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INTRODUCTION 
In recent years, an effort has made the manufacturing industry to minimize the processing period and 

cost of production. The need of customized part, model, and production of small batch enunciate the 

techniques like rapid prototyping, 3D printing etc. These advanced technologies turn the raw materials 

into finished part in less time and minimum effort [1]. Accordingly, an advanced technique, known as 

Incremental sheet metal forming (ISMF), is developed to accelerate the forming industries. The 

flexible processing of ISMF comprises higher complexity therefore an attention towards calibration of 

the process is required [2]. The spring-back effect was merely investigated as it is not observed 

excessively in small part formation, but it was tried to simulate through different techniques [3-4]. The 

construction of computational systems and algorithms is a basic science of artificial intelligence (AI) 

that can perform a variety of tasks such as learning, interpretation reasoning, decision making etc. [5-

6]. In Manufacturing, AI has important applications in different areas such as process planning, quality 

control, predictive maintenance, optimization, logistic, etc. [7]. The technological principle of SPIF 

involves clamping the blank from its edges and progressively deforming it using a single hemispherical 

end rod as per input commands in computer numerical control (CNC) based machine. Researchers 

have proposed several approaches to SPIF, however strong results are still awaited. The main 

limitations of SPIF, such as longer process time, sheet thinning, and limited geometrical accuracy, 

hinder its wider industrial application [8]. Extensive investigations concentrated on the maximum 

forming of thin sheet of metal without failure and their optimization in ISMF. Industrial research 

primarily targets the geometric precision of forming parts, both at the macroscopic levels. An 

experimental-statistical analysis is conducted on calamine brass Cu67Zn33 to examine the roughness 

profile of the product. Earlier investigations has indicated that the deformation rate is important factor 

in the SPIF process [9-12]. Preliminary studies of SPIF on SPCC steel [13] reveals that the finished 

parts exhibited spring back and dimensional inaccuracy when SPIF is done with varying wall angles 

that results a large-scale waviness in the formed part [14]. By decreasing the vertical step size, the 

surfaces transformed from wavy to strictly rough [15]. The non-contacted surface roughness 

measurements system was utilized to measure sectional microstructure, and thickness distribution in 

the SPIF of AL3003 (H14) at higher tool feed rate and higher tool rotational speeds [16]. Experimental 

campaigns were analysed on AA7075 alloy to draw conclusions regarding the influence of the said 

parameters [17-18]. The medical implants were successfully formed through SPIF [19]. It was 

observed that the reducing friction and achieving reduced level of roughness on the punch surface 

improved the interior surface of titanium sheets. The effects of tool diameter, along with other process 

parameters were investigated during SPIF on various Indian standard metals such as steel, stainless 

steel, and aluminium to analyse the surface roughness and microstructural transformation. It is 



observed that a larger tool end diameter of hemispherical end tool and higher spindle speed improved 

the desired goals [20]. The formability of stainless steel SS304 grade through SPIF was investigated by 

considering variations in tool end along with few process variables. Statistical analysis showed that 

vertical size increment i.e. step-depth size increment contributed significantly to surface roughness 

[21]. Further the gradient boosting regression tree (GBRT) is used to correlate the functional variables 

of SPIF on the output response for Al/SUS bimetal sheet. The authors reported severe cracks when 

SPIF was done with 10 mm tool end diameter while the refinement in the surface roughness was 

noticed with 20 mm tool end diameter and small step size of 0.15 mm [22].Overall, these studies and 

investigations highlight the various aspects, parameters, and challenges involved in SPIF, keeping all 

these finding in mind, the artificial neural network (ANN) model is introduced in SPIF to predict the 

surface quality of formed part which is a prime concern.  

 

 

SPIF INVESTIGATION 
Taguchi-based optimization offers advantages over conventional optimization practices with a 

minimum number of experiments [23]. Unlike traditional methods, Taguchi optimization is more cost-

effective. However, to address the limitation of optimizing only one characteristic, several 

modifications have been suggested [24]. These modifications aim to extend the Taguchi method to 

handle multi-objective problems, but these modifications increase the computational complexity of the 

optimization process. In the context of multi-objective optimization, a simple modification has been 

proposed. This modification, described in [25], introduces a multi-objective for individual trial of the 

Orthogonal Array (OA). By using these membership functions, the multi-performance objectives can 

be considered simultaneously during the optimization process. This modified approach enables 

Taguchi-based optimization to handle multi-objective problems without significantly increasing 

computational complexity. It provides a more comprehensive and efficient way to optimize multiple 

performance characteristics simultaneously, making it a valuable tool in engineering and optimization 

applications. 

 

SPIF Experiments 

The SPIF experiments is conducted on CNC vertical machine centre (Model: DT-110, Mikrotool Pvt. 

