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Abstract 

Correlation characteristic can bring many significant potential advantages for the development of efficient 
communication protocols for wireless sensor networks. To exploit the correlation in WSNs, it is necessary to 
build the correlation model. However, most of the present correlation models only consider the linear and 
distance dependence correlation or computation complexity. This paper presents a novel entropy correlation 
model with less computation complexity that could be applied practically. Moreover, two energy efficient 
aggregation schemes including on-off scheme which offers an efficient way to choose representative nodes 
in a cluster with permitted distortion and compression scheme which reduces in-network message length 
suitable to high correlation data are also presented in this paper using the proposed correlation models.  

Keywords: Entropy correlation coefficient, Correlation model, Compression, Representative node, Distortion 

 

1. Introduction* 

In recent years, the advanced development in 
micro-electro-mechanical systems (MEMS) and the 
wireless communications have enabled the wide 
deployment of wireless sensor networks (WSN) which 
expand sensing capabilities in space and time that can 
satisfy requests from various modern applications. 
Because of low-cost, small in size, and no-replace 
battery powered characteristics of sensor nodes, 
energy conservation is commonly recognized as the 
key challenge in designing and operating the network. 

In typical WSNs applications, sensors are 
required spatially dense deployment in order to 
achieve satisfactory coverage [1]. As a consequence, 
multiple sensors will record information about a single 
event in the sensing field, i.e. these sensed data are 
correlated with each other. The existence of correlation 
characteristic can bring many significant potential 
advantages for the development of efficient 
communication protocols well-suited for the WSNs 
paradigm [2, 3]. 

To exploit the correlation in WSNs, it is 
necessary to build the correlation model. There have 
been many research efforts to study correlation model 
in WSNs. In [3], correlated nodes are supposed to 
observe the same source, and the observed data is the 
sum of a correlated version of the source and observed 
noise. The correlation model is distance’s dependence 
and could be classified into four groups including 
Spherical, Power exponential, Rational quadratic and 
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Matérn. In [4], the correlation model is proposed such 
as correlation coefficient is a function of distance 
among nodes. Other research papers consider the 
correlation as the similarity of sensed data [5]. Some 
papers define the correlation model in different ways 
such as linear predictive model [6], node weight [7], 
data density correlation degree [8].  

All the above models consider only the linear 
correlation between data and distance based. To solve 
more general correlation relation, entropy-based 
correlation models are considered [9- 12]. In [9], the 
joint entropy of a group of nodes are calculated using 
real data set and then a distance based joint entropy 
function is built by approximation to the calculated 
joint entropy. Distance-based joint entropy models are 
proposed in [9, 10]. In [11], instead of calculating 
directly from real data, entropy correlation coefficient 
is chosen to be Pearson linear correlation coefficient to 
reduce the computation complexity but reduce the 
generality of using entropy. In [12], joint entropy is 
calculated from real data and then the joint entropy of 
a node set is approximated by an exponential function 
of a number of nodes in the set. The advantage of this 
model is a distance-independent model, but the 
disadvantage is the complexity in determination 
correlation among nodes. Joint entropy values of all 
possible node groups have to be calculated in order to 
select correlated nodes. 

To overcome these above difficulties, the concept 
of correlation ratio, similarly to entropy correlation 
coefficient, is used in [13], but the correlation model is 
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not yet established. In addition, the mathematical 
explanation of choosing correlation region has not 
been done. The research in [14] continues the work in 
[13] by presents a model of evaluated joint entropy 
bases on single nodes and entropy correlation 
coefficient of a pair of nodes. Theoretical and practical 
validation has been done in this research, however, 
applications of the correlation model have not been 
shown. The application of the correlation model is 
initially presented in [15].  The correlation 
characteristic is used to group correlation nodes into 
clusters and compression aggregation is done, in order 
to save energy. This paper extends the work in [15] by 
developing and evaluating of two aggregation types 
for WSNs including data compression and 
representative types using the entropy correlation 
model. 

2. Joint entropy evaluation 

2.1. Entropy concept 

To measure the correlation among sets of data, 
we first consider the concept of entropy and mutual 
information. 

