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Abstract 

Lightweight composite materials with improved mechanical properties are widely used in industries. 

There is a need to obtain optimum machining parameters of such hybrid composites. This paper uses 

reliable multi-objective optimization technique and modified Taguchi approach to determine optimal 

machining parameters such as speed (NS) varying from 1000 rpm to 1500 rpm, feed rate (FR) from 

0.10 mm/rev to 0.20 mm/rev, depth-of-cut (DC) varied from 0.5 mm to 1.5 mm and percentage 

reinforcement (R%) varied from 2 to 6 to achieve maximum material removal rate (MRR) and 

minimum surface roughness (SR) of the hybrid composites. The hybrid metal matrix composite (i.e., 

Al 7075 reinforced with B4C and rice husk ash, RHA) is manufactured using a stir casting technique. 
A set of optimum machining parameters is found to be NS = 1500 rpm, FR = 0.1 mm/rev, DC = 1.5 mm 

and R% = 2. Empirical relationship for MRR and SR are developed in terms of the machining 

parameters. A confirmatory experiment is performed and the optimal solution is validated.  

 
Keywords: Depth-of-cut, Feed rate, Material removal rate, % reinforcement, Rice husk ash, Speed, 

Surface roughness, Turning operation. 
 

 
INTRODUCTION  

The automobile, marine and aerospace industries use lightweight composite materials to improve 
the performance of structural components [1]. The 
composites have desirable mechanical, thermal 
and tribological characteristics and can be 
produced at minimal cost [2]. Metal matrix 
composites (MMCs) offer elevated ductile 
properties over ceramic matrix composites 
(CMCs) and better environmental stability than 
polymer matrix composites (PMCs). Hand layup 
techniques and liquid state processing techniques 
(including stir casting, squeeze casting) are 
commonly used to fabricate composites [3]. 
Friction stir processing (FSP), a solid-state 
material modification technique, has proven its 
potential in surface composite fabrication [4]. 
Powder metallurgy, diffusion bonding, stir-
casting, and in-situ processes are used to fabricate 
MMCs [5]. Stir casting and powder metallurgy 
processes are used to determine the grade of Al 
MMC. Cost-effective liquid state technology 
contributes to material selection and process 
environment [6]. 
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Kumar et al. [7] used the FSP technique to produce A364 alloy reinforced with industrial waste, 

and showed improvement in strength, ductility and wear rate resistance. Industrial and agricultural 

waste rice husk ash (RHA) is processed to remove impurities prior to use in various applications. 

MMC produced by reinforcing RHA with aluminum. Silica in RHA has improved composite 

properties [8–11]. Taskesen and Kutukde [12] specified optimal machining parameters by performing 

grey relational analysis (GRA) in drilling B4C reinforced MMCs. Abhang and Hameedullah [13] used 

GRA to determine the optimum parameters (such as cutting speed, feed, nose radius of tool, %solid–
liquid oil coolant) in a turning operation to investigate surface behavior and thickness of chips. 

 

The Taguchi method is well suited to single objective optimization problems. In case of multi-

objective optimization problems, Taguchi-generalized quality loss functions including GRA were 

used in turning, drilling, and WEDM operations [14, 15]. Depth-of-cut (DC) has little influence on 

surface roughness (SR). However, increasing DC leads to higher SR in machining with cutting force 

and tool-to-workpiece contact area. Nataraj and Balasubramanian [16] observed this phenomenon 

while machining aluminum composites with SiC and fly ash reinforcement. The Taguchi method 

including GRA translates the multi-objective into a single objective and provides the optimum 

solution [17]. Stir casting technique can be used in processing Al MMC for improved properties at 

minimum cost. Optimum machining parameters are required to obtain lightweight high strength Al 

hybrid MMC.  

 

The Taguchi method [18] recommends an orthogonal array (OA) for performing a few tests for 

levels assigned to a specified number of process variables. Analysis of variance (ANOVA) results 

from test data provide the influence of output responses on their grand mean and indicate a set of 

optimal process parameters for which confirmatory tests are mandatory. To accumulate scatter from 

repeated tests, S/N ratio transformation was introduced [18]. Most researchers applied the S/N ratio 

transformation to a single test data, with no additional benefit other than additional computational 

burden. Such a transformation may not be required to obtain accurate results as evidenced by the 

following studies: reliability and safety evaluation on satellite separation process [19], optimum heat 

pipe operating conditions [20], engine testing of biodiesels with additives [21], optimal process 

welding [22–25], parameters of machining [26–30], spray painting [31], and gear design [32]. In the 

present study, the optimum turning process parameters for Al hybrid MMC under dry condition are 

determined to obtain maximum material removal rate (MRR) and minimum surface roughness (SR) 

by following modified Taguchi technique and reliable multi-objective optimization procedure. 

