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Abstract 

This research investigates predictive modelling and optimization technique for the tensile and flexural 

strength of PlA (Poly Lactic Acid) in Fused Deposition Modelling (FDM) 3D printing. Employing 

Decision Trees and Bayesian Optimization enhances comprehension and control of 3D printing 

process. Precise model predicts PLA material properties based on input parameters. Methodology 

involves rigorous data preprocessing, encompassing, cleaning, transformation, and normalization. 

Hyperparameter optimization via grid search systematically explores configurations, optimizing model 

performance. Bayesian Optimization further refines the model. Results exhibit significance, with the 

highest Tensile Mean Square Error at 5.5308 × 10-5 and a Tensile Root Mean Square Error of 0.007437, 

emphasizing findings’ importance. The R-squared coefficient, at 0.94071, signifies substantial 

explanatory power. The optimized flexural model yields a notable best Flexural Mean Squared Error 

of 0.12583. With a respectable Flexural Root Mean Squared Error of 0.35472, the model demonstrates 

accuracy. A substantial R-squared value of 0.82573 indicates a robust correlation between predictor 

variables and observed flexural response.  

 

Keywords: Additive manufacturing, Decision Trees, Bayesian Optimization, Predictive modeling, 

Mechanical performance 

 

 

INTRODUCTION 

In the field of cutting-edge manufacturing processes, FDM, which falls under the general heading of 

Additive Manufacturing, has attracted considerable interest due to its ability to produce three-

dimensional objects with a high degree of accuracy and cost-effectiveness [1–3]. The process under 

consideration encompasses the sequential deposition of thermoplastic materials in a layer-by-layer 

manner, thereby facilitating its utilization in diverse domains such as product development, prototyping, 

and production [4–7]. However, the use of Poly Lactic Acid (PLA) within the field of FDM has gained 

significant attention due to its biodegradable and 

renewable properties [8, 9]. Nevertheless, within 

the framework FDM and PLA, ensuring accurate 

prediction and enhancement of the mechanical 

properties of 3D-printed elements holds significant 

significance. The accurate estimation of 

mechanical properties in FDM 3D printing with 

PLA material has significant importance for 

engineers, designers, and manufacturers [10, 11]. 

The mechanical characteristics play a crucial role in 

guaranteeing that the 3D-printed components 

adhere to performance standards and structural 

safety regulations, while also reducing the need for 

expensive trial-and-error iterations throughout the 

design and printing phases [12, 13].  
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In response to this need, an approach is made for developing a predictive model for the tensile and 

flexural strength in FDM 3D printing with PLA material. This research is significant for its use of 

machine learning approaches, notably Decision Trees and Bayesian Optimization, to improve the 

predictability and optimization of mechanical properties of 3D-printed PLA components. The Decision 

Trees are an effective tool for modelling complex relationships between PLA material properties, 

printing parameters, and strength outcomes. This method improves the model’s interpretability by 

offering useful insight into the parameter that influence the mechanical characteristics of 3D printed 

PLA components. Bayesian Optimization is smoothly integrated into the approach, building on the 

capabilities of Decision Trees. This technique optimizes and fine-tune the predictive model’s 

performance, assuring accuracy and efficiency in capturing the complex relationship within the data. 

The interaction of Decision Trees with Bayesian Optimization improves the prediction models’ overall 

reliability, Contributing to the precision and efficacy of additive manufacturing processes. Furthermore, 

the inclusion of Bayesian Optimization is a forward-thinking approach in our methodology. We position 

our research at the forefront of additive manufacturing developments by methodically researching the 

hyperparameter space and developing predictive models. This innovative combination has the potential 

to transform the potential to transform the predictability, efficiency, and cost-effectiveness of additive 

manufacturing processes, paving the path for increased product quality and performance. 