If a random variable X takes on values in a set X 
= {x1, x2,... xn}, and is defined by a probability 
distribution P(X), then the entropy H(X) of the random 
variable X is written as:  

∑
∈

−=
Xx

xPxPXH )(log)()( 2                      (1) 

Joint entropy is the entropy of a joint probability 
distribution or a multi-valued random variable. If X 
and Y are jointly distributed according to P(x, y), the 
joint entropy H(X,Y) is:  

𝐻𝐻(𝑋𝑋,𝑌𝑌) = ∑ ∑ 𝑃𝑃(𝑥𝑥,𝑦𝑦) log2 𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑦𝑦∈𝑌𝑌𝑥𝑥∈𝑋𝑋            (2) 

Mutual information is a quantity that measures a 
relationship between two random variables which are 
sampled simultaneously. The formal definition of the 
mutual information I(X,Y) of two random variables X 
and Y, whose joint distribution is defined by 𝑃𝑃(𝑋𝑋,𝑌𝑌) is 
given by:  

∑∑
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The relation between mutual information and 
entropy is given by: 

𝐼𝐼(𝑋𝑋,𝑌𝑌) = 𝐻𝐻(𝑋𝑋) + 𝐻𝐻(𝑌𝑌) −𝐻𝐻(𝑋𝑋,𝑌𝑌)            (4) 

The normalized measures of mutual information 
called entropy correlation coefficient [16] that is given 
as follows: 
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The entropy correlation coefficient ρ varies from 
0 to 1, depending on the correlation between two 
nodes. The larger the value of ρ, the higher the 
correlation is.  

2.2. Joint entropy approximation 

Supposing that there is a set of N data {X1, X2, …, 
XN} with the entropy of each data, H(Xi), and entropy 
correlation coefficient, ρij = ρ(Xi, Xj), with any 1≤i≠j≤ 
N satisfies the following conditions:  

𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐻𝐻(𝑋𝑋𝑚𝑚) ≤ 𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥                                      (6) 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜌𝜌𝑚𝑚𝑖𝑖 ≤ 𝜌𝜌𝑚𝑚𝑚𝑚𝑥𝑥                                           (7) 

The joint entropy is estimated based on the idea 
of hierarchical clustering [17] as follows: 

a. Joint entropy upper bound 

With a group that has only one node, the entropy 
of one node is limited by equation (6): 

𝐻𝐻1 = 𝐻𝐻(𝑋𝑋𝑚𝑚) ≤ 𝑘𝑘1𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥                                    (8) 

where k1 =1. 

With a group of two nodes Xi and Xj, from the 
definition of entropy correlation coefficient in 
equation (5) we have:  

𝐻𝐻2 = 𝐻𝐻�𝑋𝑋𝑚𝑚 ,𝑋𝑋𝑖𝑖� =
2 − 𝜌𝜌�𝑋𝑋𝑚𝑚 ,𝑋𝑋𝑖𝑖�

2
�𝐻𝐻(𝑋𝑋𝑚𝑚) + 𝐻𝐻�𝑋𝑋𝑖𝑖�� 

In addition, 

𝐻𝐻(𝑋𝑋𝑚𝑚),𝐻𝐻�𝑋𝑋𝑖𝑖� ≤ 𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥, and 𝜌𝜌�𝑋𝑋𝑚𝑚 ,𝑋𝑋𝑖𝑖� =  𝜌𝜌𝑚𝑚𝑖𝑖 ≥ 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 

Then  

𝐻𝐻2 ≤
2−𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

2
(2𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥) = (2 − 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚)𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥  

or 𝐻𝐻2 ≤ 𝑘𝑘2𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑏𝑏𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥                              (9) 

where 𝑘𝑘2 = 𝑏𝑏 = 2 − 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚. 

