

Journal of Science & Technology 128 (2018) 048-054

48

Towards A High-Performance and Causal Stabilization System for Video

Captured from Moving Camera

Vu Nguyen Giap, Nguyen Binh Minh*
Hanoi University of Science and Technology - No. 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam

Received: March 05, 2018; Accepted: June 29, 2018

Abstract

Video shot from camera attached to moving devices like smartphone, and drone are often shaken because
unwanted movements of the image sensors, which are caused by unstable motions of the devices during
their operation (e.g. moving, fly). This phenomenon impacts on effectiveness of systems that use camera
videos as input data such as security surveillance and object tracking. In this paper, we propose a novel
software-based system to stabilize camera videos in real-time by combining several general models. The
main contribution of proposed system is the capability of processing instantaneously video achieved from
moving devices to meet quality requirements by using Harris with Optical-flow, and Lucas-Kanade methods
for motion estimation. We also propose several mechanisms including frame partition and matching for
corner detector when applying Harris method to ensure processing quality and system performance. In our
system, we also use Kalman filter for prediction model of motion compensation. Our experiments proved that
the average processing speed of our system can reach 35 fps, which satisfies the real-time requirement.

Keywords: Causal system, motion prediction, performance, real-time, video stabilization.

1. Introduction*

Nowadays, in line with the development of
hardware technologies, many devices such as
vehicles, drones, and mobiles are equipped with
cameras to provide video streaming for multiple
monitoring purposes like instantaneous observation,
object detection or tracking. However, due to limited
size and structure, in most cases, those attached
cameras cannot avoid mechanical vibrations, which
are generated by unstable motions of the devices and
environment factors. These vibrations cause uncon-
trollable movements of image sensors [1] and often
seriously influences achieved video quality.
Generally, with an unstable video, it is very difficult
to effectively detect, and track interested objects.
Therefore, the most important requirement is that shot
videos should be stabilized through removing
unwanted motions from host devices as well as image
sensors. To approach the problem, software video
stabilization techniques have been studied for decades
and there are a lot of video stabilizing models have
been proposed. The solutions operate based on image
processing mechanisms. In this direction, video
stability is attained through algorithms, which
estimate camera motion trajectory.

Our goal in this work is to propose an effective
model by combining and ameliorating several exiting

* Corresponding author: Tel.: (+84) 967995584
Email: minh.nguyebinh@hust.edu.vn

techniques to improve performance in stabilizing
streaming videos in real-time. There are two
conditions for the real-time meaning here. First, the
proposed system response time should be almost
instantaneous in comparison with actual captured
video from camera. Second, the processing system
must be causal. In other word, the current frame
stabilization uses only data obtained from this frame
and previous frames in the past. If a system uses data
extracted from subsequent frames to stabilize the
current one, it cannot be a causal system as well as
cannot respond in real-time. In this study, we put
concrete requirements for our system as follows: (1)
Improving image resolution that stabilization system
can process to minimum of 640x480 pixels. (2)
Improving speed processing to at least 33
milliseconds (corresponding to a frame rate of 30
fps), which suits almost all cameras with current
general computer hardware configuration. (3) The
proposed system must be causal. It means the system
does not require knowing subsequent frames for
stabilizing current frame.

To do that we focus mainly on improving the
motion estimation stage by mechanisms as follows.
For the corner detection, we employ Harris detector
[10] because this algorithm is applied in turn and
independent with each pixel in each frame. This
approach would enable to calculate parallelly Harris
algorithm, which significantly increases the overall
processing speed. Instead of finding out corners in
overall image frame one after another, we split the

Journal of Science & Technology 128 (2018) 048-054

49

frame into smaller partitions, then detect
simultaneously corners in these image regions
Besides, to restrict the corner detection in each frame,
we suggest reusing gained results that repeat in
previous frame. Finally, estimation of global motion
model is replaced by Kalman filter [7, 8] as a
prediction algorithm for the compensation stage.
Through experiments, we proved that our
improvements mentioned above can make system’s
stabilized videos to be only slower tens of
milliseconds than the actual video and thus does not
lose the system causality.

The rest of this paper is organized as follows. In
Section 2, we analyze some related works to highlight
our contributions. We present our system design and
several mechanisms for the processing model to
improve video stabilization performance in Section 3.
Our experiments, gained outcomes, analyses and
remarks are described in Section 4. Finally,
conclusion and perspective are given in the last
section.