 

Related Work 

The investigation carried out by Arvind Kottasamy et al. [14] focused on examining the mechanical 

characteristics of composites made from copper-reinforced polylactic acid (Cu-PLA) using the FDM 

process. The researchers conducted an investigation on the impact of varying copper compositions (25% 

and 80%) and varied infill patterns on the resultant mechanical characteristics, encompassing tensile 

and flexural strengths. The investigation further integrated a prognostication technique employing 

response surface approach to evaluate the significant components and develop mathematical models for 

evaluating these qualities. This study aims to enhance the functionalities of FDM 3D printing through 

an investigation, modeling, and prediction of the mechanical properties of Cu-PLA composites 

 

The study done by Ali et al. focused on the investigation of mix design issues associated with 3D-

printed concrete. The researchers employed machine learning techniques, namely the Support Vector 

Machine (SVM), to construct predictive models for the estimation of flexural and tensile strength. The 

models incorporated various input parameters and data acquired from 25 distinct literature sources. The 

SVM model exhibited exceptional performance, exhibiting a robust link between the flexural strength 

of casted and printed concrete. This research paper presents a novel methodology to tackle the existing 

gap in machine learning-driven prediction models within the domain. The proposed strategy has the 

potential to minimize computational and experimental requirements in the design of 3D-printed 

concrete mixtures [15]. 

 

Rajpurohit and Dave [16] investigated Fused Deposition Modeling (FDM) in 3D printing, a versatile 

method that is constrained by weak mechanical performance. They employed the Adaptive Network-

Based Fuzzy Inference System (ANFIS) to optimize construction settings and forecast the tensile 

strength of printed PLA pieces. This study showcases the application of ANFIS to enhance the 

mechanical properties of components produced using FDM printing. The user's text is a reference to a 

source or citation. 

 

Zhang et al. [17] examined cooperative 3D printing, a distinctive approach in which mobile 3D 

printers collaborate to enhance printing speed and build volume. A data-driven prediction model was 

developed to ascertain the tensile strength of components produced utilizing this technology. The model 

accurately predicted tensile strength and identified crucial elements impacting mechanical qualities, 

filling a void left by the lack of systematic characterization for such components. This study adds to the 

improvement of the mechanical features of cooperative 3D printing for more efficient manufacture of 

bigger components.  
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Garzon-Hernandez et al. [16] investigated how 3D printing's FDM may be utilized to build 
components with configurable mechanical characteristics. A computational framework was developed 
by the researchers to incorporate production factors and filament qualities in order to predict mechanical 
properties and mesostructured characteristics. The investigation additionally incorporated a two-stage 
heating and sintering model to forecast the process of bond formation between filaments. The present 
study presents a valuable approach for the design of 3D printed polymeric components, wherein the 
desired qualities of the components can be tailored based on various production variables. 

 
The study conducted by Samykano [19] employed a second-order mathematical model to evaluate 

the various tensile properties of 3D-printed polylactic acid (PLA) components manufactured using 
Fused Deposition Modeling (FDM). The mathematical models developed in this study were utilized to 
forecast several characteristics, such as ultimate tensile strength (UTS), fracture strain, elastic modulus, 
yield strength, and toughness. The models demonstrated minimal mistakes during the validation 
procedure, indicating their reliability in properly forecasting the tensile properties of 3D-printed PLA 
components. 

 
The authors Sharma et al. [17] addresses the necessity of enhancing the dimensional quality in the 