The coefficient k2 can also be rewritten as follows: 

𝑘𝑘2 =
𝑏𝑏
2

. 2 =
𝑏𝑏
2

(𝑘𝑘1 + 1) 

With a group of three nodes Xi, Xj and Xk, at first, two 
nodes Xi and Xj are merged to create a new cluster 
represented by node Xij with 𝐻𝐻�𝑋𝑋𝑚𝑚𝑖𝑖� = 𝐻𝐻�𝑋𝑋𝑚𝑚 ,𝑋𝑋𝑖𝑖� ≤
𝑘𝑘2𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥. According to hierarchical clustering [17, 10], 
the correlation coefficient between one cluster and 
another cluster can be obtained by the 
greatest/shortest/average correlation coefficient from 
any member of one cluster to any member of the other 
cluster. Therefore: 

𝜌𝜌�𝑋𝑋𝑚𝑚𝑖𝑖 ,𝑋𝑋𝑘𝑘� = min�𝜌𝜌(𝑋𝑋𝑚𝑚 ,𝑋𝑋𝑘𝑘),𝜌𝜌(𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑘𝑘)}� ≥ 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 

Then 



  
Journal of Science & Technology 128 (2018) 041-047 

43 

𝐻𝐻3 = 𝐻𝐻�𝑋𝑋𝑚𝑚 ,𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑘𝑘� = 𝐻𝐻�𝑋𝑋𝑚𝑚𝑖𝑖 ,𝑋𝑋𝑘𝑘� 

=
2 − 𝜌𝜌�𝑋𝑋𝑚𝑚𝑖𝑖,𝑋𝑋𝑘𝑘�

2
�𝐻𝐻�𝑋𝑋𝑚𝑚𝑖𝑖� + 𝐻𝐻(𝑋𝑋𝑘𝑘)� 

≤
2 − 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

2
(𝑘𝑘2𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥 + 𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥) 

= 𝑏𝑏
2

(𝑘𝑘2 + 1)𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑘𝑘3𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥                                   (10) 

where 𝑘𝑘3 = 𝑏𝑏
2

(𝑘𝑘2 + 1) 

Similarly, joint entropy Hm of a group with m 
nodes could be considered to be the joint entropy of a 
sub-cluster with (m-1) nodes and the remaining node. 
The entropy of the sub-cluster is joint entropy of (m-1) 
nodes and the entropy correlation coefficient between 
the sub-cluster and the main node is the 
greatest/shortest/average correlation coefficient from 
any member of the sub-cluster to the remaining node. 
Thus: 

𝐻𝐻𝑚𝑚 ≤
2 − 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

2
(𝑘𝑘𝑚𝑚−1𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥 + 𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥)

=
𝑏𝑏
2

(𝑘𝑘𝑚𝑚−1 + 1)𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥 

               = 𝑘𝑘𝑚𝑚𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥          (11) 

where 𝑘𝑘𝑚𝑚 = 𝑏𝑏
2

(𝑘𝑘𝑚𝑚−1 + 1) 

From recurrence relation of km, the general formula to 
calculate km can be obtained as follows (m>2): 

𝑘𝑘𝑚𝑚 =  2 �𝑏𝑏
2
�
𝑚𝑚−1

+ �𝑏𝑏
2
�
𝑚𝑚−2

+ ⋯+ �𝑏𝑏
2
�
2

+ 𝑏𝑏
2
         (12) 

Or in the more compact way (in case b≠2): 

𝑘𝑘𝑚𝑚 =
�𝑏𝑏2�

𝑚𝑚
−1

𝑏𝑏
2−1

+ �𝑏𝑏
2
�
𝑚𝑚−1

− 1          (13) 

b. Joint entropy lower bound 

Lower bound of the joint entropy of a group with 
m node could be determined in a similar way to the 
upper bound. The results are as follows: 

With a group that has only one node, we have: 

𝐻𝐻1 = 𝐻𝐻(𝑋𝑋𝑚𝑚) ≥ 𝑙𝑙1𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚                    (14) 

where l1 =1. 

With a group of m nodes (m≥2) 

𝐻𝐻𝑚𝑚 ≥ 𝑙𝑙𝑚𝑚𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚            (15) 

where 𝑙𝑙𝑚𝑚 = 𝑐𝑐
2

(𝑙𝑙𝑚𝑚−1 + 1) 

From the recurrent relation of lm the general formula to 
calculate lm can be obtained as follows (m>2): 

𝑙𝑙𝑚𝑚 =  2 �𝐶𝐶
2
�
𝑚𝑚−1

+ �𝐶𝐶
2
�
𝑚𝑚−2

+ ⋯+ �𝐶𝐶
2
�
2

+ 𝐶𝐶
2
         (16) 

Or in the more compact way (in case c≠2): 