2. Related work

According to [3], stabilization algorithms for
videos are carried out with three main steps as
follows: motion estimation, motion compensation,
and image composition. As presented in Section 1, in
this study, we focus on the second step to improve
performance of entire stabilization system. To
estimate image motion in video, most of existing
studies use a certain feature detection as well as
matching mechanisms to identify images. However,
there is not any common definition for features of an
image because the feature detection depends on
different application targets. In video stabilization
systems, features usually are defined as locations
inside the image that have large gradient with all
directions. The stabilization approaches are referred
to as corners in [3, 5, 6] or an area in image frame
presented in [4]. Lim et al. [3] developed a video
stabilization system using Shi-Tomasi to detect
corners and Optical-flow to match them in
combination with the Lucas-Kanade algorithm [8]. In
this way, motion model is estimated by means of a
hybrid mechanism between rigid and similar
transform. This trajectory is smoothed by an average
window to obtain a trajectory with no undulation. The
system was tested on a computer equipped with
1.7GHz CPU and gained average processing speed
can be up to 30 fps with an input video of 640x480
pixels. Another method proposed by Vazquez et al.
[5] used Lucas-Kanade feature tracker to detect
interested points. Compensation for unwanted
motions in this method is accomplished by adjusting
the angle of rotation and the additional displacements
that causes vibration. Through experiments, the

authors shown that their approach could achieve
processing speed from 20 to 28 fps for videos of
320x240 pixels on a MAC laptop with 2.16GHz Intel
Core 2 Duo processor, 2GB RAM. The processing
delay is only 3 frames with the authors’ method.
However, the corners pairing solution applied to this
system uses a couple of current and previous frames
or current and the next frames. Hence, the systems
above are not causal systems.

There are several other methods like [4, 6]
exploit corners for motion estimation step. A fast
video stabilization algorithm introduced by Shen et
al. [4] uses circular blocks to match and detect image
features. The affine transformation thus is estimated
based on motion parameters smoothed by a prediction
method. However, this solution brings not very good
stabilization performance: a video with resolution of
216x300 pixels can be processed with less than 10 fps
speed. The authors’ system is implemented on a
desktop equipped with 3.0 GHz processor and 1GB
RAM. In addition, in this approach, matching
accuracy depends strongly on the appearance of
moving objects in the selected areas. This
characteristic affects the exact coupling process, and,
in this way, it also reduces the algorithm accuracy.
Wang et al. proposed a three steps video stabilizing
method [6], in which Features from Accelerated
Segment Test (FAST) detector is used to locate
features in frames. Next, feature pairs are used to
estimate affine transformation. Finally, motion
estimation is executed based on that built affine
model. According to the authors’ tests, this method
could handle up to 30 fps on a workstation computer
equipped with an Intel Xeon processor of 2.26GHz
and 6GB RAM for videos with a resolution of
320x240 pixels. Although the system proposed by
Shen [4] is a causal system, however its stabilizing
speed is very slow (less than 10 fps). Meanwhile, the
stabilizing speed of Wang's system [6] is relatively
high (up to 30 fps) and can be used in real-time.
However, this speed achieved with a small video
input (resolution of 320x240 pixels) while most
current images have a minimum resolution of
640x480 pixels or larger. In [9], a dual video
stabilization system uses an iterative method for
estimating global motion. In addition, an adaptive
smoothing window also is employed to estimate the
intended movement among consecutive images.
Unfortunately, due to the iteration approach, this
mentioned method is only suitable for stabilizing
offline video, though its processing speed can achieve
up to 17 fps.

Through the discussion above, the current
software solutions still have faced with the problems
of non-causal system, real-time processing as well as
low performance. In comparison with the existing

Journal of Science & Technology 128 (2018) 048-054

50

efforts, our contributions of this work include: (1)
Proposing novel combination of several existing
algorithms together in single stabilization system
including Harris, Optical-flow, Lucas-Kanade for
corner detection, and Kalman filter for prediction
model, which are applied to motion estimation and
compensation step respectively. (2) Proposing novel
mechanisms include frame partition and reuse of
detected corners when applying Harris algorithm to
the stabilization system to ensure processing quality
and increase performance. (3) The proposed system is
designed to provide causal characteristics that is the
most critical point allowing real-time video
processing.