Ltd., Singapore) place in the modern manufacturing laboratory of production and industrial 

engineering department, BIT, Mesra. A dedicated SPIF fixture is designed and fixed it over the CNC’s 
table. The lower and higher value of the SPIF parameters domains i.e. step-depth size (∆𝑧) in mm, feed 

rate (𝑓) in mm/min, spindle speed (𝑅) in RPM, wall angle (𝜃) in degree, sheet thickness (𝑇) in mm, and 

density of lubricant (𝐿) in kg/m3 are taken. The numeric values of considered input parameters for SPIF 

experiment is tabulated in Table 1. The Cu-Zn alloy is taken as metal sheet and a square pyramid shape 

of given dimensions is formed in each test sample with the prescribed tool trajectory as in Fig. 1. 

 

Fig. 1: Proposed Square Pyramid Shape and Toolpath for Forming. 

 

The test sample is prepared by cutting 5mm*5mm from individual square pyramid for measuring the 

surface roughness measurement (See Fig. 2). Across the direction of tool movement as expected the 

waviness observed in the formed part due to continuous change in successive depth. The surface 

roughness of the cut sample of each experiment is measured in the magnification of 100X through 

atomic force measurement machine (AFM) (Model: NT-MDT, Solver-4) which is available in the 

central instrumentation facility-1 (CIF-1), BIT, Mesra, India.   

 



 

 

 

Fig. 2: AFM (Model: NT-MDT) Solver-4 Used in Surface Roughness 

Measurement. 

 

The test sample piece is placed in the machine in such a way that optical probe scans the sample across 

the tool feed mark (due maximum surface roughness occur due to waviness). The optical probe scanned 

approximately 65000 grits in one pass and generated a 3D microscopic image along with average surface 

roughness (Ra), average heights of top ten peaks (Ry), and root mean square roughness (Rq). All the 

roughness values are measured in micron (µ) level. Only average surface roughness Ra is considered in 

the present study. The sample, cut section and AFM microscopic image of individual samples is 

presented in Fig. 3. The experiment set with varying level of input parameters along with measured Ra is 

tabulated in Table 1.  

 

 
Fig. 3: Sample Cut for AFM and Microscopic Image of a Sample 

Statistical Analysis for Ra 

In the present investigation, the significant input parameters on the output response, specifically the 

surface roughness (Ra) are being analyzed using statistical methods. The software used for this analysis 

is MINITAB version 17.0.1, a popular tool for statistical analysis. In this case, it is used to assess how 

the input variables affect the output factor Ra. The significance level chosen for the analysis of 

variance ANOVA is 95% confidence. This means that there is a 95% probability that any observed 

differences in the output response (Ra) are not due to random chance but are instead influenced by the 

variations in the input parameters. The significance level is often denoted by the symbol alpha (α), and 
in this case, it is set to 0.05 (5%). The lower Ra-value shows the improved surface finish of the product 

therefore ‘smaller is better’ approach is made during ANOVA test.  The equation for ‘smaller is better’ 
is expressed by equation (1).  

 𝑆/𝑁(𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟) = −10𝑙𝑜𝑔−10𝑙𝑜𝑔10(𝑆𝑈𝑀 (𝑌2𝑛 )) 
(1) 

 

Table 1: EXPERIMENT SET AS PER ORTHOGONAL ARRAY L16 ALONG WITH MEASURED Ra. 

Exp. No. ∆z 
(10-1) 

F 

(101) 

R 

(102) 

T 

(10-1) 

θ L 

(10-1) 

Ra 

1 1 2 5 2 15 1.5 62.951 



2 1 2 5 4 45 4.9 104.863 

3 1 2 20 4 15 4.9 58.29 

4 1 2 20 2 45 1.5 102.943 

5 1 10 5 4 15 4.9 67.6545 

6 1 10 5 2 45 1.5 100.514 

7 1 10 20 2 15 1.5 51.8449 

8 1 10 20 4 45 4.9 107.392 

9 7 2 5 4 15 4.9 89.637 

10 7 2 5 2 45 1.5 86.358 

11 7 2 20 2 15 1.5 130.65 

12 7 2 20 4 45 4.9 144.369 

13 7 10 5 2 15 1.5 74.845 

14 7 10 5 4 45 4.9 152.597 

15 7 10 20 4 15 4.9 86.102 

16 7 10 20 2 45 1.5 151.637 

 

Artificial Neural Network Modeling 

In manufacturing, the variation in the outputs is very common for repeated experiments. The 

inconsistency in the output response may arise from the full proofing of the conducted experiments. 