Empirical relationships are developed to determine MRR and SR for specified process variables.  

 

MATERIALS AND METHODS 

Industrial and agricultural waste rice husk ash (RHA) is processed to remove impurities. Al 7075 

reinforced with B4C and RHA (a hybrid metal matrix composite) is manufactured using a stir casting 

technique. The chemical composition of Al 7075, B4C and RHA are given in Tables 1 to 3. Figure 1 

shows the SEM and EDAX image of RHA. The details of the samples produced by stir casting 

process are in Figure 2 and Table 4. For machining of hybrid metal matrix composites in CNC turning 

process, speed (NS), feed rate (FR), and depth-of-cut (DC) are the 3 machining parameters (see Figure 

3). Table 5 gives the 3 levels assigned to each machining parameter. Speed varies from 1000 rpm to 

1500 rpm, feed rate varies from 0.1 mm/rev to 0.20 mm/rev, and depth of cut from 0.5 mm to 1.5 mm. 

Taguchi’s L9 orthogonal array (OA) is chosen for the 3 input parameters and specified 3 levels to each 

parameter. It can accommodate one more parameter without increasing the number of experiments. 

Hence, RHA (wt %) varying from 2 to 6 is introduced as an additional parameter. 

 

Table 1. Chemical composition of Al 7075 (wt %) 

Zn Mg Cu Fe Si Mn Ti Cr Al 

5.1-6.1 2.1-2.9 1.2-2 0.5 0.4 0.3 0.2 0.18-0.28 Balance 
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Table 2. Chemical composition of B4C particles (wt %) 

C Ca Fe Si F Cl B 

18.1 0.3 1.0 0.5 0.025 0.075 80.0 

 

Table 3. Chemical composition of RHA particles (wt %) 

SiO2 Al2O Fe2O3 CaO Na2O + K2O LoI 

88.9 2.5 2.19 0.22 0.69 Balance 

 

  
 

 
Figure 1. (a, b)SEM and EDAX image of RHA. 

(a) 

(b) 
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Figure 2. Stir casting process. 

 

Table 4. Sample composition 

Sample Element (wt %) 

B4C RHA Al 7075 

1 2 2 96 

2 2 4 94 

3 2 6 92 

 

 
Figure 3. Process variables and output responses in the machining process. 

 

Table 5. Levels assigned to machining parameters 

Machining Parameter Designation Level 

1 2 3 

Speed (rpm) NS 1000 1250 1500 

Feed (mm/rev) FR 0.10 0.15 0.20 

Depth of Cut (mm) DC 0.5 1.0 1.5 

RHA (wt %) R% 2 4 6 

 

RESULTS AND DISCUSSION 

Taguchi’s L9 OA (orthogonal array) is selected for the assigned 3 levels to each CNC machining 

parameter. For the total number of parameters, 𝑛𝑝 = 4 and number of levels, 𝑛𝑙 = 3 assigned to each 

parameter, eq. (1) gives number of experiments as per the Taguchi method is [18] 𝑁𝑇𝑎𝑔𝑢𝑐ℎ𝑖 = 1 + 𝑛𝑝 × (𝑛𝑙 − 1)= 1 + 4 × (3 − 1) = 9    (1) 

In fact, the number of experiments for all possible combinations of levels and parameters is: 

8134 ==pn

ln , whereas Taguchi method recommends only 9 tests as per the L9 OA. 

 

Experiments were conducted for the set of parameters (see Table 6) in each test run and reported 

the output responses (viz., material removal rate, MRR; and the surface roughness, SR). MRR is 

determined as in [33] and measured SR using talysurf surface roughness tester.  

 

Using the measured output responses from Table 6, analysis of variance (ANOVA) is performed 

and presented the results in Table 7. The depth-of-cut (DC) has maximum influence on MRR with 

65.94 %Contribution. The feed rate (FR) has major influence on SR with 94.15 %Contribution. The  
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Table 6. Measured output responses (MRR and SR) for the specified process parameters as per the 

Taguchi’s L9 OA. 
Test Run Process parameters and their levels Output responses 

Speed, 

NS (rpm) 

Feed rate, FR 

(mm/rev) 

Depth-of-cut, 

DC (mm) 

RHA, R% 

(wt %) 

