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Abstract 

In this study, the liquid metal nanocomposites were investigated using artificial neural network (ANN) 

prediction capabilities for Compression Ignition (CI) engine performance. The independent input 

variables selected were load (20-100%), Liquid-metal nanocomposites Doped Rate (NDR, 0-50 ppm), 

and Biogas Flow Rate (BFR, 0.5-1.0 kg/h). The Central Composite Face-Centered Design (CCFCD) 

was used in conjunction with the selected input variables and output parameters to assist in the 

preparation of the Design of Experiment (DOE). The proportion of error for the ANN projected 

output responses is determined for each run in the DOE. ANN model's predictions exhibited a good 

coefficient of determination (R2), minimal Root Mean Square error (RMSE), and low Mean Absolute 

deviation (MAD), indicating accurate and reliable prediction capability. A response that was 

optimum according to the ANN model's optimization occurred at 74.5% load, 10.55 ppm NDR, and 

0.656 kg/h BFR. The optimization response concludes that combining Liquid-metal nanocomposites 

and biogas contributes positively to diesel engine performances. 
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INTRODUCTION 

With our overreliance on a finite supply of fossil fuels and ever-increasing energy demand over the 

recent decades, there is mounting alarm regarding the future availability of energy sources. Also, the 

emission generated via the utilization of these energy sources has been a significant concern given 

how the earth is shaping up in the form of climate change [1]. Hence, the requirement arises to 

investigate alternative renewable fuels to meet future demands. Some alternative renewable fuels 

explored are biodiesels, bio alcohols, biogas, etc. [2]. For the uses of biogas in CI engines, the 

techniques that exist today are either in the form of a Homogenous Charge Compression Engine 

(HCCI) or via dual fuel mode. The low cetane value of biogas gives it a disadvantage of high self-

ignition temperature, which results in the need for higher cetane fuel to ignite biogas [3]. This 

disadvantage is suitably countered by the dual fueling of biogas with diesel. The external installation 

of a gas mixer is required in dual fuel operation to feed the biogas-air mixture through the input 

manifold. 

 

A study of dual-fueling biogas with diesel in a 

CI engine found a 6.1% reduction in BTE while 

increasing CO and HC emissions. In addition, the 

investigation shows an improvement in NOX and 

smoke emissions. The reduction in BTE is 

attributed to a drop in volumetric efficiency due to 

some air substituted by biogas. The less NOX 

could be attributed to CO2 availability in biogas 

with high molar-specific heat, leading to lower 

combustion temperature. Also, methane 

concentration in biogas is reported to have a 

positive effect in inhibiting smoke formation [4]. 
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A reduction of BTE, an increase in BSFC, an improvement in NOX and smoke emissions, and an 

increase in CO and HC were reported by other studies using biogas with diesel in CI engines [5, 6]. 

An investigation of the influence of load on dual fuel operating in CI engines reports a decline of BTE 

for dual fuel mode by 10% in low loads. However, the study concluded that at higher loads, the BTE 

gap between the diesel and dual fuel modes is narrowed [7]. Given our aim of lessening our 

dependence on diesel fuel, adding biogas as dual fuel in CI engines could be a vital difference. A 70% 

methane content biogas resulted in a diesel replacement of up to 87.5%, according to a study 

conducted on CI engines [8]. An analysis of the influence of BFR (0-1.2 kg/h) on the performance of 

the CI engine observed higher BSEC for the biogas run in contrast to the neat diesel run. Decrements 

in Smoke and NOX by 49% and 39%, respectively, were observed for the engine run on a BFR of 0.9 

kg/h compared to the neat diesel [9].  