3. Designing video stabilization system

3.1. Motion estimation

According to Harris [10], there are many feature
types that can be chosen to represent an image, but
one of the most effective methods to estimate motion
parameters is to use corners. In this way, the motion
estimation process is done in three steps: corner
detection, matching, and estimating motion
parameters. Our approach also is to detect corners in
a frame then match them with corresponding corner
in the next frame. Then the image transformation is
estimated between these two consecutive frames. For
the step detection, as mentioned before, we employ
Harris detector [10] because this algorithm is applied
in turn and independent with each pixel in each
frame. Basically, the purpose of this algorithm is to
find out variation intensity to displace (x, y) in all
directions. This is simply expressed as follows:

() () () () 2, , , - ,
,

E x y w u v I u x v y I u v
u v

= + +∑ (1)

where w (u, v) is a rectangular window or Gaussian
function, I am intensity of a pixel, and E (x, y) is
intensity variation by a shift (x, y). Finally, a corner
response is defined by Harris as follows:

 2det() (())R M k trace M= − (2)

where:

() ()

() ()

2
, ,

2
, ,

I I Iw u v w u v
x x y

M
I I Iw u v w u v
y x y

 ∂ ∂ ∂ ⊗ ⊗ ∂ ∂ ∂
=
 ∂ ∂ ∂ ⊗ ⊗ ∂ ∂ ∂

 (3)

and det(M) is determinant of matrix M, trace(M) is
sum of elements on the main diagonal of M, and k
(0<k<0.25) corresponding to the sensitivity
coefficient. At that point, corners are defined as the

pixels with their corner responses R are the local
maximums.

Furthermore, since pixels are near the borders of
each frame that have very high probability that they
will not appear in the next frame, so logically, we can
eliminate corner detection in these areas to avoid
wastage of computing time for these pixels.
Otherwise, as mentioned above, with the used
method, pixel processing is carried out successively
in each frame. Consequently, needed processing time
as well as performance are quite low. Instead of
sequentially processing, in our model, we divide the
processed image into smaller areas and detect corners
in parallel on each of those partitions. After
determining the corner positions, we need to find
their respective places in the next frame. In this way,
we can infer the local motion vector of each corner.
In our system, Optical-flow algorithm [11] is used to
accomplish this task. At that time, the relationship
between intensities in two consecutive frames is
shown as follows:

 () (), , , ,I x y t I x dx y dy t dt= + + + (4)

Applying Taylor’s expansion to the right-hand side of
(4), approximate very small components, and divide
all of them by dt. We have:

 . . 0I dx I dy I
x dt y dt t
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (5)

Set ; ; ; ;dx dy I I Iu v f f fx y tdt dt x y t
∂ ∂ ∂

= = = = =
∂ ∂ ∂

, we

receive the optical-flow equation as follows:

 0f u f v fx y t+ + = (6)

It can be recognized that fx and f y are the first

gradients of the processed image, and tf is the
gradient over time, but u and v are unknown. To
solve this issue, our proposed system uses Lucas-
Kanade algorithm [9]. This method takes a 3x3
window around the corner to be coupled. Hence,
there will be 9 points that have the same motion
(according to assumption (2) of the optical-flow
algorithm). Based on that we can find set of
parameters (), ,x y tf f f for these 9 points. The problem
is how to find two unknown parameters u and v when
there are 9 equations. This problem is solved by least
square fitting to bring the result as follows:

12

2

f f f f fx y x ti i i ixiu i i i
v f fy tf f f i ix yi i y iii i

− −∑ ∑ ∑ = − ∑ ∑ ∑

 (7)

Journal of Science & Technology 128 (2018) 048-054

51

However, since camera is moving, in many
cases, there are some corners that do not have their
respective locations in the next frame. If 3D
distortions in videos are very small. Based on a 2D
affine transformation [12], from the local motion
vectors obtained from the last stage, global motion
parameters including scale s, rotation θ and
translation in the directions ,T Tx y are estimated.
Supposing (x, y) and (x', y') are the locations of
corresponding corners in consecutive frames. The
relationship between these two positions can be
expressed as follows:

' cos sin

.
' sin cos

Tx x xs Ty y y
θ θ
θ θ

 −
= +

 (8)

Here, s is considered equal to 1 because interval
between consecutive frames is only several tens of
milliseconds. This leads to the change of scale
parameters between two frames also is very small.
The transformation in (8) thus is simplified as
follows:

' cos sin
' sin cos

Tx x x
Ty y y

θ θ
θ θ

 −
= +

 (9)

 Finally, we obtain three parameters of global
motion (), ,x yT Tθ .