MRR (g/min) SR 

(μm) 
1 1000 0.1 0.5 2 9.13 0.47 

2 1000 0.15 1 4 15.00 1.21 

3 1000 0.2 1.5 6 24.00 1.55 

4 1250 0.1 1 6 9.47 0.69 

5 1250 0.15 1.5 2 22.22 0.98 

6 1250 0.2 0.5 4 15.79 1.45 

7 1500 0.1 1.5 4 23.23 0.58 

8 1500 0.15 0.5 6 8.18 0.94 

9 1500 0.2 1 2 22.11 1.43 

 

Table 7. ANOVA results on performance characteristics (MRR and SR) 

Parameters 1st 

Mean 

2nd Mean 3rd 

Mean 

SoS %Contribution 

Metal Removal Rate, MRR: Grand mean=16.57 g/min 

NS 16.043 15.827 17.840 7.33 2.15 

FR 13.943 15.133 20.633 76.42 22.38 

DC 11.033 15.527 23.150 225.12 65.94 

R% 17.820 18.007 13.883 32.53 9.53 

Surface roughness, SR: Grand mean= 1.033 μm 

NS 1.0767 1.0400 0.9833 0.01 1.04 

FR 0.5800 1.0433 1.4767 1.21 94.15 

DC 0.9533 1.1100 1.0367 0.04 2.88 

R% 0.9600 1.0800 1.0600 0.02 1.94 

 

influence of other parameters (NS, FR and R%) on MRR are: 2.15 %, 22.38 % and 9.53 % respectively. 

The influence of parameters (NS, DC, R%) on SR are: 1.04 %, 2.88 % and 1.94 % respectively. The 

speed (NS) has little influence on both MRR and SR. The grand mean value of MRR= 16.57 g/min 

and the grand mean value of SR=1.033 μm. 
 

From the mean values of the output responses in ANOVA Table-7, it is possible to estimate the 

output responses for the specified levels of the process parameters using the additive law [18]: 

( )
=

−−=
pn

i

gpik n
1

1ˆ    (2) 

Here, ̂  is the estimate of the output response. g is the grand mean of the output response. ik is 

the mean value of the output response corresponding to ith process parameter (i.e., i=1 for NS; i=2 for 

FR; i=3 for DC; and i=4 for R%) and kth level (i.e., k=1,2,3). Estimates of MRR and SR using equation 

(2) are exactly matching with the measured data in Table-6.  

 

Considering the mean values of MRR and SR from ANOVA Table 7 and the additive law in 

equation (2), empirical relationships are developed in terms of NS, FR, DC and R% in the form: 𝑀𝑅𝑅 = 14.78 + 0.8983𝜉1 + 1.1150𝜉12 + 3.3450𝜉2 + 2.1550𝜉22 + 6.0583𝜉3 + 1.5650𝜉32  
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 −1.9683𝜉4 − 2.1550𝜉42  (3) 𝑆𝑅 = 1.17 − 0.0467𝜉1 − 0.01𝜉12 + 0.4483𝜉2 − 0.015𝜉22 + 0.0417𝜉3 − 0.1150𝜉32 + 0.05𝜉4   −0.07𝜉42  (4) 

Here, 𝜉1 = 0.004𝑁𝑆 − 5, 𝜉2 = 10𝐹𝑅 − 1.5, 𝜉3 = 2𝐷𝐶 − 2, and 𝜉4 = 0.5𝑅% − 2. Estimates of 

MRR and SR using equations (3) and (4) for the set of process parameters in each test run of Table 6 

are presented in Table 8. Test data in Table 8 matches well with estimates of MRR and SR. 

 

From the mean values of the output responses in ANOVA Table 7, maximum MRR mean values 

correspond to the 3rd level of NS, 3rd level of FR, 3rd level of DC and 2nd level of R%. Hence, MRRmax 

(maximum MRR) can be achieved for a set of parameters (NS3FR3DC3R%2). Number subscripts 

indicate the level of the process parameters. Similarly, a set of parameters (NS3FR1DC1R%1) found for 

minimum SR (SRmin). Two different sets of process parameters found for MRRmax and SRmin. Multi-

objective optimization scheme [34–39] is appropriate to have a set of parameters for achieving 

MRRmax and SRmin. To handle such problems, all the output responses should be normalized and 

converted to minimization of a single objective function [36]:  ζ = 𝜔1𝜁1 + 𝜔2𝜁2  (5) 

Here, 𝜁1 = (1 − 𝑀𝑅𝑅 𝑀𝑅𝑅𝑚𝑎𝑥)⁄ ; 𝜁2 = (𝑆𝑅 𝑆𝑅𝑚𝑎𝑥⁄ ); 𝜔1and 𝜔2are the positive weighing factors 

such that 𝜔1 + 𝜔2 = 1; 𝑀𝑅𝑅𝑚𝑎𝑥 = 24 g/min; and 𝑆𝑅𝑚𝑎𝑥 = 1.55 μm. Minimizing𝜁, results in higher 