Moreover, the variation in the input parameters magnitude enhanced the estimation of conducted 

experiments. To correlate the results, the prediction of output needs to be analyzed in such a manner so 

that the error on the product should be minimized [26]. Artificial Intelligence (AI) is a wildly utilized 

tool in many sectors and set a benchmark [27-29]. Artificial Neural Network (ANN) is a module of AI 

utilized as predictor tool in various sectors such as manufacturing processes, healthcare, finance, sports, 

etc. to model the nonlinear functions into a reliable output [30-31]. In the continuing SPIF investigation 

ANN estimated that the deformation velocity rate, element size, and mass scaling as 16.49m/s, 

1mm*1mm, and 19.01 respectively to minimize pillow effect [32]. With the insight knowledge of ANN, 

the present investigation is done on MATLAB version 7.10.0.499 (Math works Inc., U.S.A) where 

Levenberg- Marquardt algorithm is utilized. The 6-6-1 network topology as shown in Fig. 4 is 

developed. The experimental numeric codes of input parameters and the measured output response i.e. 

Ra is taken as inputs for the prediction of Ra.   

 

 
Fig. 4: ANN Network Architecture 6-6-1 for Ra 

 

According to Fig. 4, net input to unit ‘k’ in the hidden layer for single layer feed forward network is 
expressed in equation (2), 



 

 

 𝑛𝑒𝑡_ℎ𝑖𝑑𝑑𝑒𝑛 =  ∑ 𝑤𝑡j,k𝑖j +  𝑏𝑠k𝑗
𝑗=1  

 

(2) 

 

Where 𝑤𝑡𝑗,𝑘is the weight. 𝑏𝑠𝑘are the biases, and 𝑖𝑗is the inputs value. Now, the net input (for unit z) 

received is expressed in equation (3), 

 𝑛𝑒𝑡_𝑜𝑢𝑡𝑝𝑢𝑡 =  ∑ 𝑣k,zℎk + 𝑐z𝑘
𝑘=1  

 

(3) 

 

Where𝑣𝑘,𝑗is the weight,𝑐𝑧is the biases, and ℎ𝑘is the outputs value at hidden nodes. After equating 

equations (2) and (3), the output at hidden and output nodes can be written as. equation (4) and equation 

(5) are the net information communicated to next layer for further analysis. 

 ℎk = 𝑓(𝑛𝑒𝑡_ℎ𝑖𝑑𝑑𝑒𝑛) (4) 𝑜z = 𝑓(𝑛𝑒𝑡_𝑜𝑢𝑡𝑝𝑢𝑡) =  𝑅a (5) 

Where ℎk is the net information transferred from input layer to hidden layer whereas 𝑜z is the net 

information transferred to output layer. 

 

The variety of ANN model is tested to get the best functional model for the prediction of Ra of SPIFed 

part. The ANN architecture is classified into three sections as shown in Table 3. In section 1, the 

transfer function TANSIG and at output layer, PURELIN transfer function is used.  Similarly, section 2 

is modeled by introducing LOGSIG at hidden layer whereas PURELIN transfer function at output 

layer and in the last section e.g. section 3, PURELIN transfer function in introduced at both hidden and 

output layers respectively. All the models are run by varying neurons e.g. 10, 11, and 12 neurons to 

find record the behavioral change of the ANN model. The feed forward backpropagation neural 

network (FFBP) in which Levenberg Marquardt (LM) training algorithm and LERNGDM learning rate 

are adopted for simulation of all the NN models. The mean square error (MSE) is the target which is 

further considered to confirm the reliability of the NN model.   

 

RESULT AND DISCUSSION 
The statistical analysis is done with 95% confidence level in which the probability factor (P) must be 

less than 0.05 shows the significance of individual input parameters. It is found step depth (∆𝑧) and 

forming angle (𝜃) are the significant process parameters for the Ra-value in the SPIF of Cu67Zn33 

alloy. Analysis of variance (ANOVA) results shows graphically in Fig. 5 where slops of individual 

input parameters are drawn. The low level of input variables ∆𝑧 − 𝑓 − 𝑅 − 𝑇 − 𝐿 whereas 𝜃=450 must 

be set in the SPIF of Cu67Zn33 alloy. Table 2 indicated that the step depth ∆𝑧  (P=0.007) and wall 

angle 𝜃 (P= 0.001) are the significant.  

 



 
Fig. 5: Main Effect Plot of Individual Input Parameters 

 

Table 2: SIGNIFICANCE OF INPUT PARAMETERS FOR Ra SHOWN IN ANOVA. 

Source DF Seq SS Adj SS F P Significance ∆𝑧 1 33.739 33.7493 11.85 0.007 Yes 𝑓 1 0.003 0.0027 0.00 0.976 No 𝑅 1 2.506 2.5063 0.88 0.373 No 𝜃 1 59.226 59.2263 20.79 0.001 Yes 𝑇 1 2.006 2.0061 0.70 0.423 No 𝐿 1 6.462 6.4623 2.27 0.166 No 

Residual Error 9 25.641 25.6409    

Total 15 129.594     

 
In ANN modeling, the input data are devided into 70% for training, 15% for testing and validation. The 

maximum numbers of iteration (first activated) and sufficient accuracy i.e. two stopping criteria is 

adopted during training of NN models. The network architecture generated by NN tool for the best 

possible solution is shown in Fig. 6. 