 

Recent developments have observed the use of nanoparticles as additives to enhance engine 

performance and reduction in emissions owing to shortened ignition delay factors, the consequence of 

nanoparticles' better ignition attributes. In addition to enhancing magnetic characteristics, 

nanoparticles’ increased surface-to-volume ratio and larger surface areas could also enhance catalytic 

reactivity [10]. A study of adding Alumina nanoparticles with a size of 50 nm in diesel at NDR of 0.5 

g/L and 1 g/L for use in the diesel engine reported increased BTE, lower NOX, and HC due to 

improved combustion characteristics [11]. A study of Alumina (Al2O3) fed to diesel at NDR of 25-100 

ppm in CI engines revealed smoke emissions decline and combustion efficiency increment [12]. 

Copper oxide (CuO) nanoparticles fed at the rate of 0.5% (wt./wt.) to diesel for CI engine use were 

studied. An increment and decline of 4% and 4% for BTE and BSFC, respectively, were reported as 

opposed to a neat diesel run due to enhanced fuel characteristics in the form of flash point and heating 

value [13]. A comparison investigation for the usage of Alumina 50 ppm and CuO, 50 ppm on the CI 

engine, observed an increment in BTE, a decline in BSFC, and engine emission for both nanoparticles 

compared to CI. However, among the nanoparticles compared, more reduction of BSFC was observed 

for CuO, and more reduction of CO, UHC, and NOX was observed for Alumina. Oxygenated 

additives’ CuO properties resulted in increased combustion temperature further leading to higher NOX 

formation [14]. A comparative study of Manganese oxide (MnO) and CuO fed to diesel at a rate of 

200 mg/L in a CI engine resulted in improved performance and emission reduction for both in 

comparison to diesel. However, superior BTE and reduction of CO, HC, and NOX by 4%, 37%, 1%, 

and 4%, respectively, were observed for the MnO-diesel blend [15]. An investigation of Titanium 

oxide (TiO2) nanoparticles usage in the CI engine at the feed of 0.20% added with 99.8% diesel 

resulted in an increase in brake power and a decline in BSFC, NOX, CO, and CO2 because of metallic 

nanomaterial compounds' greater heating value and surface area [16]. Improvement in combustion 

characteristics and reduced soot production by 11% were reported for a study on CeO2-diesel blend 

with the feed of 50-100 mg/L in a 4-cylinder CI engine. The substitution effect of oxygen in CeO2 

speeds up the diffusion and oxidation rate enhancing fuel combustion [17]. Nanocomposites research 

has increased because to the fascination with synthetically manipulating nanostructures. 

Nanocomposites' temperature, magnetic characteristics, and charge capacity depend on morphology 

and interfacial aspects. Nanoparticles and nanolayers' high surface area-to-volume and aspect ratio 

make them ideal for polymeric materials. These structures integrate basic component qualities to 

improve mechanical and superconducting properties, making them ideal for high-tech applications. 

This feature underpins hybrid nanocomposites' matrices. Nanocomposites increase mechanical 

characteristics. Gas permeability, electrical/thermal conductivity, hardness, modulus, dimensional 

stability, strengthening. Nanocomposites can be made using clay, polymers, carbon, and 

nanoparticles[18]. Nanocomposites made of liquid metal alloys are either suspended in a polymer 

matrix as nanoparticles or combined with metallic nanoparticles to form a biphasic composition in 

which the liquid metal is the continuous matrix phase. The possibility of liquid metal nanocomposites 

altering the electrical, dielectric, and thermal property tuning of materials is exciting. For percolation 

and electrical conductivity at high concentrations, using thicker materials increases stiffness and 

mechanical hysteresis. Though tolerable in many contexts, this compromise is impeding the 
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development of computer, robotic, and medical systems that will one day necessitate mechanical 

adherence to biological tissues and materials. Substituting liquid metal nanodroplets for stiff filler 

greatly increases the potential uses of nanocomposite materials [19]. 