context of FDM 3D printing. The researchers are studying how print elements affect dimensional 
accuracy in various geometries. They are using the Decision Tree Machine Learning Algorithm to 
predict changes in dimensions. The program generates accurate predictions, and the research achieves 
a validation score (R2) of 0.67, indicating the potential for further industry-focused breakthroughs in 
enhancing the dimensional accuracy of FDM. Cerro et al. [21] employ machine learning methods to 
predict the surface roughness of polyvinyl butyral FDM-printed components. The researchers identify 
five input variables and utilize 3D printing technology to create a total of 16 components that display a 
wide range of surface characteristics. The most effective prediction model, Bagging and Multilayer 
Perceptron (BMLP), achieves a Kappa value of 0.9143. Wall angle and layer height are the two primary 
factors that influence the surface finish in FDM printing. These attributes offer valuable perspectives 
for enhancing the caliber of FDM-printed components. Zhang et al. [22] aim to tackle the issue of 
inconsistent product characteristics observed in the domain of Additive Manufacturing (AM). In order 
to address this problem, they suggest employing a data-driven predictive model that is specifically 
tailored for Fused Deposition Modeling (FDM). The researchers employ deep learning methodologies 
and leverage sensor data to accurately record the thermal and mechanical properties of several layers. 
The Long Short-term Memory (LSTM) network is employed to examine the interconnections between 
various layers in the printing process, facilitating the precise estimation of tensile strength. The results 
of this study suggest that the LSTM-based model outperforms other machine-learning methods. Layer-
wise Relevance Propagation (LRP) aids in the understanding of the data, hence emphasizing the 
potential of deep learning in enhancing quality control for additive manufacturing. The study conducted 
by Meiabadi et al. [23] focuses on improving Fused Filament Fabrication (FFF) through the use of 
Polylactic Acid (PLA) 3D printing. The researchers employ the Response Surface Methodology (RSM) 
to optimize the controllable factors, including the extruder temperature, infill quantity, and layer 
thickness. An effort has been made to build artificial neural networks (ANN) and an ANN-genetic 
algorithm (ANN-GA) for the purpose of predicting toughness, component thickness, and manufacturing 
cost. The ANN-GA model exhibits improved performance in comparison to a single ANN, leading to 
a 7.5% improvement in modeling accuracy for toughness, an 11.5% improvement for component 
thickness, and a 4.5% improvement for production cost. This work emphasizes the capacity of machine 
learning to enhance the performance of fused filament fabrication (FFF) printing using polylactic acid 
(PLA) as the foundation material. The study conducted by Afonso et al. [24] aims to investigate the 
impact of different process parameters in Fused Filament Fabrication (FFF) on both the mechanical 
properties and mass characteristics of components made from Polylactic Acid (PLA). The parameter 
that had the most influence on the extrusion process was determined to be the temperature. This 
parameter exhibited distinct patterns that were closely associated with the thermal and rheological 
properties of the material. The research effectively constructed predictive models with minimal error 
rates, so showcasing the efficacy of systematic experimental design in producing precise mathematical 
equations for diverse outcomes.  
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Table 1. Overview of input parameters and output responses 

S.N. Print 

orientation 

Print Speed 

(mm/s) 

Infill 

density (%) 

Print 

Temp. (°C) 

Layer Height 

(mm) 

Tensile 

strength (MPa) 

Flexural 

strength (MPa) 

