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Abstract 

The shedding of vortices and flow interference between two circular cylinders in tandem arrangements are 
investigated numerically in this paper. The two values 1.5 and 4.0 of the ratio between the distance of two 
cylinders and the diameter of the cylinder were used. The immersed boundary method (IBM) is used for the 
simulations of the two-dimensional cases. The calculations are carried out on a Eulerian-Lagrangian grid using 
the finite difference method. The simulations are performed using two Reynolds numbers 100 and 200. The 
streamline and vorticity contours of the flow around the cylinders and force time histories are presented. The 
calculations are also compared to results obtained by other researchers. Numerical results show that the 
immersed boundary method can easily solve the viscous incompressible flow past single and two cylinders in 
a tandem arrangement. 
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1. Introduction 

The* circular cylinders form the basic component 
of structures and machinery in the many areas of 
engineering, for example, cooling towers, heat 
exchange tubes, cooling systems for nuclear power 
plants, offshore structures, transmission cables, etc. 
These structures are immersed in either air or water 
flow, and therefore they experience flow-induced 
vibration. This vibration can lead to structural failure 
under severe conditions. To avoid these situations and 
to have better structural designs, it is necessary to 
understand the details of fluid–structure interactions.  

There are many investigations on the flow around 
pairs of circular cylinders [1]. The flow interference 
that occurs in such configurations is responsible for 
changes in the fluid loads and in important features of 
the flow field. In addition, investigations of the flow 
around pairs of cylinders can provide a better 
understanding of the vortex dynamics, pressure 
distribution, and fluid forces in cases involving more 
complex arrangements. Among the many possible 
arrangements in which two circular cylinders can be 
positioned relative to a cross-flow, one that has been 
extensively studied is the tandem arrangement, as 
sketched in Fig. 1. In this arrangement, the type of 
interference presented is wake interference, where the 
wake of the upstream cylinder touches the downstream 
one. The effect of this interference is seen, for 
example, in the variation of the Strouhal number St and 
                                                                 
* Corresponding author:  Tel.: (+84) 909.999.271 
Email: huynhpd@hcmute.edu.vn 

force coefficients with the Reynolds number Re and 
with the center-to-center distance L.  

There are many methods used to simulate flow 
past two cylinders. The sharp interfaces with an 
unstructured, triangular mesh to track the motion of 
arbitrarily complex boundaries [2]; The random - 
vortex is the approach used in determining velocity 
and vorticity fields in the proximity of the cylinder and 
the boundary element method to calculate the pressure 
[3]. The finite element method with the unstructured 
grid is most suitable for handling complex flow fields 
including flow field around multiple cylinders. 
Usually some suitable cell face center flux 
reconstruction procedure is devised which 
incorporates the effect of neighboring cell center 
velocities and pressures in a more consistent manner. 
This eliminates the numerical instabilities in course of 
calculation [4]. In this paper, the immersed boundary 
method [5] is used to investigate the viscous 
incompressible flow past two cylinders. In this 
method, the fluid flow is governed by the 
incompressible Navier-Stokes equations and these are 
solved on a stationary Cartesian grid. The structure is 
represented on a Lagrangian coordinate. The force 
exerted by the structure on the fluid is calculated by 
using the Dirac function. This method is fast because 
the mesh is not resized in each time step. In this paper, 
the IBM is applied to solve the viscous incompressible 
flow past over two cylinders which are in a tandem 
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arrangement. The ratio of the distance between two 
cylinders and diameter of cylinder L/D is 1.5 and 4.0 
were used (Fig. 1). The Reynold number of the flow is 
Re=100 and 200.  

2. Numerical method 

2.1. Immersed boundary method for rigid boundary 

We consider the model of problem as a viscous 
incompressible fluid in a two-dimensional domain Ωf 
containing an immersed boundary in the form of a 
simple closed curve Γ (Fig. 2), the configuration of 
which will be given in parametric form: X(s,t), 0 ≤ s ≤ 
Lb, X(0,t) = X(Lb,t), where Lb is the length of closed 
curve Γ, and X(s,t) is a vector function giving the 
location of points as a function of arc-length, s, and 
time, t. The boundary is modeled by a singular force, 
which is incorporated into the forcing density term, f, 
in the Navier-Stokes equations. The Navier-Stokes 
equations are then solved to determine the fluid 
velocity throughout the domain Ω. Since the immersed 
boundary is in contact with the surrounding fluid, its 
velocity must be consistent with the no-slip boundary 
condition. The equations of motion of system are as 
follows 

