FR), and current (C) were 

selected. Calculated output responses were material removal rate (MRR), overcut (Oc), and tool wear 

(TW). Three levels of Ton, FR, and C were varied, while two levels of Toff were varied. Drilling trials 

were conducted in 18 experiments using a mixed level orthogonal level approach. Table 2 shows the 

input variable parameters like pulse-on-time, pulse-off-time, feed rate, and current, as well as their 

corresponding levels, while Table 3 presents the output responses for each run. 
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Figure 4. (a) Optical images of microstructure at 200× magnification using optical microscopy. (b) 

Scanning electron micrograph of 100 µm magnification. (c) The corresponding energy dispersive 

spectroscopy (EDS) mapping of the metal matrix composite (MMC) at 100 µm magnification. 

 

As shown in Table 1, L18 array runs correspond to micro-drilled surfaces obtained after machining 

on ECDM setup as shown in Figure 3. These images represent the top and bottom machined surfaces 

of each slab. The top and bottom surfaces of experiments 13 and 14 are depicted in Table 1, along 

with drilled views of those experiments. 

 

Table 1. Micro-Drilled surfaces of metal matrix composite (MMC) (top and bottom surface). 

S.N. Top Drilled Surface Bottom Drilled Surface 

General view 

  

1 

  

2 

 

 

(a) 
(b) 

(c) 
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Table 2. Input variable parameters with corresponding levels 

Parameters Symbols Levels 

  1 2 3 

Pulse-off-time (ms) Toff 1 2  

Current (A)  C 1 2 3 

Pulse-on-time (ms) Ton 1 2 3 

Feed rate (mm/min) FR 100 250 500 

 

MRR (mm3/min) is calculated as the difference between the weight of the workpiece before and 

after drilling, as shown in Equation (1). TW (mg) is assessed by comparing the weight of the tool 

before and after each -drill as shown in Equation (2). Using Equation (3), Oc (µm) is calculated by 

taking the difference between the tool and drilled diameters. 𝑀𝑅𝑅 =  𝜋 𝑇12 𝑡  [𝐷𝑡3−𝐷𝑏3𝐷𝑏 ] x 1000;   (1) 𝑂𝑐 =  𝐷𝑡𝑜𝑜𝑙 − (𝐷𝑡+𝐷𝑏2 ); (2) 

TW = Wi – Wf (3) 

Above equations tells us that Wi is the initial weight, Wf is the final weight, t is the machining time 

in minutes, T is thickness of fabricated novel ZMMC and ρ is the density of the material. Dtool is tool 

diameter, while, Dt and Db are top and bottom machined diameters, respectively (Tables 2 and 3).  

 

Table 3. Experimental results of micro-drilling 

Input Values Output Values 

Ton Current Toff FR MRR Oc TW 

1 1 1 100 21.1608 3.81 0.0072 

1 1 2 250 96.9876 8.3835 0.009 

1 1 3 500 246.8772 13.9255 0.0145 

1 2 1 250 116.298 2.3855 0.0152 

1 2 2 500 220.4256 8.3205 0.0249 

1 2 3 100 49.3572 12.7985 0.0391 

1 3 1 500 361.4988 5.885 0.0257 

1 3 2 250 40.5582 5.2875 0.017 

2 3 3 100 35.268 6.5535 0.0177 

2 1 1 100 22.9242 6.9655 0.0112 

2 1 2 250 141.0726 13.0401 0.0137 

2 1 3 500 220.4262 17.1075 0.0188 

2 2 1 250 180.7494 15.4565 0.0163 

2 2 2 500 176.3412 11.4215 0.0227 

2 2 3 100 101.3958 12.764 0.0326 

2 3 1 500 238.062 3.1295 0.0318 

2 3 2 100 19.3974 3.8835 0.0184 

2 3 3 250 35.268 9.1235 0.0192 

FR, feed rate; MRR, materials removal rate; Oc, overcut; TW, tool wear. 