1 90 50 40 210 0.2 0.175 6.7968 

2 0 60 40 230 0.26 0.198 5.2439 

3 135 55 60 220 0.23 0.168 6.6797 

4 0 50 80 210 0.2 0.218 5.2146 

5 90 60 40 210 0.26 0.168 6.533 

6 45 55 100 220 0.23 0.263 7.6169 

7 90 60 80 230 0.26 0.222 7.4411 

8 45 55 60 200 0.23 0.164 5.7127 

9 90 50 40 230 0.26 0.171 6.9138 

10 0 50 40 230 0.2 0.186 5.0682 

11 45 55 60 220 0.23 0.172 6.0642 

12 45 65 60 220 0.23 0.177 6.0935 

13 45 55 60 220 0.23 0.173 6.1228 

14 90 50 80 210 0.26 0.227 7.4118 

15 45 55 60 220 0.23 0.174 6.0642 

16 0 50 40 210 0.26 0.216 5.3318 

17 45 45 60 220 0.23 0.171 6.0056 

18 45 55 20 220 0.23 0.119 4.1893 

19 90 60 40 230 0.2 0.155 6.9138 

20 90 60 80 210 0.2 0.235 7.8513 

21 90 50 80 230 0.2 0.241 7.9099 

22 -45 55 60 220 0.23 0.169 6.4451 

23 0 50 80 230 0.26 0.256 5.8592 

24 45 55 60 220 0.23 0.172 6.0349 

25 0 60 80 230 0.2 0.229 6.1814 

26 45 55 60 220 0.23 0.174 6.1228 

27 0 60 80 210 0.26 0.244 5.6834 

28 45 55 60 240 0.23 0.17 6.2986 

29 45 55 60 220 0.23 0.17 6.3279 

30 45 55 60 220 0.29 0.169 6.1521 

31 45 55 60 220 0.17 0.173 6.6501 

32 0 60 40 210 0.2 0.166 4.951 

 

The study conducted by Bayraktar et al. [18] examined the use of Fused Deposition Modeling (FDM) 

in the production of 3D-printed plastic components. The researchers employed a 3D printer that was 

specifically constructed for this purpose. The experiment included manipulating melt temperatures, 

layer thicknesses, and raster pattern orientations, resulting in notable effects on the tensile strength. The 

use of artificial neural networks was applied in order to develop a precise mathematical model for the 

outcomes of tensile tests, with particular emphasis on the crisscross raster pattern as the most optimal 

approach. 

 

The numerous investigations collectively contribute to enhancing the comprehension and refinement 

of 3D printing procedures. Each study examines several facets, ranging from the qualities of materials 

and challenges in designing mixes to optimizing building parameters and improving mechanical 
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properties. The application of machine learning methodologies, such as Support Vector Machines 

(SVM), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and deep learning, showcases the 

adaptability and efficacy of these approaches in predicting and enhancing diverse results. The research 

findings, which have been confirmed through the use of mathematical models and accurate predictions, 

offer vital insights for enhancing 3D printing procedures. There is a significant research gap in the use 

of decision tree prediction models and Bayesian optimization approaches to improve the accuracy and 

efficiency of several elements of 3D printing. Subsequent research efforts should investigate the 

integration of decision tree models with Bayesian optimization to address this deficiency and propel the 

field forward. 

 

DATA PREPROCESSING 

Data preprocessing serves as essential to ensuring the accuracy and dependability of the predictive 

modeling and optimization process for tensile and flexural strength in FDM 3D printing, as investigated 

in this paper. The first phase involves importing the raw data and retrieving relevant input parameters, 

such as print orientation, print speed, infill density, print temperature, and layer height, along with the 

related output responses of tensile and flexural strength. In order to improve the performance and 

convergence of the model, the input features are normalized using the z-score approach, which is 

represented by the following mathematical equation:  

𝑍 =
𝑋−𝜇

𝜎
 (1) 

In the provided information, 𝑋 represents the unprocessed data, 𝜇 denotes the average, and 𝜎 

represents the measure of dispersion known as the standard deviation. By normalizing the input 

parameters, any potential biases caused by variations in their scales are reduced. In addition, the dataset 

is divided into separate sets for training, validation, and testing using a stratified hold-out method. This 

method is mathematically expressed as: 

 

𝑆𝑡𝑟𝑎𝑡𝑖𝑓𝑖𝑒𝑑 𝐻𝑜𝑙𝑑 − 𝑂𝑢𝑡: 𝐷 = 𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷𝑣𝑎𝑙𝑖𝑑 ∪ 𝐷𝑡𝑒𝑠𝑡 

𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙𝑖𝑑 , 𝐷𝑡𝑒𝑠𝑡 = 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝐷, 𝑅𝑎𝑡𝑖𝑜𝑡𝑟𝑎𝑖𝑛,𝑅𝑎𝑡𝑖𝑜𝑣𝑎𝑙𝑖𝑑,𝑅𝑎𝑡𝑖𝑜𝑡𝑒𝑠𝑡,) (2) 