3.2. Motion compensation

For this stage, like the common existing model,
our goal also is to find intended movement
parameters. Image frames thus is moved based on
that information to remove vibrations. To estimate
intended motion parameters, in our system, Kalman
filter [7] is exploited to predict the controllable
motion of device camera. The motion model shown
in equation (9) is applied to the predicted parameters
(), ,predict predict predict

x yT Tθ as follows:

 cos sin

sin cos

predictpredict predict predict
x

predictpredict predict predict
y

Tx x
y Ty

θ θ

θ θ

 − = +

 (10)

Through proposed mechanisms presented above,
we can obtain the predicted location

(),predict predictx y for each pixel as well as shifts of

each pixel to its corresponding predicted location.

3.3. Image composition

After motion compensation, there are some
pixels, which are moved out from their original frame
and some others are shifted to no pixel places because
in those locations are empty. Therefore, before

making the final output video, our system must
resolve the problem, which is called image
composition task. In this study, the first scenario is
used for our system. The reason is that filling in the
empty areas is not only waste time, but also it is not
meaningful in the terms of data processing and
performance improvement.

3.4. Modelling System

Our stabilization system is come into being
based on the selected algorithms and proposed
mechanisms introduced in previous Section. Figure 1
shows data flow of the system with used methods. As
mentioned before, the most important feature is that
during processing data, this proposed system does not
use any future frame to stabilize video. This makes
causal characteristic for the system and allows real-
time processing capability.

Predicted
Parameters

Harris Corner
Detector

Optical-flow
& Lucas
Kanade

Rigid
Transform Kalman Filter

Inverse Rigid
Transform

Warping

Motion
Parameters

Previous
Frame

Corners

Corners
Pairs

Warping
Vectors

Stabilized
Frame

Current
Frame

Fig. 1. Stabilization system operation modeling

Because Harris corner detection calculates many
complex operations, hence it takes up a lot of
processing time. To reduce the number of Harris
usages in detecting corner points in a frame, we
propose a novel mechanism based on remark as
follows. Outcome of corner matching technique using
Optical-flow and Lucas Kanade is the corresponding
position of this corner in the successive frame and
these points are considered approximately as corners
in the new frame. Consequently, achieved matching
results in the last frame can be used as input to detect
corner in the new frame. However, this proposed
mechanism will be caused a small decrease of
obtained corner quality and amount. After a few
processed frames, those corners need to be
rediscovered by the Harris detection algorithm to
avoid the deterioration. In our proposed system, there
are three parameters, which are adjusted to ensure
quality as well as performance when applying Harris
detection. The first parameter is the number of image
areas divided from a frame. These areas will be
processed simultaneously to increase system
performance. The second parameter is the distance

Journal of Science & Technology 128 (2018) 048-054

52

between two successive iteration of corner detection.
The last parameter is the minimum number of corner
points required in a frame.

4. Experiments and evaluations

This section describes our experiments to
evaluate the improvement solutions proposed in
Section 3. All tests are run on a computer equipped
with Intel Core i5-3210M 2.50GHz processor and
4GB of RAM. Test videos (city.mp4, road.avi, and
mountain.mp4) have resolution of 640x480 pixels.
These videos and their stabilized versions can be
found in the following link†. Our program is written
by C++ and inherited some basic modules from
OpenCV libraries. Gained data and charts are handled
on MATLAB. We carry out three tests as follows: (1)
Speeding up corner detection process: aims at
evaluating effect of partitions dividing mechanism,
which allows increase performance for the corner
detection step. (2) Using matching results for corner
detection process: in this test, firstly, we compare the
predicted movement trajectories with actual
trajectories to demonstrate effectiveness of our
system in stabilizing video with mechanism of
reusing detected corners. Next, we assess error rate
when using the matches results instead of Harris
corner detector to show the feasibility of our proposal
in resolving the video stabilization problem. (3)
System performance evaluation: we focus on testing
system with real videos to show its performance
under the following aspects: the abilities of high
resolution processing, achieved good speed and
runnable in real-time. In addition, we evaluate
processing performance between our system and
existing causal systems presented in Section 2 to
prove effect of our proposed system in comparison
with existing methods.