𝑙𝑙𝑚𝑚 =
�𝐶𝐶2�

𝑚𝑚
−1

𝑐𝑐
2−1

+ �𝐶𝐶
2
�
𝑚𝑚−1

− 1          (17) 

3. Correlation region definition and correlation 
clustering algorithm 

3.1. Correlation Region Definition 

As mentioned in [4], sensor nodes in a correlation 
region can record information of a single event in the 
sensor field, i.e. these sensed data have a correlation 
with each other. Because the sensed data is taken from 
the same event, the number of bits to represent sensed 
data should be not so different, i.e. the entropy of 
sensed data is similar. On the other hand, the entropy 
correlation coefficient of all pairs in this region is also 
similar. Therefore, we can define a correlation region 
as follows:  

Definition 1: A correlation region is a region where 
the sensed data of all nodes have similar entropy value 
and entropy correlation coefficients between all pairs 
of nodes are similar. 

• 𝐻𝐻0 = 𝐻𝐻(𝑋𝑋1) = 𝐻𝐻(𝑋𝑋2) = ⋯ = 𝐻𝐻(𝑋𝑋𝑚𝑚)  

• 𝜌𝜌0 = 𝜌𝜌𝑚𝑚𝑖𝑖 = 𝜌𝜌�𝑋𝑋𝑚𝑚 ,𝑋𝑋𝑖𝑖�, ∀ i ≠ j 

In practice, it is difficult to obtain the similarity 
between two entropies or entropy correlation 
coefficient. Then, the correlation region could be 
defined by a more practical way as bellows. 

Definition 2: A group of m nodes {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚} is in 
a correlation region if:  

• 𝐻𝐻0 ≤ 𝐻𝐻(𝑋𝑋1),𝐻𝐻(𝑋𝑋2), … ,𝐻𝐻(𝑋𝑋𝑚𝑚) ≤ 𝐻𝐻0 + ∆𝐻𝐻  

• 𝜌𝜌0 ≤ 𝜌𝜌𝑚𝑚𝑖𝑖 = 𝜌𝜌�𝑋𝑋𝑚𝑚 ,𝑋𝑋𝑖𝑖�, ∀ i ≠ j 

where ∆H is small enough. 

H0 is called “base entropy” and ρ0 is called “correlation 
level” of the region. The higher the correlation level, 
the more correlation of the region is. 

With this definition, it is seen that the upper and lower 
bounds of joint entropy are quite similar and therefore 
we can estimate the joint entropy of the m nodes 
{𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚} by the following equation: 

𝐻𝐻(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚) = 𝑘𝑘𝑚𝑚𝐻𝐻0           (18) 

where km is calculated by using equation (12) or (13) 
with b = 2-ρ0. This joint entropy formula is called 
correlation model and will be used in the next sections.  

According to [12], nodes in a correlation group 
will share much information among them. Therefore, 
the joint entropy will not increase much when the 
number of nodes in the group increases. In other 
words, the joint entropy will go to “saturation” state 



  
Journal of Science & Technology 128 (2018) 041-047 

44 

when the number of nodes increases.  The faster the 
approaching saturation state, the more correlation 
among nodes is. And as shown in Fig.1, the proposed 
joint entropy calculation (18) completely satisfies the 
above property. This validates the proposed 
correlation model. 

 

3.2. Correlation Clustering Algorithm 

Using the definition of correlation region, a 
sensor field could be divided into correlation regions 
with specified base entropy and correlation level. The 
clustering process is described in Fig.2. 

In the step (*) of the algorithm, the base entropy, 
and correlation level is chosen such that they can cover 
all possible values of entropy and entropy correlation 
coefficient in the network. The value of entropy 
correlation coefficient should be chosen from high to 
low.  

In the step (**) of the algorithm, if there is more 
than one node satisfy the condition 0 < C(Xi) = 
max{C(Xj), Xj∈G}, the node that has maximum 
entropy value will be removed. 

In comparison to entropy-based clustering in 
[12], the proposed algorithm is simpler with less 
computation. In the proposed method, the only entropy 
of single node and joint entropy of node pairs are 
calculated. While in [12], joint entropy values of all 
possible node groups have to be calculated. 

4. Entropy Correlation with Data Aggregation 

According to the aggregation strategy, data level 
aggregation methods are divided into three types: in-
network query type, data compression type, and 
representative type [8]. Correlation is appropriated 
with data compression type and representative type.  