Where 𝐷 Represents the complete dataset, and 𝑅𝑎𝑡𝑖𝑜𝑡𝑟𝑎𝑖𝑛,𝑅𝑎𝑡𝑖𝑜𝑣𝑎𝑙𝑖𝑑,𝑅𝑎𝑡𝑖𝑜𝑡𝑒𝑠𝑡, denote the 

proportions allocated to the training, validation, and testing sets respectively. This guarantees that each 

subset maintains a representative distribution of input parameters and response variables. Additionally, 

the random seed 𝑆 is established to ensure reproducibility between experiments, as determined by the 

equation: 

𝑆𝑟𝑎𝑛𝑑𝑜𝑚 = 1  (3) 

This method guarantees consistent and reproducible outcomes, which enables a thorough assessment 

of the model's effectiveness and mitigates the risk of overfitting. The model's performance is evaluated 

using a comprehensive cross-validation approach, ensuring robustness. The generated datasets are 

systematically organized and preprocessed. This establishes the groundwork for the following phases 

of hyperparameter tweaking, model training, and optimization utilizing Decision Trees and Bayesian 

Optimization methodologies. 

 

The rigorous data preprocessing methodology employed in this study greatly enhances the 

dependability and precision of the succeeding predictive modeling and optimization stages, thereby 

improving the comprehension and control of the FDM 3D printing process. 

 

HYPERPARAMETER TUNING WITH GRID SEARCH 

After carefully preparing the data, the next crucial step in this research is to fine-tune the 

hyperparameters utilizing the grid search approach. The performance of machine learning models is 

greatly affected by hyperparameters. In this case, we are specifically interested in the Decision Tree 
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models utilized for predicting the tensile and flexural strengths in FDM 3D printing. The grid search 

method methodically investigates a pre-defined search area for hyperparameters, with a specific focus 

on the maximum number of splits (𝑀𝑎𝑥𝑁𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠) and the minimum leaf size (𝑀𝑖𝑛𝐿𝑒𝑎𝑓𝑆𝑖𝑧𝑒). The 

hyperparameters play a crucial role in setting the architecture and intricacy of the Decision Tree models. 

 
The grid search methodology is employed to systematically evaluate models that have undergone 

training with different combinations of hyperparameters on a validation set. The comprehensive 

examination conducted ensures that the models are appropriately calibrated in order to achieve optimal 

performance, thereby resulting in a reduction of the mean squared error (MSE). The procedure involves 

the establishment of parameter ranges for hyperparameters, which are determined by considering the 

properties of the dataset and the intricacies associated with the 3D printing process. 

 

The outcome of this study involves the identification of the most suitable hyperparameter values that 

effectively improve the dependability and accuracy of predictive models pertaining to both tensile and 

flexural strengths. The initial phase of this process establishes a crucial foundation for subsequent model 

training and optimization using Bayesian Optimization techniques. Graphical depictions, exemplified 

by Figure 1 (Tensile Strength & Flexural Strength MSE Heatmap) and Figure 2 (Tensile Strength & 

Flexural Strength MSE Contour Plot), serve as instrumental tools in comprehending the hyperparameter 

tuning procedure by providing significant elucidation regarding the impact of various hyperparameter 

configurations on the mean squared error pertaining to tensile strength. Each individual data point on 

the heatmap represents a unique set of hyperparameters, allowing for a comprehensive exploration and 

analysis of the search space. The plots presented in this analysis showcase the correlation between the 

variables 𝑀𝑎𝑥𝑁𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠 and 𝑀𝑖𝑛𝐿𝑒𝑎𝑓𝑆𝑖𝑧𝑒, shedding light on the intricate balance between these 

factors and their impact on the model's overall performance. The provided information serves as a 

valuable resource for informing the decision-making process in selecting hyperparameters that 

effectively minimize the Mean Squared Error. The hyperparameters that have been identified are 

subsequently utilized to train the model, establishing the foundation for further optimization through 

the application of Bayesian optimization in subsequent stages of the study. The optimal hyperparameter 

values for tensile strength, determined using grid search, are 𝑀𝑎𝑥𝑁𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠 = 1 and 𝑀𝑖𝑛𝐿𝑒𝑎𝑓𝑆𝑖𝑧𝑒 =
1. The best hyperparameter settings for flexural strength are 𝑀𝑎𝑥𝑁𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠 = 1 and 𝑀𝑖𝑛𝐿𝑒𝑎𝑓𝑆𝑖𝑧𝑒 =
5. 