 

The correlation of input and output parameters is predicted using ANN computational tools from 

experimental data. For optimization purposes, ANN-GA are cost-effective and time-saving solution 

[20]. Research on RSM in CI engines considers the quantity of alumina nanoparticles NDR (40-160 

ppm) and engine speed (800-1000 rpm) as input factors and BP, torque, BSFC, CO, HC, CO2, and 

NOx as its output parameters. The study observed an optimum value of output parameters for 

nanoparticles blend NDR at 160 ppm and 1000 rpm engine speed [21]. An RSM study in the CI 

engine was carried out with CR (16 to 18), Load (20 to 100%), BFR (1.2 to 3.2 kg/h) as the input 

variables, and BTE, smoke, CO, HC, and NOX as the dependent output response. RSM optimization 

with desirability observed optimal performance and emission response at 80% load, 18 CR, and 2.8 

kg/h BFR [22]. 

 

Motivation and Novelty in Objectives 

Over-dependence on the limited supply of fossil fuel with the burden of emission as a consequence 

of its utilization has been a major concern. The literature survey suggests that biogas, without 

enrichment, can potentially substitute up to 87.5% diesel when used as dual fuel [8]. The literature 

survey showed adding nanoparticles to diesel has improved engine performance and emission [15–17, 

21, 22]. No research has been conducted on optimising the combined addition rate of Liquid-metal 

nanocomposites and biogas in diesel engines. The input factors of load, Liquid-metal nanocomposites 

doped rate (NDR), and Biogas Flow Rate (BFR) are optimised for their impact on engine performance 

responses utilizing the developed ANN models. 

 

MATERIALS AND METHODS 

Nanoparticles Properties 

The NiO was sourced from Sigma Aldrich. A Zeiss scanning electron microscope (SEM) EVO 50 

is used to determine the morphological structure of the nanoparticles. The SEM image indicates very 

densely, non-uniform, larger agglomerated particles, the shape mainly spherical and oval. The 

agglomeration factor is because of the NiO nanoparticles' high surface energy and surface tension 

[10]. Figure 1 SEM image pictures prove the nanoparticles are less than 100 nm on average. 

 

NiO nanoparticle elemental composition is determined using the RONTEC EDX system model 

Quantax 200. Ni and O are confirmed to be present in Figure 2, and no peak detection of foreign 

elements suggests the nanoparticles utilized are very pure. The observation of Ni and O atomic 

percentages of 49.77% and 50.23%, respectively, further confirms the 1:1 NiO theoretical ratio. The 

elemental mapping images in Figure 3 indicate an equal ratio of Ni and O elements in the lattice. 

 

Liquid metal Nanocomposites Blend Preparation and Properties 

For one hour, diesel and nanoparticles were mixed in an ultrasonication bath to form Liquid-metal 

nanocomposites at concentrations of 25 ppm and 50 ppm, respectively. After that, for 30 minutes, the 

mixture is mixed again with the use of an ultrasonicator probe operating at 50 Hz. 1% Triton X-100 

surfactant by weight was added to avoid agglomeration due to surface tension. After observing the 

blends for 24 hours, no agglomeration or settlings of particles were observed in the fuel blend. As 

mentioned in Table 1, the properties of the pilot fuels used in the study were then measured utilizing 

several ASTM testing methods. 

 

Biogas Properties 

The biogas composition changes based on feedstock and production parameters; carbon dioxide and 

methane are the two primary components. Also, there are hydrogen sulfide (H2S) remains in their 

unprocessed state. In this research, biogas was generated using food waste as its main ingredient. To 



 

 

Optimization of Liquid Metal Nanocomposites                                                                             Lalhriatpuia et al. 

 

 

© STM Journals 2023. All Rights Reserved S15  
 

remove H2S, the raw biogas was put through a medium consisting of iron sponges. Table 2 displays 

the calorific value and ultimate gas composition. A biogas analyzer is used to test the biogas 

composition, while a Junker’s calorimeter is used to determine the calorific value. 

 

 
Figure 1. EDX spectra of NiO nanoparticles. 

 
Figure 2. SEM images of NiO at 30 µm. 
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(a) NiO 

 

 
(b) Ni 
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(c) O 

Figure 3. Elemental mapping of (a) NiO, (b) Ni, and (c) O. 

 

Table 1. Physicochemical properties of test fuels. 