 

ANN MODEL DEVELOPMENT AND IMPLEMENTATION 

ANNs were developed by replicating biological learning processes in the brain through learning 

techniques. With a given sample set, neural networks are robust in predicting a value following a 

learning activity. To predict the unknown output parameter in various processes, ANNs combine a set 

of computation procedures with a theoretical basis. Neurons usually consist of a large number of 
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simple, parallel processors (units). The processors have small amounts of local memory. A 

communication channel (connection) is used to link two or more units and to convey data, which is 

encoded in one of several different ways [22]. Supervised network training is done by multilayer 

perceptron (MLP) using backpropagation algorithm (BPA). The BPA method is a form of steepest 

descent, in which weight values are adjusted iteratively while moving on the error surface. This 

ensures that the network arrives at the least amount of error when patterns are presented to the 

network during the learning process. A forward and a backward pass are made through the layers of a 

network in order to learn. Layer by layer, the input pattern propagates through the network by 

applying it to the nodes of the input layers. 

 

A synaptic weight is fixed for the forward pass. A backward pass is used in order to update the 

synaptic weights when the error is propagated between the actual and the desired output. When a new 

pattern of input is presented to the network, the weights are continually updated, and the process 

continues until the network's actual output approaches the desired output. The network cycle is 

defined as a group of all input patterns propagated once known as epochs. 

 

The majority of practical applications are based on these networks. A popular neural network is a 

multilayer perceptron or back-propagation neural network (BPNN). This is one of the many different 

neural networks that have been developed. BPNN is chosen for this paper as it offers several 

advantages over the other network and has been successfully applied in a wide variety of applications 

[23]. Back propagation is the most famous neural network training algorithm. However, many 

problems benefit from modern second-order algorithms, such as conjugate gradient descent or 

Levenberg-Marquardt (LM), though back propagation may still have an advantage in some instances. 

It is also the easiest algorithm to understand. Additionally, there are heuristic modifications to the 

BPA, such as delta-bar-delta and quick propagation that support some problem domains. A BPNN is 

composed of four input neurons, corresponding to pulse-on-time, pulse-off-time, feed rate, and 

current, as well as three output neurons, which are corresponding to material removal rate, overcut, 

and tool wear. A total of one hidden layer has been used with 16 neurons. Input values were 

normalized before training. Figure 5 shows the ANN configuration. 

 

 
Figure 5. Artificial neural network layers depicting 4–16–3–3 configurations. 

 

Neural Network Algorithm and Architecture 

The hidden layer of the ANN contains a variable number of neurons. A total of 16 neurons are 

present in the hidden layer. Due to a reduced error value, 16 hidden neurons and one hidden layer are 

used in this configuration. For predicting the material removal rate, overcut, and tool wear, we chose a 
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neural network model with a 4-16-3-3 topology, as shown in Table 4. Figure 6. illustrates the 

schematic view of the developed optimized ANN architecture.  

 

Table 4. Critical observations for output response model. 
S.N. Inputs Remarks 

1 Network configuration 4-16-3-3 

2 Number of input parameters 4 

3 Number of output parameters 3 

4 Number of hidden layers 1 

5 Number of hidden neurons 16 

6 Number of output neurons 3 

7 Input training function TrainR (Random weight/bias rule) 

8 Adaption learning function LearnGDM  

9 Transfer function used Logsig (sigmoid) 

10 Error calculating method MSE (mean squared error) 

11 Number of epochs 1500 

 

 
Figure 6. Optimum neural network configuration for modelling. 

 

Step 1: The number of layers hidden should be determined. 

 

Step 2: Identify the number of neurons that each layer will contain. There are as many neurons in 

the input layer as there are input variables, and similarly, count for the output layers. Set few neurons 

in the hidden layer. 

 

Step 3: Input training pattern is determined. 

 

Step 4: Input, hidden, and output layers are assigned with small weight values and below Figure 6. 

describes optimum NN configuration.  

 

 

Step 5 To find the output values (response parameters) for all the neurons in each hidden layer as 

well as output layer, Equation (4) is used. 𝑜𝑢𝑡𝑖 = 𝑠(𝑛𝑒𝑡1) = 𝑠(∑ 𝑜𝑢𝑡𝑗 + 𝜃1𝑤𝑖𝑗 )  (4) 

where, outi is the ith output neuron (layer under consideration); outj is the jth output neuron 

(preceding layer). s is the sigmoid function, which can be expressed as Equation (5): 𝑠(𝑛𝑒𝑡1) = 11+𝑒−𝑛𝑒𝑡𝑖 𝑞⁄  (5) 

where, q represents the value of temperature. 