This section considers the applications of the proposed 
entropy correlation model to data aggregation in 
WSNs, including compression aggregation and 
representative aggregation.  

4.1. Compression Aggregation  

There are many compression techniques, which 
could be applied in wireless sensor networks [2]. In 
this paper, three qualitatively different routing 
schemes including Distributed Source Coding (DSC) 
[18], Routing Driven Compression (RDC) [19], and 
Compression Driven Routing (CDR) [20] will be 
evaluated to choose the most appropriate lossless 
compression approach. These schemes are simplified 
models of schemes which have been proposed 
literately in [9]. 

To compare and evaluate different routing-plus-
compression, we focus on energy expenditure. In 
WSNs, energy expenditure is mainly from data 
transmission that is proportional to the amount of 
transfer data. Therefore, entropy that quantifies the 
amount information could be considered as the 
representation of energy expenditure. 
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min
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BEGIN 

REPEAT 

   Choose H0, ρ0, ∆H; (*) 

   Initialize new group G = ∅; 

FOR each node Xi in the network and not 
belong to any group 

 IF  𝐻𝐻0 ≤ 𝐻𝐻(𝑋𝑋𝑚𝑚) ≤ 𝐻𝐻0 + ∆𝐻𝐻 

   Add Xi into G 

 ENDIF 

ENDFOR 

REPEAT 

   FOR each node Xi in G 

   Calculate C(Xi)= number of node Xj 

that 𝜌𝜌�𝑋𝑋𝑖𝑖, 𝑋𝑋𝑗𝑗� < 𝜌𝜌0 

 ENDFOR 

 FOR each node in G 

   IF  0 < C(Xi) = max{C(Xj), Xj∈G} 

    Remove Xi from G (**) 

   ENDIF  

 ENDFOR 

UNTIL max{C(Xj), Xj∈G}=0 

UNTIL all nodes are grouped 

END 

Fig. 2. Correlation-based clustering algorithm. 

Fig. 1. Estimated joint entropy with different values of 
entropy correlation coefficients using upper bound 
function (with Hmax = 1[bits]). 
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Let’s consider the arrangement of sensor nodes in 
a grid, where only (2n − 1) nodes are in the first 
column are sources. There are n1 hops on the shortest 
path between the sources and the sink. The paths taken 
by data and the intermediate aggregation of three 
considered schemes can be seen in [9]. 

In DSC, the sensor nodes have knowledge about 
their correlations, and they can compress data to avoid 
transmitting redundant information. In this case, 
ideally, each source can send exactly the right amount 
of uncorrelated data to the sink along the shortest 
possible path without the need of intermediate 
compression. The energy expenditure (E) for this 
scheme is calculated by: 

𝐸𝐸𝐷𝐷𝐷𝐷𝐶𝐶 = 𝑛𝑛1𝐻𝐻(𝑋𝑋1) + 𝑛𝑛1𝐻𝐻(𝑋𝑋2|𝑋𝑋1) + ⋯
+ 𝑛𝑛1𝐻𝐻(𝑋𝑋2𝑚𝑚−1|𝑋𝑋1,𝑋𝑋2, …𝑋𝑋2𝑚𝑚−2) 

𝐸𝐸𝐷𝐷𝐷𝐷𝐶𝐶 = 𝑛𝑛1𝐻𝐻2𝑚𝑚−1            (19) 

In RDC) the sensor nodes do not have any 
knowledge about their correlations and send data along 
the shortest paths to the sink while allowing for 
opportunistic compression wherever the paths overlap. 
The energy expenditure (E) for this scheme in this 
considered scenario can be derived as: 

𝐸𝐸𝑅𝑅𝐷𝐷𝐶𝐶 = (𝑛𝑛1 − 𝑛𝑛)𝐻𝐻2𝑚𝑚−1 + 2𝐻𝐻1 ∑ 𝑖𝑖𝑚𝑚−1
𝑚𝑚=1 + ∑ 𝐻𝐻2𝑖𝑖−1𝑚𝑚−1

𝑖𝑖=1         

        (20) 