 

 
Figure 1. Tensile Strength &Flexural Strength MSE Heatmap. 
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Figure 2. Tensile Strength & Flexural Strength MSE Contour Plot. 

 
MODEL TRAINING AND PERFORMANCE EVALUATION 

Following implementing an intensive hyperparameter tuning with grid search, the final models are 

trained utilizing the optimal hyperparameters determined by the exhaustive search method. The 
Decision Trees, which have been optimized particularly for predicting the tensile and flexural strengths 

in FDM 3D printing, are evaluated using the validation set. The Decision Tree graphics effectively 
illustrate the complexities of the decision-making process, offering a clear depiction of how the models 

make predictions by considering input parameters. These representations improve the capacity to 
understand and analyze the hierarchical structure of the models. 

 
Additionally, the models' performance is thoroughly evaluated using industry-standard metrics such 

as Mean Squared Error, Root Mean Squared Error, and R-squared. The MSE is computed using the 
following mathematical expression: 

𝑀𝑆𝐸(𝑚) =
1

𝑐𝑎𝑟𝑑(𝑅𝑚)
(𝑦𝑖 − 𝑦𝑅𝑚

− )2 (4) 

The region denoted as 𝑅𝑚 is representative of the specific area associated with node m. The mean 

response within the population 𝑅𝑚 is represented by the symbol 𝑦𝑅𝑚
− , Conversely, the specific response 

for a given observation 𝑖 within the population 𝑅𝑚 is denoted by 𝑦𝑖. 

The model exhibits remarkable efficacy in the estimation of tensile strength, as evidenced by its best 
Tensile Mean Squared Error (MSE) of 5.5308 × 10-5, a Tensile Root Mean Squared Error (RMSE) of 

0.007437, and an outstanding coefficient of determination (R^2) value of 0.94071. Similarly, the 
enhanced model for flexural strength exhibits a Best Flexural Mean Squared Error (MSE) of 0.12583. 

Additionally, it achieves a Flexural Root Mean Squared Error (RMSE) of 0.35472, indicating the level 
of deviation between the predicted and actual flexural strength values. Notably, the model also 

demonstrates a high R-squared value of 0.82573, which signifies the proportion of the variance in the 
flexural strength that can be explained by the model. The diagram presented in Figure 3 illustrates the 

Regression Tree model for both Tensile Strength and Flexural Strength. The inclusion of this visual 
representation within the context of the model serves as a valuable instrument for comprehending the 

underlying decision-making process. Furthermore, it significantly enhances the comprehensive 
assessment of the model's predictive capacities. 

 

BAYESIAN OPTIMIZATION FOR MODEL ENHANCEMENT 

Following a rigorous process of data preprocessing, hyperparameter tuning, and model training, the 
subsequent and crucial step entails the evaluation of the models' performance and their predictive 

capabilities. The models, which have been trained using the optimal hyperparameters determined 

through the grid search and Bayesian Optimization phases, undergo thorough evaluation on a validation 
dataset. The Bayesian Optimization process, a crucial step in improving the accuracy and effectiveness 

of predictive models for both tensile and flexural strengths in FDM 3D printing, is executed with  
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Figure 3. Regression tree for tensile and flexural strength models. 

 

meticulousness and efficiency. The hyperparameter search space, indicated as 𝛩, is defined as 𝛩 =
 {𝑀𝑎𝑥𝑁𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠, 𝑀𝑖𝑛𝐿𝑒𝑎𝑓𝑆𝑖𝑧𝑒}. The optimization approach improves the models' performance by 

iterative enhancements. The goal functions for tensile (𝛩) and flexural (𝛩)are intended to optimize the 

strengths under tension and flexure, respectively, by minimizing the MSE. 