4.1. Speeding up corner detection process

To take full advantage of the hardware
capacities, we divide frames into smaller image areas
and then process these areas simultaneously.
However, the question is how many partitions
generated from a frame is appropriate? This is also
the first parameter that is mentioned in Section 3.
With hardware configuration of our computer, we
carry out this experiment to find the appropriate
number of partitions to increase system performance
but still ensure the output video accuracy. In this way,
we use the city.mp4 video for this test and compare
the error in two partitioned cases of 4 and 8 to non-
partitioned. The results are shown by Fig. 2. It can be
made an important observation from the achieved
outcomes. The intermittent line represents predicted

† https://goo.gl/K3DNmM

trajectory when frames are divided into 4 partitions.
In this case, the difference among obtained results
and standard trajectory (solid line) is about 30 pixels.
Meanwhile, for case of 8 partitions (dotted line), the
achieved trajectory is very large, approximately 100
pixels. Through the experiment, we pick 4 for the
partition number parameter in a frame for the tested
video. Thus, our system ensures that occurred error
during processing is still acceptable.

Fig. 2. Predicted trajectory with different partitions

We continue to evaluate system performance
during corner detection process with city.mp4 video.
The first test (called A) performs to detect corners in
turn in overall frame, and the maximum detected
corner number is 60000 points. The other test (called
B) removes areas, where are near borders. In this
way, the second one detects at most 100 corners,
which are divided equally in 4 partitions. We measure
the processing speed of these systems in five times
and obtain outcomes as shown in Table 1. These
results show that system’s processing speed has
increased 1.2 times after we apply the improvements.

Table 1. The comparison of processing speed

Test 1st 2nd 3rd 4th 5th Average

A 26581 26250 26800 26027 26533 26438

B 21726 21764 21734 21770 21739 21747

4.2. Using Matching Result for Corner Detection
Process

Fig. 3. Original and predicted trajectories comparison

https://goo.gl/K3DNmM

Journal of Science & Technology 128 (2018) 048-054

53

Using corner matching mechanism instead of
corner detection with Harris’ algorithm will make the
obtained corners be not the best corners anymore.
This leads to a reduction in the accuracy of the
motion estimation. Therefore, to ensure the error rate
of the stabilization is still within the acceptable limit,
it is necessary to re-detect corners after a few certain
frames. In this test, we also use city.mp4 video.
Figure 3 shows actual and predicted movement
trajectories when applying the selected algorithms in
succession. We find out that undulating motions in
the original trajectory are almost removed in the
predicted trajectory. This proves the effectiveness of
our system in stabilizing video.

Table 2. Processing speed with different iteration
numbers
Iteration
number 1st 2nd 3rd 4th 5th Average

1 28590 28540 28642 28672 28706 28630

10 19819 19656 19507 19548 19484 19603

Fig. 4. Diverse iteration comparison for corner
detection in predicted trajectories process

Next, we evaluate the system error rate in case
of using the matching results instead of Harris corner
detector. Specifically, we compare predicted
trajectories when corner detection function is used
after every 10 and 15 frames. The obtained outcomes
are illustrated by Fig. 4. It can be remarked that with
threshold parameter of 10, the error is acceptable,
only about 50 pixels. While with the threshold
parameter of 15, the error is very high, about 100
pixels. Based on the test results, with city.mp4 video,
the iteration of 10 is considered as an appropriate
value to keep the difference from the standard
trajectory being small enough. With the iteration
selected by 10, we compare the effectiveness of this
proposal and normal system (i.e. iteration number is
1). The achieved outcomes are shown in Table 2.
Through the table, it can easily to see that our
improvement mechanism significantly improves
average processing speed as compared with normal

system. The increase is about 1.5 times with our test
computer.

4.3. System performance evaluation

To test system performance, we use all three test
videos mentioned above, then run our stabilization
system 10 times with each video. The recorded
outcomes are presented in Table 3, which shows that
our proposed system operates well with 640x480
pixel resolution videos. In addition, achieved
processing speed is more than 33 fps and the most
important thing is that with the proposed prediction
motion estimation algorithm, our system can run in
real-time. All the features demonstrate that our
system can meet the real-time requirements described
in Section 1.