In CDR, nodes have no knowledge of the 
correlations, but the data is compressed close to the 
sources and initially routed so as to allow for 
maximum possible compression at each hop. This 
leads to the collection of data removed of all 
redundancy at a central source from where it is sent to 
the sink along the shortest possible path. The energy 
expenditure (E) for this scheme in this considered 
scenario could be derived as: 

𝐸𝐸𝐶𝐶𝐷𝐷𝑅𝑅 = 𝑛𝑛1𝐻𝐻2𝑚𝑚−1 + 2∑ 𝐻𝐻𝑚𝑚𝑚𝑚
𝑚𝑚=1           (21) 

Using the estimated joint entropy model (18) for 
the above expressions, we can quantify the 
performance of each scheme. Figure 3 shows the 
energy expenditure for the DSC, RDC and CDR 
schemes as a function of the entropy correlation 
coefficient (with n = n1 = 50, H0=1[bit]). 

It can be found that DSC scheme has lowest 
energy expenditure because the number of transmitted 
bits is smallest among lossless compression schemes. 
The higher the correlation level, the smaller the energy 
usage is. For RDC scheme, the correlation level does 
not affect much of the energy usage of the scheme. For 
CDR scheme, the energy usage is high with small 
correlation level, but it reduces very fast when the 
correlation level increase, and approaches DSC 
scheme in high correlation level area. 

 

From this result, DSC and CDR are appropriate 
for wireless sensor network with high correlation 
characteristics of the environment. However, DSC 
scheme is still difficult to implement in practice while 
CDR could be implemented easily by local 
compression. Therefore, CDR is highly recommended 
to be the compression approach for wireless sensor 
network with high correlation characteristics. 

4.2. Representation Aggregation 

In a correlation region with high enough 
correlation level, it may not be necessary for every 
sensor node in a correlation group to transmit its data 
to the sink; instead, a smaller number of sensor 
measurements might be adequate to communicate the 
event features to the sink within a certain 
reliability/fidelity level. These working sensors are 
called representative nodes of the region/group. In this 
case, to evaluate the reliability/fidelity level, the 
distortion function is used. 

a. Distortion function 

This research uses entropy correlation concept to 
evaluate the correlation, therefore the predefined 
entropy distortion function proposed in [10] is used. 
The distortion function is defined as followings: 
Supposing that there are a total number of N sensor 
nodes in the considered area, and denote their observed 
data as {X1, X2... XN}. The joint entropy of all these N 
sensors, H(X1, X2... XN), is the maximum amount of 
information that can be gained for the area of interest. 
If a subset of these sensors denoted as {Xi1, Xi2... XiM}, 
are selected to report their observed data to the sink, 
the information gained at the sink is H(Xi1, Xi2, ..., XiM). 
The distortion function is defined as the ratio of the 
decrease in the amount of information to the maximum 
amount of information, given by: 

𝐷𝐷 = 𝐻𝐻(𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑁𝑁)−𝐻𝐻(𝑋𝑋𝑚𝑚1,𝑋𝑋𝑚𝑚2,…,𝑋𝑋𝑚𝑚𝑖𝑖)
𝐻𝐻(𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑁𝑁)

  (22) 

The value of D satisfies 0 ≤ D ≤ 1. It can be 
interpreted as the percentage of information loss due to 
network resource constraints.  

Fig. 3. Energy expenditures for the DSC, RDC and CDR 
schemes with respect to entropy correlation. coefficient 
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 Using the estimated joint entropy equation (18), 
the distortion can be calculated as: 
𝐷𝐷 = 1 − 𝑘𝑘𝑚𝑚𝑖𝑖

𝑘𝑘𝑁𝑁
            (23) 

It is realized that the distortion is depending on 
the entropy correlation coefficient of the group, the 
number of representative nodes and the total number 
of nodes in the group. Therefore, with the desired 
distortion, the number of representative nodes can be 
determined for a correlation group with known 
correlation coefficient and the total number of nodes in 
the group.  
b. Number of representative nodes 

The number of representative node in a 
correlation group is determined based on entropy 
correlation coefficient and the total number of nodes in 
the group. Since the representative based aggregation 
is more effective with high correlation region, in this 
paper, the region with high correlation level (ρ0≥0.5) 
is considered. Because of high correlation level, the 
joint entropy will go to a saturation value when the 
number of nodes increases. For that reason, with the 
same value of distortion, the number representative 
nodes do not depend on the number of node in the area 
if this number is high enough. In this case (ρ0≥0.5), the 
estimated joint entropy goes to saturation state when 
the number of nodes in group reaches 14 nodes as 
shown in Figure 1. For that reason, we only need to 
consider the total number N≤20.  