 

𝑓𝑡𝑒𝑛𝑠𝑖𝑙𝑒(𝛩) = 𝑀𝑆𝐸𝑡𝑒𝑛𝑠𝑖𝑙𝑒(𝛩)  

𝑓𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙(𝛩) = 𝑀𝑆𝐸𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙(𝛩) (5) 

Here, 𝛩 represents the mean squared error for tensile strength (MSE tensile) and 𝛩 represents the 

mean squared error for flexural strength (MSE flexural). The optimization results demonstrate the 

algorithm's versatility and effectiveness. The most accurately measured point for tensile strength is at 

{𝑀𝑎𝑥𝑁𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠 = 49 𝑀𝑖𝑛𝐿𝑒𝑎𝑓𝑆𝑖𝑧𝑒 = 2}, with an observed objective function value of -0.238. 

Bayesian Optimization identifies the optimal feasible point as {𝑀𝑎𝑥𝑁𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠 = 1 𝑀𝑖𝑛𝐿𝑒𝑎𝑓𝑆𝑖𝑧𝑒 =
4} with an estimated objective function value of -0.238. Regarding flexural strength, the optimal values 

observed for the parameters are 𝑀𝑎𝑥𝑁𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠 = 44 𝑀𝑖𝑛𝐿𝑒𝑎𝑓𝑆𝑖𝑧𝑒 = 6, resulting in an objective 

function value of -7.1677. The estimated optimal values for the parameters 𝑀𝑎𝑥𝑁𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠 =
50 𝑀𝑖𝑛𝐿𝑒𝑎𝑓𝑆𝑖𝑧𝑒 = 5, with an estimated objective function value of -7.1677. Bayesian Optimization 

ultimately aims to determine the most favorable hyperparameter values, which greatly enhance the 

accuracy and reliability of predictions concerning tensile and flexural strength. The optimized models 

demonstrate exceptional performance, with the highest tensile strength having a mean squared error 

(MSE) of 5.5308 × 10−5, a Tensile root mean squared error (RMSE) of 0.007437, and a remarkable R-

squared value of 0.94071. The model for flexural strength demonstrates a noteworthy performance, as 

indicated by the achieved Best Flexural Mean Squared Error (MSE) of 0.12583, a Flexural Root Mean 

Squared Error (RMSE) of 0.35472, and a substantial R-squared value of 0.82573. These metrics suggest 

that the model is able to accurately predict flexural strength with a relatively low level of error and a 

high degree of explained variance. The obtained results provide compelling evidence that Bayesian 

Optimization exhibits a notable impact on enhancing the precision of prediction models within the 

context of Fused Deposition Modeling (FDM) 3D printing. 

 

RESULT AND DISCUSSIONS 

The present research study aims to explore the utilization of predictive modeling and optimization 

techniques in order to improve the tensile and flexural strength of objects produced through Fused 



 

Journal of Polymer & Composites 

Volume 11, Special Issue 12 

ISSN: 2321-2810 (Online), ISSN: 2321-8525 (Print) 

 

© STM Journals 2023. All Rights Reserved S211  
 

Deposition Modeling (FDM) 3D printing. The research employs the utilization of Decision Trees and 

Bayesian Optimization techniques in order to improve the understanding and management of the 3D 

printing procedure. The methodology employed in this study involves several key steps. Firstly, data 

preparation is conducted to ensure the dataset is suitable for analysis. This includes tasks such as data 

cleaning, feature engineering, and data transformation. Next, hyperparameter modification is performed 

using grid search. This technique systematically explores different combinations of hyperparameters to 

identify the optimal configuration for the model. By exhaustively searching the hyperparameter space, 

we aim to find the settings that yield the best performance. Once the hyperparameters have been 

determined, the model training phase commences. During this stage, the model is trained on the 

prepared dataset using the selected hyperparameter values. The goal is to optimize the model's ability 

to learn patterns and make accurate predictions. To further enhance the model's performance, Bayesian 

Optimization is employed. This technique leverages Bayesian inference to iteratively refine the model 

by intelligently selecting the next set of hyperparameters to evaluate. 
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Figure 4. Optimization analysis for tensile and flexural strength models. 

