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Abstract 

In this paper, the target-tracking problem of a 3-axis camera gimbal mounted on a flying vehicle is 
considered. In order to keep the camera’s line of sight continuously pointing to a moving target, an optimal 
controller using LQR control techniques is applied. The motion equations of the gimbal system are derived 
by the Lagrangian approach considering the vehicle motion. The LQR controller is designed based on the 
system’s continuously linearized model. A tuning method for the LQR is also proposed to make the gimbal 
system point to a moving target in the shortest time. The feasibility of the proposed controller is shown by 
numerical simulations. 
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1. Introduction* 

Inertial stabilized platforms (ISPs) are 

mechanisms to control and stabilize the LOS of 

optical equipment. Recently, ISPs have been 

popularized in many civil and commercial 

applications (e.g. movies shootings, aerial 

photography). In such systems, the optical equipment, 

which is often mounted on a moving vehicle, must 

keep its optical sensor’s LOS pointing to a fixed or 

moving target. One of the most common types of 

ISPs is based on a gimballed structure [1]. The two 

main issues are raised as to build exact physical 

models and to develop good control algorithm to 

fulfill the target-tracking problems. Basically, there 

are two approaches to derive the gimbal mathematical 

models: one by Newton-Euler approach [2, 3] and the 

other by Lagrangian method [4, 5]. For gimbal 

control algorithms, many approaches have been 

applied such as robust control in [3], sliding mode 

control in [4], and conventional PID control in [5]. 

Most of the gimbal control challenges in the literature 

are related to dealing with two-axis gimballed 

configurations. 

In this paper, the LOS stabilization and target-

tracking problems of a three-axis camera gimbal 

mounted on a flying platform is studied. The aim of 

the paper is to design an optimal controller to achieve 

good target-tracking performance as quick as possible 

under the dynamic disturbances from the flying 

platform. To fulfill this task, a nonlinear dynamic 

model of the three-axis gimbal is developed based on 
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the Lagrangian approach under the flying platform’s 

inertial effects and a linear quadratic regulator (LQR) 

is utilized. An offline-tuning procedure for LQR is 

proposed to find optimal values of state and control 

weight matrices to improve gimbal target-tracking 

performance.  

2. Problem Formulation 

In this paper, a three-axis gimbal system 

illustrated in Fig.1 is considered. The gimbal system 

is assumed to be mounted on a flying platform at 

body 0. The camera fixed on the gimbal’s body 3 

must keep its sensor’s LOS pointing to a moving 

object on the ground. To keep the object image 

stabilized in the camera frame of view, its sensor’s 

LOS must also be kept nonrotating in an inertial 

space under dynamic disturbances from the platform 

motion.  

 
 

Fig. 1. Model of 3-axis Gimbal 

In order to verify the proposed control algorithm, a 

mathematical model of the gimbal system needs to be 

derived. The gimbal system’s equations of motion are 

built based on three generalized coordinates as 1 , 
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2  and 
3 , which are the rotation angles (yaw, roll 

and pitch) of motors at each axis. To determine the 

gimbal system’s position, five reference frames are 

identified as in Fig. 1. The global frame OXYZ(g) is 

fixed to the ground. Local frames 
i i i iO x y z  are 

attached to body i (i from 0 to 3) and 
3 3O x is 

specified as the camera’s LOS. Those frames are 

choosen such that they are parallel to each other when 

1 , 
2  and 

3  are all equal to zero. The camera 

LOS is determined by the transformation matrix 

method. Let’s define the transformation from frame a 

to from b by a 4 by 4 matrix a

bT  in the form as 

 
1

a a

a b b

b T

 
=  
 

R r
T

0
 (1) 

where 
a

bR is a 3 by 3 rotation matrix and, 
a

br is a 3 

by 1 translation vector from frame a to frame b. The 

transformation matrix between the ground frame and 

the platform frame is specified as follows 

0
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where X0, Y0 and Z0 are the flying platform position 

of O0 in the ground frame; ,    , and   are roll, 

pitch and yaw angles of the flying platform (body 0). 

The terms  ,  cs   stand for  ( ) ( )sin ,  cos   and so 

on for ,  c ,  s  and ,  cs  . Other transformation 

matrices among the gimbal bodies are described as 
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T  (5) 

The terms  1 1,  cs  stand for  ( ) ( )1 1sin ,  cos   and so 

on for 2 2,  c ,  s and 3 3,  cs . 