The relation between the distortion and the 
number of representative nodes with different values 
of the entropy correlation coefficients are shown in 
Figure 4 (in case N=15). 

It can be found that the distortion becomes 
smaller when the entropy correlation coefficient is 
higher, and the number of representatives is higher. 
Now we choose a value of distortion, for example, D= 
0.1, to determine the number of representative nodes 
with different values of a total number of nodes in the 
group. Table 1, shows the number of representative 
nodes in cases of D= 0.1. 

It is found that to obtain the same distortion, the 
number of representative nodes are not so different 
with a different number of total nodes of the 
correlation group. It only depends on the correlation 
coefficient. Thus, the number of representative nodes 
can be determined easily from correlation level and 
desired distortion using the above conclusions. 

Table 1. Number of representative nodes with distortion D = 0.1 

ρ0 0.5 0.6 0.7 0.8 0.9 
N=10 7 6 5 4 2 
N=15 8 6 5 4 2 
N=20 8 6 5 4 2 

 
Fig. 4. The relation between distortion and the number of 
representative nodes in case of N = 15 nodes 

c. Selection of the representative nodes   
R = RepSelection ({X1, X2, …, XN}, iM) 
BEGIN 
      C = {X1, X2, …, XN}; //corr. node set 
      Initialize new group R = ∅;  

FOR Xi, Xj ∈ C 
        Calculate ρ(𝑋𝑋𝑚𝑚 ,𝑋𝑋𝑖𝑖); 
 Calculate �̅�𝜌(𝑋𝑋𝑚𝑚) = 1

𝑁𝑁
∑ 𝜌𝜌(𝑋𝑋𝑚𝑚 ,𝑋𝑋𝑖𝑖)𝑁𝑁
𝑖𝑖=1 ; 

ENDFOR 
FOR k = 1 to iM 
 Find 𝑋𝑋𝑚𝑚 = 𝒂𝒂𝒂𝒂𝒂𝒂 𝐦𝐦𝐦𝐦𝐦𝐦

𝑿𝑿𝒊𝒊∈𝑪𝑪
(�̅�𝜌(𝑋𝑋𝑚𝑚)); 

         Add Xi to R; 
         Remove Xi from C; 
ENDFOR 

      Return R; 
END 

Fig. 5. Maximizing obtained information based 
representative node selection algorithm 

After knowing the number of representative 
nodes, it is necessary to select these nodes in the group. 
The purpose of selection is to maximize the obtained 
information from representative nodes, i.e. the 
representative nodes are least correlated with all other 
nodes in the group. This can be done by calculating the 
average entropy correlation coefficient of one node 
with all other nodes in the nodes and choose iM nodes 
with least values of average to be representative nodes 
where iM is a number of representative nodes. The 
selection algorithm of representative nodes is shown in 
Figure. 5. 

The above selection purpose is to maximize the 
total information. The selection can also be based on 
different purposes such as maximizing coverage (total 
covered areas by representative nodes is maximum) or 
energy balancing (the nodes with most values of 
energy are chosen to be presentative nodes). 
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5. Conclusions and further study 

The paper has introduced a practical model to estimate 
the joint entropy of a group of data using only entropy 
of each data and entropy correlation coefficient of each 
pair of data. This model is used to define a correlation 
region and a clustering algorithm is proposed.  

After clustering the network into correlation region, 
the data compression and representative aggregation 
strategies are deployed to take the advantage of 
correlation characteristic. Using the estimated joint 
entropy model, some routings with compression 
schemes have been evaluated and Compression Driven 
Routing scheme is the most appropriate scheme for 
Data Compression Aggregation in Wireless Sensor 
Network with correlation characteristics.  

Moreover, the estimated joint entropy model is also 
used to establish the distortion function for 
representative aggregation. Then the number and 
selection of representative nodes are also presented.  

In the future, a complete routing protocol with data 
compression and representative aggregation strategies 
will be developed and implemented to validate the 
results of this paper in practice.  
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