 

Step 6: The output layer should be determined, then those values should be compared to the desired 

output. Determining the neuronal error, following Equation (6) is used: 𝑒𝑟𝑟𝑜𝑟 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡  (6) 
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Similarly, RSME value of the output neurons is determined utilizing Equation (7). 𝑒𝑝 = 12 ∑(𝑡𝑝𝑗 − 𝑂𝑝𝑗)2 (7) 

where, ep is pth presentation vector error, tpj is the jth output neuron of expected value and Opj is the 

jth output neuron providing expected output. 

 

Step 7: In the hidden layer, calculate the errors associated with each neuron and backpropagate 

them to the weight values between those neurons. 

 

Step 8: Calculate from Step 3 through Step 7. The root mean-square error value, and the worst error 

percentage are determined at the end of the cycle. The next step is to determine if it has a reasonable 

error. If it does, continue to Step 9. If not, return to Step 3 and repeat the process from Step 3 to Step 

7.  

Step 9: At the end of the iteration, note the final weight values attached to the hidden layer neurons 

and the output layer neurons.  

 

Step 10: Testing the neural network model with the trained weight values, finding the output for the 

testing pattern and determining whether the deviation from the desired value is reasonable or not. In 

that case, alter learning rate parameters, change momentum value and change temperature by 

changing the number of neurons in the revised network. Table 5 shows typical network performance 

parameters when the configuration is tested. 

 

RESULTS ANALYSIS AND ANN MODELLING FOR ECDM MICRO-DRILLED 

PARAMETERS 

Simulating the machining parameters of the ECDM in order to establish an association with the 

performance parameters was the objective of this study. To develop the ANN model, MRR, Oc, and 

TW were considered the output variables, whereas the parameters of the process were considered the 

inputs. Toolbox of MATLAB 2017 was used to implement the ANNs. More than 1000 different 

network architectures were investigated and analyzed using a "trial-and-error approach".  

 

Table 5. Artificial neural network (ANN) model predictive results 
Runs Predicted Value RMSE Value 

MRR Oc TW MRR Oc TW 

1 20.8557 3.7234 0.011064 0.071915 0.020417 0.000911 

2 96.4237 8.3671 0.0077121 0.13292 0.003874 0.000304 

3 248.2926 13.9671 0.0136295 0.333613 0.009813 0.000205 

4 116.2034 2.6489 0.0123869 0.022287 0.062077 0.000663 

5 229.4814 8.5512 0.0191047 2.134473 0.054384 0.001366 

6 19.3974 12.3156 0.039745 7.061593 0.113828 0.000152 

7 360.3469 5.8688 0.0277876 0.271505 0.003814 0.000492 

8 19.4026 6.5273 0.018254 4.986423 0.292224 0.001474 

9 19.3974 7.7483 0.018953 3.740736 1.224426 0.001474 

10 23.2361 6.9747 0.013637 0.073523 0.002167 0.000574 

11 139.9898 13.0084 0.010878 0.255218 0.007469 0.000665 

12 220.0402 16.7842 0.0187501 0.090981 0.076212 0.002369 

13 179.898 15.5935 0.018866 0.200682 0.032294 0.001752 

14 176.5261 11.4269 0.0183644 0.043586 0.001268 0.003379 

15 19.3975 12.99 0.034328 19.32718 0.053259 0.000407 

16 237.7162 3.1632 0.02796 0.081496 0.007954 0.005619 

17 19.3974 5.1199 0.0191 6.06E-06 0.527125 0.000165 

18 19.4011 9.1333 0.020296 3.739864 0.002302 0.001437 
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MRR, materials removal rate; Oc, overcut; RMST, root mean squared error; TW, tool wear. 

 

The study evaluated the ANN simulation model's ability to predict machining properties by 

comparing the input data with experimental findings. When machining, ANN can be used to predict 

the maximum material removal rate, while keeping the amount of overcut and tool wear to a 

minimum. Analyzing the training data and testing values has been done, and graphs have been 

plotted.  