MRR and lower SR. Assuming 𝜔1 = 𝜔2 = 0.5, and using mean values of MRR and SR from 

ANOVA Table 7 in equation (5), ANOVA results for 𝜁 are obtained (see Table 9). A set of 

parameters (NS3FR1DC3R%1) found from the minimum mean values of 𝜁. Hence, optimal process 

parameters to attain minimum 𝜁are: NS = 1500 rpm; FR = 0.1 mm/rev; DC = 1.5 mm; and R% = 2. The 

output responses corresponding to these optimal process parameters obtained from equations (3) and 

(4) are: MRR=23.04 g/min and SR=0.457 μm. Confirmatory tests performed for the above optimal 

solutions and presented results in Table 10. Estimates of MRR and SR are in good agreement with 

measured ones. 

 

Table 8. Comparison of measured MRR and SR with estimates from equations (3) and (4) 

Test 

Run 

Levels of the parameters MRR (g/min) 

 

SR (μm ) 

NS 

(rpm) 

FR 

(mm/rev) 

DC 

(mm) 

R% 

 

Test Eq.(3) Test Eq.(4) 

1 1000 0.1 0.5 2 9.13 9.127 0.47 0.467 

2 1000 0.15 1 4 15.00 14.997 1.21 1.207 

3 1000 0.2 1.5 6 24.00 23.997 1.55 1.547 

4 1250 0.1 1 6 9.47 9.467 0.69 0.687 

5 1250 0.15 1.5 2 22.22 22.217 0.98 0.977 

6 1250 0.2 0.5 4 15.79 15.787 1.45 1.447 

7 1500 0.1 1.5 4 23.23 23.227 0.58 0.577 

8 1500 0.15 0.5 6 8.18 8.177 0.94 0.937 

9 1500 0.2 1 2 22.11 22.107 1.43 1.427 

 

Table 9. ANOVA for ζ 

Parameters 1st Mean 2nd Mean 3rd Mean 

NS 0.5595 0.5520 0.5011 

FR 0.4435 0.5646 0.6045 

DC 0.6057 0.5783 0.4286 

R% 0.4943 0.5277 0.5905 
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Table 10. Comparison of MRR and SR estimates with measured data for the optimal solution of case 

studies. 
Speed, NS 

(rpm) 

Feed rate, FR 

(mm/rev) 

Depth-of-cut, 

DC (mm) 

RHA, R% 

(wt %) 

MRR (g/min) SR (μm) 

Case study-I: Single-objective optimization 

Set of optimal parameters (NS3FR3DC3R%2) for maximum MRR 

1500 0.2 1.5 4 29.92 (30.42)+ 1.473 (1.49) 

Case study-II: Single-objective optimization 

Set of optimal parameters (NS3FR1DC1R%1) for minimum SR 

1500 0.1 0.5 2 10.92 (11.34) 0.373 (0.33) 

Case study-III: Multi-objective optimization 

Set of optimal parameters (NS3FR1DC3R%1) for maximum MRR and minimum SR 

1500 0.1 1.5 2 23.04 (22.17) 0.457 (0.49) 
+ Measured data 

 

For the full factorial design of experiments, 81 sets of process parameters specified are:  

 

)31),31),31),31),,,,((((( % toitojtoktolRDFN
lkji CRS ==== . MRR and SR values 

generated using equations (3) and (4) to these 81 sets of parameters and shown in Figures 4 and 5. 

Measured data in Table 6 are in line with estimates. 

 

 
Figure 4. Estimates of metal removal rate, MRR for the full factorial design of experiments. 

 

 
Figure 5. Estimates of surface roughness, SR for the full factorial design of experiments. 
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CONCLUSIONS 

This paper deals with the optimum turning process parameters for Al hybrid MMC (Al 7075 

reinforced with B4C and rice husk ash, RHA) in dry condition. Experiments conducted according to 

Taguchi’s L9 OA (orthogonal array). Spindle speed, feed rate, depth-of-cut are the turning process 

parameters. RHA is introduced as an additional parameter. The measured output responses from the 

tests are material removal rate (MRR) and surface roughness (SR). A reliable multi-objective 

optimization procedure is followed and the optimal turning process parameters for the maximum 

MRR and minimum SR determined are: spindle speed= 1500 rpm; feed rate= 0.1 mm/rev; depth-of-

cut= 1.5 mm; and RHA (wt %) = 2. Confirmatory experiments conducted to confirm the optimal 

solution. Empirical relationships are developed for MRR and SR in terms of process variables and 

validated with measured data.  
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