Properties  Unit Testing 

methods 

Diesel Diesel+NDR 25 

ppm 

Diesel+NDR 50 

ppm 

Kinematic Viscosity at 40°C  cSt D-445 2.6 2.66 2.79 

Density at 40°C  kg/m3 D-1298 840 841.99 845.97 

Calorific Values MJ/kg D-240 43.2 43.25 43.36 

Flash Point °C D-93 69 67.29 66.44 

Pour Point °C D-97 -8 -8.32 -8.48 

Cetane Number - D-4737 48 48.91 49.15 

 

Table 2. Biogas Composition. 

Properties Unit Value 

CH4  % 68 

CO2 % 25 

H2S ppm 2 

O2 % 0.5 

Calorific Value MJ/kg 26 

 

Experimental Setup and Methodology 

The experiment used a CI engine with a single cylinder, four strokes, and a constant speed that had 

a rated output of 3.5 kW. For applying load, a dynamometer-type eddy current was used. In regards to 

this research, the load varies between 2.4 kg (20%) to 12 kg (100%). The water-cooled engine's flow 

was monitored with rotameters. A manometer and a fuel measuring unit are used to measure airflow 

and fuel flow. Temperature sensors are positioned at various sites, and continuous data is collected 

using PT100 sensors. Connected to an NI unit, these sensors record data and transmit it to the 
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computer with EngineSoft software. A gas-air mixing mechanism is added to the arrangement to 

provide dual fuel operation. The data from engine specifications were used to construct the gas-air 

mixing system. The experimental setup and gas mixer utilized in the investigation are schematically 

shown in Figure 4 [23, 24]. 

 

A biogas flow meter (Siya SI 2.5) was used to assess the BFR, and the rate of flow modification 

was achieved through modulation in the ball valves. A gas analyzer (Make: AVL DiGas 480) was 

used to evaluate emissions, and a smoke meter (Make: AVL 437C) was used to quantify smoke 

opacity. The methodology process chart of this current study is given in Figure 5. The study 

conducted can be classified mainly into three stages as follows: 

1. Fuel blend preparation and engine testing as per DOE 

2. Characterization of fuels 

3. Modelling and optimization using ANN-GA 

 

Artificial Neural Network Modelling 

Analytical tools like artificial neural networks (ANNs) mimic the way the brain works to validate 

correlations between input and output variables and to build data predictability regressions [25]. The 

model design Figure 6 shows the three-layered feed-forward back propagation neural network that 

was used. The input layer had three nodes: Load, NDR, and BFR. The hidden layer had ten neurons. 

The output layer had six nodes: BTE, BSEC, NOX, HC, CO, and Smoke. The model was trained using 

MATLAB version R2020a. All layer contains neurons, and links are the connection made between the 

neurons. These links are then provided weights and bias so that the neurons can converse with each 

other. Levenberg-Marquardt (trainlm) was used for training, and gradient descent with momentum 

weight and bias (LEARNGDM) was used for adaptive learning. The performance function was a 

mean square error (MSE). The input and output layers used linear transfer functions, whereas the 

hidden layer used hyperbolic tangent sigmoidal (tansig) transfer functions. There are a total of 20 runs 

in the DOE. 14 runs, or 70% of the total, were utilized for network training. Three runs, or 15% of the 

whole, were then allocated for testing, and the remaining 15% were reserved for validation. 

 

Evaluation metrics and Validation 

There is an accuracy rate computed for each DOE run to evaluate the measurement mismatch 

between the actual data and the expected outcomes from the ANN using eq. (1). To evaluate the ANN 

model's prediction efficacy, we used R2, RMSE, and MAD, which were computed using eq. (2), (3), 

and (4), 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =  
|Observed result−Predicted result|

Observed result
 (1) 

𝑅2 =  1 − (
∑ (𝐴𝑡−𝐹𝑡)2𝑛

𝑡=1

∑ (𝐹𝑡)2𝑛

𝑡=1

)  (2) 

 𝑅𝑀𝑆𝐸 = √∑ (𝐴𝑡−𝐹𝑡)2𝑛

𝑡=1

𝑛
  (3) 

𝑀𝐴𝐷 =  
∑ |𝐴𝑡−𝐹𝑡

𝑛
𝑡=1 |

n
  (4) 

At denotes the observed data, Ft stands for the projected data, and n represents the total number of 

DOE runs.  