The direction of the camera LOS is calculated by the 

transformation matrix  3

g
T  as follows 

 0 1 2 3 3

3 0 1 2 3. . .
1

g g

g g

T

 
= =  

 

R r
T T T T T

0
  (6) 

The LOS direction is specified by making the unit 

vector 3

3i  of axis O3x3 same direction with vector of 

3

3
O P . To keep the axis O3y3 in parallel to the 

ground, the term 3 (3, 2)g
R , which is at the third row 

and second column of matrix 3

g
R must be zero. Let’s 

assume the moving target’s position P in the ground 

frame is identified by the vector g

Pr . As a result, the 

gimbal configuration ( )1 2 3, ,    to keep its LOS 

point to the moving target P while maintaining the 

stabilized image of P in the camera view of frame is 

determined by the following system of equations 

 

( )

( )

 3

3 3 3

3

 3

3 3 3

(3,2) 0

.

g T g g

P

g

g T g g

P

−  =

=

− 

T r r i 0

R

T r r i 0

 (7) 

The equations of gimbal motion in the frame 0, which 

are derived by the Lagrangian approach using the 

matrix method [8] has the form as 

 *( ) ( , ) ( )+ + + =M q q C q q q Dq G q Q  (8) 

where  1 2 3  
T

  =q , ( )M q is the 3 by 3 mass 

matrix, ( , )C q q  is the 3 by 3 Coriolis and centrifugal 

matrix determined from the mass matrix, ( )G q  is 

generalized forces due to the potential energy  , D 

is a damping matrix and Q* is the generalized forces 

due to motor torques and inertial forces and moments 

caused by the flying platform. The mass matrix 

( )M q  is calculated as follows 

 ( ) ( )
3

0

1

T T

Ti i Ti Ri Ci Ri

i

m
=

= +M q J J J I J  (9) 

where im is mass of body i and 0

CiI is inertia tensor 

around the centroid of body i in the frame 0.  TiJ  and 

RiJ are translational and rotational Jacobian matrices 

respectively. 

 
0 0

,  Ci i

Ti Ri

 
= =

 

r ω
J J

q q
   (10) 

where 
0

Cir is a position vector of the centroid Ci of 

body i in frame 0, 
0

iω is the angular velocity vector 

of body i in frame 0. The matrix ( , )C q q is derived as 
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 ( ) ( )
( ) 1 ( )

( , )
2

T

  
=  −  

  

M q M q
C q q E q q E

q q
 (11)  

where E is the 3 by 3 identity matrix and  is the 

Kronecker product [8]. The damping matrix D is 

determined from the dissipative function ( ) q as 

 
( )

=


q
Dq

q
  (12) 

where 2 2 2

1 1 2 2 3 3

1 1 1
( )

2 2 2
b b b   = + +q  and 

1b ,
2b , 

and 
3b  are damping coefficients of the gimbal 

motors. The vector ( )G q has the form as 

 ( )
3

0 0

1

,  ( )
T

i g Ci

i

m
=

 
=  = − 

 
G R g r

q
  (13) 

where  g is the vector of the form  0 0 
T

g=g , and g 

is the gravitational acceleration. The vector of 

generalized forces Q* is calculated as 

 
* * * *

Fie Mie= + +Q Q Q Q  (14)  

where 
*

Q , 
*

FieQ , and *

MieQ  are generalized forces 

corresponding to the gimbal motor torques, the 

resultants of inertial forces and inertial couples, 

respectively. The Coriolis effect is ignored due to 

assumptions of the platform’s small angular velocity. 

The generalized forces are defined as 

  *

1 2 3  
T T

   = =Q u  (15) 

 
3

*

0

1

  T g T g

Fie Ti ci

i=

=Q J R F  (16) 

 
3

*

0

1

  T g T g

Mie Ri ci

i=

=Q J R M  (17) 

where 
g

ciF and g

ciM are the resultant of inertial force 

and couple at the centroid Ci of body i in the ground 

frame, respectively. 

 
( )( )0

0 0 0 0

0 0

0 0 0 0 0 0 0

 g g g g g

ci i ci

g g g T g g g g T g

ci Ci Ci

m= − + +

= − −

F r α ω ω r

M R I R α ω R I R ω
  (18) 

where 0

g
ω and is 0

g
α are skew-symmetric tensors of 

angular velocity 0

g
ω  and angular acceleration 0

g
α  

of body 0 in the ground frame, respectively. Both 

0

g
ω and 0

g
α are assumingly known by sensor 

measurement. In the following section, the control 

torques in (15) need to be specified to force the 

equations (8) realize the conditions in (7).     

3. Optimal Controller Design 

Generally, the gimbal nonlinear equations of 

motion (8) can also be converted into the form as 

( )
21

1 *

2 ie

−

  
= =   

− − − − +    

xx
x

x M Cq Dq G Q u
 (19) 

where  1 1 2 3  
T

q q q=x ,  2 1 2 3  
T

q q q=x and, 

* * *

ie Fie Mie= +Q Q Q . The measurable and controlled 

variables are  

1( )t =y x  (20) 

From (19) and (20), the gimbal system’s 

nonlinear model can be expressed as follows 

0 0 0

0 0 0

( ) ( ( ), ( ), ( ), ( ), ( ))

( ) ( ( ), ( ), ( ), ( ), ( ))

g g g

g g g

t f t t t t t

t h t t t t t

 =


=

x x u r ω α

y x u r ω α   (21) 