Table 3. System performance evaluation

 Input videos

Testing
Video 1

(city.mp4)
Video 2

(road.avi)

Video 3
(mountain.mp4

)

Frame number 903 654 434

Processing speed
average (ms) 25469 19552 12912

Frame rate (fps) ~ 35 ~ 33 ~ 33

We continue to compare performance between
our system and the existing causal systems, including
Shen [4] and Wang [6] introduced in Section 2. To
compare with Shen’s system [4], we create a virtual
machine (VM) on our computer (Intel Core i5-
3210M) with single core of 2.5GHz speed and 1GB
of RAM. We consider that the created VM has
similar hardware configuration with Shen’s tests.
Using the VM, we perform our stabilization system
with all three videos to examine the gained
performance and compare with Shen’s works. The
obtained outcomes are extracted and presented in
Table 4. It can be made an important remark as
follows. With the same hardware computer
configuration and a higher resolution of input videos,
our system can process real-time with good effect (up
to 27 fps). Meantime, Shen’s system has slow
stabilizing speed (less than 10 fps).

Table 4. Performance comparison with existing
methods

 Input videos

Testing
Video 1

(city.mp4)
Video 2

(road.avi)
Video 3

(mountain.mp4)

Frame number 903 654 434

Processing speed
average (ms) 33597 26662 17912

Frame rate (fps) ~ 27 ~ 25 ~ 24

Journal of Science & Technology 128 (2018) 048-054

54

5. Conclusion and future work

This paper presented our proposed system in the
manner of improving the speed of motion estimation
and the speed of video stabilization system in general.
The main improvements involve: (1) combining
Harris with Optical-flow and Lucas-Kanade
algorithms for the motion estimation step and using
Kalman filter to predict the controllable motion. (2)
proposing mechanisms for using Harris method in the
manner of ensuring the processing quality and system
performance. (3) video stabilization system can run in
real-time based on causality particularity, which is
gained because subsequent frames do not need to use
for the stabilization target. The developed system can
work with good performance as compared with other
existing models in general current computer hardware
configuration. In the future, we will go further with
goal of providing the process ability for video higher
resolution and migrating the model into devices with
low hardware configuration.

Acknowledgment

The work is supported by MOET’s projects No.
B2017-BKA-32 “Research on Developing Software
Framework to Integrate IoT Gateways for Fog
Computing Deployed on Multi-Cloud Environment'”.

References
[1] Vermeulen, Eddy, Real-time video stabilization for

moving platforms, 21st Bristol UAV Systems
Conference, 2007.

[2] Shen, Guturu, et al., Video stabilization using
principal component analysis and scale invariant
feature transform in particle filter framework, IEEE
Transactions on Consumer Electronics 55.3 (2009)
1714-1721.

[3] Lim, Anli, et al., Real-time optical flow-based video
stabilization for unmanned aerial vehicles, Journal of
Real-Time Image Processing (2017) 1-11.

[4] Shen, Pan, et al., Fast video stabilization algorithm
for UAV. Intelligent Computing and Intelligent
Systems, 2009. ICIS 2009. IEEE International
Conference on. Vol. 4. IEEE, 2009.

[5] Vazquez Marynel, and Carolina Chang, Real-time
video smoothing for small RC helicopters. Systems,
Man and Cybernetics, 2009. SMC 2009. IEEE
International Conference on. IEEE, 2009.

[6] Wang, Yue, et al., Real-Time Video Stabilization for
Unmanned Aerial Vehicles. MVA. 2011.

[7] Kalman, Rudolph E., and Richard S. Bucy, New
results in linear filtering and prediction
theory. Journal of basic engineering 83.1 (1961) 95-
108.

[8] Lucas, Bruce D., and Takeo Kanade. An iterative
image registration technique with an application to
stereo vision. (1981) 674-679.

[9] Pan, et al., A dual pass video stabilization system
using iterative motion estimation and adaptive motion
smoothing. Pattern Recognition (ICPR), 2010 20th
International Conference on. IEEE, 2010.

[10] Harris, Chris, and Mike Stephens. A combined corner
and edge detector. Alvey vision conference. Vol. 15.
No. 50. 1988.

[11] Fleet, David, and Yair Weiss. Optical flow
estimation. Handbook of mathematical models in
computer vision. Springer US, 2006. 237-257.

[12] Holden, Mark. A review of geometric transformations
for non-rigid body registration. IEEE transactions on
medical imaging 27.1 (2008) 111-128.

	1. Introduction0F
	2. Related work
	3. Designing video stabilization system
	3.1. Motion estimation
	3.2. Motion compensation
	3.3. Image composition
	3.4. Modelling System

	4. Experiments and evaluations
	4.1. Speeding up corner detection process
	4.2. Using Matching Result for Corner Detection Process
	4.3. System performance evaluation

	5. Conclusion and future work
	Acknowledgment
	References