 

To determine whether the result obtained via optimization is accurate, validation is required. The 

optimal values for the ANN model's input parameters are tested experimentally. Using eq. (1), we can 

determine the proportion of inaccuracy between the experimental data and the optimized response 

parameters predicted by the ANN models. 
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Figure 4. Schematic overview of (a) the experimental setup; and (b) gas mixer. 

 

 
Figure 5. Methodology process chart. 
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Figure 6. ANN Model architecture. 

 

GA Optimization for ANN 

Evolutionary algorithms, such as GA, are a way to conduct research and exploration that is similar 

to the idea of natural selection. The GA fitness function is defined using the trained network that was 

constructed for each ANN model output response. An objective function, a fitness function takes as 

inputs the desired outcomes, which may be either maximizing or minimizing the responses. Table 3 

contains the selection parameters, as well as the upper and lower limits of the input parameters, which 

are subsequently submitted to the GA programme. In GA optimization, there are five steps: initial 

population, fitness function, selection, crossover, and mutation. From the ANN-based objective 

function, GA grades and selects the solution [26]. 

 

RESULTS AND DISCUSSIONS 

DOE Evaluation 

The Central Composite Face-Centered Design (CCFCD) was used in conjunction with the selected 

input variables and output parameters to assist in the preparation of the DOE in the Design Expert 

Software. Data from DOE experiments' experimental runs are shown in Table 4. 

 

ANN Model Analysis 

In order to determine the output parameters' correlation coefficient (R), a network was established 

for each step of the process (training, testing, and validation). Both Figure 7 and Figure 8 provide the 

total R-values for all dependent responses. A high R-value for any given network indicates that the 

DOE data was well-trained, which allows us to draw additional conclusions about the reliability of the 

regression model. 

 

Evaluated metrics of the ANN Model 

The proportion of error for the ANN projected output responses is determined for each run in the 

DOE using eq. (1), as shown in Figure 9. 

 

Table 5 displays the evaluation metrics for the ANN model's prediction: R2, RMSE, and MAD. For 

the most part, the ANN model's predictions had good R2, minimal RMSE, and low MAD. The ANN 

model's accurate predictions and minimal error rates prove that it is a trustworthy regression analysis 

for the input variables studied. 

 

Table 3. Optimizing GA using Selection Parameters. 

Population  

Type 

Initial 

Population 

Mutation 

Rate 

Crossover 

Fraction 

Selection 

Function 

Double Vector 50 0.01 0.8 Tournament 
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Table 4. DOE and the results of experiments. 
Run A:load B:NDR C:BFR BTE BSEC NOx HC CO SO 