The results of this analysis are summarized in Table 5, which revealed that the values derived from 

the ANN simulation were more reliable than those derived from the manual process. Training set of 

fraction values resulted in good modelling of ANN, hence predicting accurate results with minimal 

error. Consequently, the neural network has demonstrated significant accuracy in predicting the 

machining properties of ECDM, under a specific set of micro-drilling conditions.  

 

The performance of the ANN model was evaluated by comparing prediction and observed values 

using the R-value. During the training phase, validation phase, and testing phase, the data presented to 

the ANN estimates the regression index (R) value that constructs the correlation between the output 

and the target data. The outcomes are highly correlated with the target data using regression plots as 

shown in Figure 7. 

 

 
Figure 7. Artificial neural network (ANN) regression plot depicting results during training, 

validation, testing, and combined percentage. 

 

Figure 7 shows the network's formulation of the overall R value: MRR, Oc and TW results are also 

significantly correlated with the ANN predicted values described in Equation (8) to Equation (11): 𝑂𝑢𝑡𝑝𝑢𝑡 = 0.99 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡 − 2.8 for training  (8) 
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𝑂𝑢𝑡𝑝𝑢𝑡 = 1 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡 + 0.12 for validation   (9) 𝑂𝑢𝑡𝑝𝑢𝑡 = 1 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡 − 1.7 for testing  (10) 𝑂𝑢𝑡𝑝𝑢𝑡 = 0.99 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡 − 1.9 for combined  (11) 

Zn/(Ag + Fe)-MMC micro-drilling parameters were successfully modeled using ANNs. It is 

observed from Figures 8, 9, and 10. Validation of ANN models for MRR, Oc, and TW results in close 

prediction as similar to experimental observations. Figures 8 to 10show the validation for the MRR, 

Oc, and TW values, respectively, using ANN. Figures 8–10 shows tha the root mean square error 

between experimental and predicted values for MRR (minimum = 6.06E-06 and maximum = 19.32), 

Oc (minimum = 0.001268 and maximum = 1.22), and TW (minimum = 0.000165 and maximum = 

0.0056) are all within acceptable limits. Testing all the training and testing patterns for MRR, Oc, and 

TW resulted in an average root mean square error of 2.36%, 1.38%, and 0.13% respectively. MRR, 

Oc, and TW have all been predicted satisfactorily by the ANN model. 

 

 
Figure 8. Validation of artificial neural network (ANN) model for material removal rate (MRR). 

 

 
Figure 9. Validation of artificial neural network (ANN) model for overcut (Oc). 
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Figure 10. Validation of artificial neural network (ANN) model for tool wear (TW). 

 

INTERPRETATION, CONCLUSION AND LIMITATION 

Brass micro-drills were used for ECDM experiments to collect MRR, Oc, and TW data under 

different drilling conditions involving pulse-on-time, pulse-off-time, current, and feed rate 

combinations. Testing was conducted to obtain optimal material removal rate (maximum), tool wear 

(minimum), and overcut (minimum) in the least amount of time. 

 

An ANN approach provides an effective and systematic method for optimization. Data have been 

learned using the ANN. A total of 18 patterns were used to train the four network configurations (4-

16-3-3). Micro-drilled surfaces with fewer defects can be made possible with the use of tools for 

predicting and controlling the micro-drilling properties of fabricated novel Zn/(Ag+Fe)-MMC. Output 

of model and experimental results of MRR, Oc, and TW are closely matched, demonstrating the 

validity of neural network models. Additional predictions for non-experimental patterns are possible 

with this method, replacing existing regression analysis. 

 

Whereas, experimenting with more dataset leads to more training data and can lead to higher 

accuracy. Authors used limited machining data due to constraint of fabricated zinc-based MMC and 

focused just to demonstrate ANN feasibility. With a regression value above 98.5%, there is also a 

strong agreement between the predicted and expected values of all three output functions, which 

shows the utility of ANNs for optimization problems. The ANN methodology is faster and more 

accurate than traditional methods. 
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