Where 0 0 0( ), ( ), ( )g g gt t tr ω α  are the platform’s 

acceleration, angular velocity and acceleration in the 

ground frame, respectively. To determine the motor 

torques u(t) for making the gimbal system’s LOS 

track a moving target, an optimal controller of LQR 

will be designed based on the continuously linearized 

model of the form 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

t t t t t

t t t t t

= +

= +

x A x B u

y C x D u   (22) 

Where ( ) ( ) ot t= −x x x , ( ) ( ) ( , )o ot t= −y y h x u , 
and ( ) ( ) ot t= −u u u . The matrices A(t), B(t), and C(t) 

D(t) are defined as follows 

, ,

( , ) ( , )
,

o o o o

 
= =

 x u x u

f x u f x u
A B

x u
 

(23) 

, ,

( , ) ( , )
,

o o o o

 
= =

 x u x u

h x u h x u
C D

x u   (24) 

where the operation point ( , )o ox u  is 

determined from equation (7) at operating time to, its 

first derivative and the steady state equations as. 

 0 0 0( , , ( ), ( ), ( )) 0g g g

o o o o of t t t =x u r ω α  (25) 

The system’s controllability and observability are 

satisfied. To apply LQR controller, the control signals 

u should have the form as [9] 

 ( ) ( )t t= −u Kx  (26) 

to minimize the cost function of the form as 

 ( )
0

1

2

T TJ dt



= + x Qx u Ru  (27) 



  

Journal of Science & Technology 127 (2018) 035-039 

 

38 

Where Q and R are symmetric positive semi-definite 

and positive definite matrices, respectively. The 

optimal solution u is identified from the Hamiltonian 

approach as follows 

 1( ) ( )t t−= −u R BPx  (28) 

Where P is the solution of the Riccatti equation as 

 1T T−+ + − =Q A P PA PBR B P 0  (29) 

As seen in (28), the LQR provides a negative 

feedback gain K with large stability margin [9]. The 

controller performance depends on the selection of 

the weight matrices Q and R.  

 In this section, a practical method to select the 

weight matrices is introduced. Matrices Q and R are 

selected in the form as 

 ,   T = =Q C C R I  (30) 

where  is a tuning parameter to design the LQR 

such that the control signal u will drive the gimbal 

system point to the moving target in the shortest time. 

Let’s define ( )st  is the time period for the maximum 

norm of the state perturbations in (22) getting smaller 

than the predefined error 0.01 ( )rad =  

 ( )st 

x  (31) 

The parameter 
* to make the gimbal system catch 

the moving target in the optimal time is the solution 

of the function 

 
*

*( ) min(max( ( )))s st t
 

 
→

=  (32) 

4. Gimbal System Simulation 

 The 3D model of gimbal (Fig.1) was built using 

based on a real prototype. The gimbal parameters are 

measured and shown in Tables 1, 2 and 3 as follows: 

Table 1. Dimensions and Mass of the Gimbal 

Link l(m) b(m) h(m) ( )im kg  

1 0.13 0 0.155 0.32341 

2 0.125 0.072 0 0.32325 

3 0.0325 0.049 0.01405 0.67008 

Table 2. The Centroids of the Gimbal Links 

Link i

Cix  
i

Ciy  
i

Ciz  

1 0.01325 0 -0.07642 

2 -0.05791 0.05261 0 

3 -0.03237 0.02294 0.00578 

Table 3. Moment of Inertia about the Centroids 

Link 
Ci

i (xx)
I  

Ci

i (yy)
I  

Ci

i (zz)
I  

1 0.001396709 0.002011077 0.000675883 

2 0.001289047 0.000817588 0.002076275 

3 0.001682153 0.000614997 0.001274903 

The tuning process from solving equation (32) is 

shown in Fig. 2, with * *0.005, ( ) 0.035( )st s = = . 

 
Fig. 2. Weight Parameter Tuning Process 

The flying platform’s position of O0 and roll, pitch 

and yaw angles are assumingly known as (Fig. 3) 
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The moving target’s position P is defined as 

 0.2sin(1.2 ) 1 0
Tg

P t t= +r  

 
Fig. 3. Trajectories of the drone and moving target 

 
Fig. 4.   Gimbal Torques for Tracking Problem 
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Fig. 5. Tracking Responses of the Gimbal Angles 

The pertubation results of motor torques and 

gimbal angles between two cases 1 =  and 
* =  

are compared in Fig. 4 and 5. The optimal case tracks 

the object in much faster time with the trade off of 

higher motor torques. 

5. Conclusion 

In the paper, the problem of controlling the 

gimbal camera’s LOS for tracking a moving target is 

studied. A dynamic model of a 3-axis gimbal system 

is built in consideration with the flying platform’s 

motion. A tuning algorithm for the LQR controller to 

find shortest tracking time is proposed and the 

numerical simulation shows that the designed 

controller meets the objective. 
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