 
% ppm kg/h % MJ/kWh ppm ppm % % 

1 60 25 0.75 15.89 22.36 204 46.05 0.091 29.21 

2 100 0 0.5 21.63 19.52 450 42.68 0.1108 50.41 

3 20 0 0.5 10.45 34.33 114 55.76 0.1496 18.93 

4 60 25 0.75 16.1 22 202 45.05 0.09 28.91 

5 20 50 1 9.29 38.73 77 57.05 0.1446 13.46 

6 20 50 0.5 11.05 32.24 108 52.43 0.133 16.83 

7 100 50 0.5 23.12 18.12 419 39.71 0.0952 44.86 

8 60 0 0.75 14.86 24.07 229 50.06 0.103 30.75 

9 100 25 0.75 21.21 19.79 348 41.12 0.1043 42.3 

10 60 25 0.75 15.91 22.11 203 45.51 0.091 29.7 

11 100 50 1 19.86 20.79 298 43.07 0.1060 35.89 

12 60 50 0.75 16.34 21.66 199 44.97 0.089 27.36 

13 20 25 0.75 10.44 36.22 80 54.97 0.1436 15.81 

14 60 25 0.75 15.71 22.51 206 46.53 0.0917 29 

15 60 25 0.75 15.76 22.42 205 46.21 0.091 29.5 

16 60 25 0.75 16.12 21.55 200 44.53 0.091 29 

17 60 25 0.5 16.82 21.03 255 45.87 0.086 33.16 

18 60 25 1 14.63 25.16 180 49.28 0.097 26.34 

19 20 0 1 8.67 41.64 83 62.22 0.1624 15.22 

20 100 0 1 18.39 22.58 328 47.34 0.122 40.22 

 

 

(a) R of BTE 

 

 

(b) R of BSEC 
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(c) R of NOx 

Figure 7. R for the trained network in for outputs (a) BTE, (b) BSEC, and (c) NOX. 

 

 

(d) R of HC 

 

 

(e) R of CO 
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(f) R of Smoke 

Figure 8. R for the trained network for outputs (d) HC, (e) CO, and (f) Smoke opacity. 

 

 

(a) BTE responses 

 

 

(b) BSEC responses 

 

 

(c) NOX responses 
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(d) HC responses 

 

 

(e) CO responses 

 

 

(f) Smoke opacity responses 

Figure 9. Percentage in error for predicted engine performance and emission responses. 

 

Table 5. Evaluation metrics for ANN Model Predictions. 

Outputs R2  RMSE  MAD 

BTE 0.9959  0.276  0.137 

BSEC 0.9873  0.928  0.411 

NOx 0.9654  19.873  5.790 

HC 0.9939  0.475  0.254 

CO 0.9806  0.003  0.002 

Smoke opacity 0.9860  1.332  0.632 

 

Optimization of input parameters and Validation 

At a load of 74.5%, NDR of 10.55 ppm, and BFR of 0.656 kg/h, the ANN-GA optimization method 

predicted an ideal value of BTE, BSEC, NOX, HC, CO, and smoke opacity of 17.5%, 20.9 MJ/kWh, 

330 ppm, 46 ppm, 0.098%, and 41.6%, respectively. 

 

Table 6 displays the optimum predicted results, validation outcomes, and Errors. Results optimized 

by the model have a percentage error of less than 5%, which is deemed significant enough for 

acceptance. 
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Table 6. ANN-GA optimized parameter's validation test results and error percentage. 

Output Model Technique: ANN-GA 

Experiment Estimated Errors (%) 

BTE 18.05 17.5 3.09 

BSEC 21.47 20.9 2.69 

NOX 321.15 330 2.72 

HC  46.88 46 1.89 

CO 0.103 0.098 3.15 

SO 43.25 41.6 4.97 

 

CONCLUSIONS 

Twenty experimental runs of CCFCD matrices were created for the DOE as part of this 

investigation. A model using ANN was constructed based on the DOE findings. The following are the 

key conclusions drawn from the study: 

1. According to the criteria used for assessment, the ANN regression model performed effectively 

and had a low prediction error rate. The ANN model's predictions made were precise and 

dependable, with low RMSE and MAD and high R2. 

2. The ANN-GA model was optimized to achieve the following responses: 17.5% for BTE, 20.9 

MJ/kWh for BSEC, 330 ppm for NOX, 46 ppm for HC, 0.098% for CO, and 41.6% for smoke 

opacity, all with operational inputs of 74.5% load, 10.55 ppm NDR, and 0.656 kg/h BFR.  

3. Optimal results from ANN models have shown to have low error percentages (less than 5%) in 

validation runs.  

 

Considering the optimized results from the ANN model, it may be concluded the performance and 

emissions of CI engines are improved when biogas is combined with Liquid-metal nanocomposites. 

Investigating the impacts of load, NDR, and BFR on CI engines also reveals that ANN is a 

dependable and accurate tool. 
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