 

 
Figure 5 Design variables and objective functions (Tensile Strength) scatter plot 

 

 
Figure 6. Design variables and objective functions (Flexural Strength) scatter plot. 

(c) (d) 
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The findings of this study indicate significant and noteworthy results. The obtained results indicate 

that the optimal Mean Squared Error (MSE) value is 5.5308 × 10-5. Additionally, the corresponding 

Root Mean Squared Error (RMSE) for the tensile property is calculated to be 0.007437. Moreover, the 

coefficient of determination (R-squared) value is determined to be 0.94071, indicating a high level of 

correlation between the predicted and actual values. The enhanced Flexural model yields a noteworthy 

Best Flexural Mean Squared Error (MSE) of 0.12583. Additionally, it demonstrates a respectable 

Flexural Root Mean Squared Error (RMSE) of 0.35472 and an R-squared value of 0.82573. The phase 

of Bayesian Optimization, which plays a crucial role in the refinement of predictive models, progresses 

with a high degree of precision. The primary objective of the optimization algorithm is to achieve 

maximum values for both tensile and flexural strengths. This is accomplished by minimizing the mean 

squared error (MSE) through the establishment of a defined hyperparameter search space (Θ). The 

findings illustrate the algorithm's ability to adapt and excel, as indicated by the observed and predicted 

optimal points, providing valuable insights into the optimal hyperparameter configurations. 

 

The efficacy of these findings is augmented by the utilization of visually informative graphical 

representations. The study is enhanced by the incorporation of an objective function model, which 

allows for a systematic evaluation of the problem at hand. By minimizing the objective, the researchers 

are able to identify the optimal solution that best satisfies the given criteria. Additionally, the utilization 

of scatter plots to depict the correlation between the number of function evaluations and the design 

factors provides valuable insights into the relationship between these variables. Overall, these 

methodological choices contribute to the rigor and comprehensiveness of the study. The visual 

representations presented in these plots offer a valuable means of delving into the intricacies of the 

optimization process, thereby shedding light on the intricate relationships that exist between design 

variables and material strengths. By combining these illustrative depictions with comprehensive 

numerical data, a thorough investigation into the realm of predictive modeling and optimization within 

the domain of FDM 3D printing is achieved. 

 

CONCLUSIONS 

In summary, the conducted investigation pertaining to the utilization of predictive modeling and 

optimization techniques for Fused Deposition Modeling (FDM) 3D printing, specifically employing 

Decision Trees and Bayesian Optimization, yielded noteworthy outcomes. Through a rigorous process 

of meticulous preprocessing and careful hyperparameter modification, the research team was able to 

achieve remarkable numerical accomplishments. Notably, they were able to attain the lowest Tensile 

Mean Squared Error (MSE) of 5.5308e-05, indicating a high level of accuracy in their predictions. 

Additionally, the team obtained outstanding R-squared values, further validating the effectiveness of 

their approach. These achievements highlight the importance of thorough data preprocessing and 

thoughtful hyperparameter tuning in obtaining superior results in this research endeavor. The models 

underwent a successful fine-tuning process utilizing Bayesian Optimization, which effectively 

showcased their adaptability and versatility. The utilization of the Objective Function Model and Scatter 

Plots has facilitated the acquisition of lucid insights pertaining to the intricate interrelationships existing 

between design variables and material strengths. The present study significantly contributes to the 

academic domain by introducing a robust methodology for enhancing the optimization process of 3D 

printing. The results not only enhance theoretical comprehension but also provide practical guidance 

for optimizing printing procedures. This study establishes a strong basis for future research in the field 

of 3D printing, offering guidance for enhancing material durability and optimizing printing techniques 

with efficiency. 
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