  

 
Fig. 6: Main Effect Plot of Individual Input Parameters 

The Ra-value is predicted by using various ANN models in which neurons at hidden layer and type of 

transfer functions were varied. The training stopped at fifth iterations (first activated) with the value of 

250.2109. The overall regression plot i.e. training, testing, and validation for the best possible NN 

solution are shown in Fig. 7. It seems that the input data for NN is to track the targets reasonably well.  

 



 

 

 
Fig. 7: BPNN Regression Plot for Best NN Model 

 

Table 3 indicates the coefficient of correlation (CoC) for all the tested models are quite acceptable 

since the CoC for training, testing, and validation are more than 0.85 in most of the cases. To select the 

best ANN, the optimized CoC of 0.93219 with MSE of -5.34517 are reported in 6-12-1 NN where 

TANSIG at hidden layer and PURELIN at output layer. The training, testing and validation CoC’s are 

reported as 1 for all and 0.93129 is overall CoC for the same NN model (Section 1 in Table 3). It seems 

that the input data for NN modeling tracked the targets reasonably well. 

 

Table 3: RESULTS OF ANN FOR TARGETED Ra AND PREDICTED Ra WITH MEAN SQUARE 

ERROR. 
 Hidden 

layer 

neuron 

Transfer function R2 MSE 

 Source Layer 1 Layer 2 Training Testing Validation All  
Section 1  TANSIG PURELIN      

 10   1 0.99492 0.98472 0.91622 -4.02081 

11   1 0.93854 0.99923 0.92942 -3.04E-06 

12   1 1 1 0.93129 -1.37 
  

Section 2  LOGSIG PURELIN      
 

 

 

 

 

10   1 0.92499 0.40038 0.80506 -2.87172 
        

11   1 0.86778 0.999981 0.77228 21.92478 

12   1 0.99612 0.88539 0.83074 1.090619 

  
Section 3  PURELIN PURELIN      

 10   0.91219 0.99238 0.98255 0.82366 -6.90808 

11   0.92581 0.9993 0.96385 0.84981 1.249844 

12   0.96902 0.99541 0.94326 0.85703 5.609581 

 

The correlation between predicted and actual response indicated by Ra -value which is in the range of 0 

to 1.0. In the study, the lowest MSE value is observed for optimum ANN network. The combination of 

TANSIG with PURELIN in ANN is found most efficient than other combinations to get accurate 



results. Table 4 shows the comparative LM algorithm performance which is compared with measure 

Ra with MSE. 

 

Table 4: COMPARATIVE Ra ALONG WITH MSE FOR BEST FFBP MODEL 

Exp.  

No. 

Experimental Ra 

(µ) 

Predicted Ra 

(µ) 

Error 

(MSE) 

1 62.951 62.951 0 

2 104.863 127.2294 0 

3 58.29 58.29 0 

4 102.943 102.943 0 

5 67.6545 67.6545 0 

6 100.514 100.514 0 

7 51.8449 51.8449 0 

8 107.392 106.9841 0 

9 89.637 89.637 -2.13E-14 

10 86.358 86.358 -22.3664 

11 130.65 89.30209 -2.84E-14 

12 144.369 144.369 1.42E-14 

13 74.845 74.845 1.42E-14 

14 152.597 152.597 0 

15 86.102 83.91287 -1.42E-14 

16 151.637 151.637 0.40794 

 

 

CONCLUSIONS 
The surface roughness of the end part is examined and simultaneously analyzed the significance of 

input parameters. The prediction model is developed through ANN and feed forward back propagation 

method is utilized to enlighten the feasibility of AI tool in manufacturing processes. A few concluding 

points of the present study are mentioned below. 

 

• The Ra -value of calamine brass can be improved by conduction SPIF at low step depth ∆𝑧along 

with greater wall angle. 

• The optimum design for SPIF corresponds to ∆𝑧=0.1mm, 𝑓=100mm/min, 𝑅=500, 𝑇=0.2mm, 𝜃=450, and 𝐿=15Kg/m3. 

• The 6-12-1 model with TANSIG at hidden layer and PURELIN at output is found appropriate 

for predicting 𝑅𝑎.  

• The CoC of 0.94855 is noticed resembles good agreement between input and output.  

• ANN results found good agreement with experimental data where CoC found 0.94855 with 

MSE of -5.34517. 

 

It is inferred that the output response is efficiently predicted through ANN. The benefit of using ANN 

included economic, approximate predictability, short simulation time which makes it a promising 

modelling tool. ANN could benefit industries in research and development activities. 
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