 
Fig.1. The flow around two cylinders in a tandem 
arrangement 

 
Fig.2. Staggered grid and schematic of the fluid – 
immersed boundary system 

( )t pρ ρ µ∂ ∂ + ⋅∇ +∇ = ∆ +u u u u f   (1) 

0∇⋅ =u   (2) 

Here u(x,t) = (u(x,t), v(x,t)) is the fluid velocity and 
p(x,t) is the fluid pressure, with x = (x,y) and X=(X,Y). 
The coefficients ρ and µ are the constant fluid density 
and viscosity. The force density acting on the fluid is 
f(x,t) = (fx(x,t), fy(x,t)) which takes the form 

( ) ( ) ( )( ), , ,t s t s t dsδ
Γ

= −∫f x F x X   (3) 

where F(s,t) = (Fx(s,t), Fy(s,t)) is the force density at 
boundary point and δ(x)= δ(x)δ(y) is the Dirac 
function. The motion of the boundary is 

( ) ( ) ( ) ( )( ), , , ,s t t s t t s t dδ
Ω

∂ ∂ = = −∫X U u x x X x   (4) 

When simulating the flow around a rigid 
boundary, we should allow the boundary to move a 
little bit rather than being fixed. As long as the 
immersed boundary X(s,t) stays close to the body 
surface Xe(s,t). When the immersed boundary is rigid, 
the main problem is that the constitutive laws (e.g. 
Hooke’s Law for springs) are in general not well-posed 
in the rigid limit, meaning that small deformations of a 
very stiff boundary. One way to deal with this problem 
is to assume the body to be elastic, but extremely stiff. 
The forcing term in the equation  to make sure that the 
boundary points will stay close to the body surface, 
according to Hooke’s Law for springs, is written as: 

( ) ( ) ( )( ), ,es t s s tκ= −F X X   (5) 

with κ is spring constant. Accurately imposing the 
boundary condition on the rigid IB requires large 
values of κ thus it will be chosen so large that the 
motion will not be noticeable. So if the points on 
boundary fall away from the desired location, the force 
of the spring will pull these boundary points back. 
Thus, as time goes on, we can expect that the boundary 
points will always be close to their desired 
configurations. 

The force exerted on bodies by the stream comes 
from the pressure distribution around the bodies and 
the friction between the stream and the surface of 
bodies, whose stream-wise component is the drag D 
and the component perpendicular to it is the lift L. We 
can determine the drag and lift force simply by looking 
at the x and y component of the force applied by the 
boundary to the fluid. This, of course, is equal to the 
negative of the drag, by Newton’s third law of motion. 
Thus, 

D x L yF F ds F F ds
Γ Γ

= − = −∫ ∫   (6) 

where (Fx, Fy) are the x-y components of the force F. 

2.2. Numerical solution approach 

2.2.1 Spatial and temporal discretization 

The immersed boundary method is a mixed 
Eulerian-Lagrangian finite difference method for 
computing the flow interacting with an immersed 
boundary. An example setup in 2D with a single 
immersed boundary curve is shown in. Fig. 2. A pair 
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of computational grids: a cell centered Cartesian grid 
for Eulerian variables, and a discrete set of points for 
the Lagrangian variables. Let the fluid domain 
Ω=[0,lx]×[0,ly] and Nx×Ny Eulerian grids, with 
h=hx=hy=lx/Nx=ly/Ny is Eulerian grid size. A pair of 
subscripts on a variable denotes the location at which 
the Eulerian variable is being evaluated, thus uij 
denotes the value of the variable u at the ijth grid point. 
We use a set of  Nb Lagrangian grid-points (boundary 
mesh with ∆s=Lb/Nb) and these Lagrangian grid-points 
are identified by a single index, with variables at such 
grid-points identified by the corresponding index 
appearing as a subscript, thus Fk denotes the value of 
the variable F at the kth grid-point. The location of the 
kth Lagrangian grid-point is explicitly tracked in Xk. 
We use a superscript to denote the value of a variable 
at a given time step; thus un(x)=u(x,n∆t) and 
Xn(s)=X(x,n∆t). 

2.2.2. Body solver 

The force densities are computed at these control 
points and are spread to the Cartesian grid points by a 
discrete representation of the Dirac delta function  

( ) ( ), , ,
1

bN
n n n n
i j k h i j i j k

k
t sδ

=

= − ∆∑f F x X   (7) 

where δh(x) is a two-dimensional Dirac delta function, 

( ) ( ) ( ) 2
h x h y h hδ φ φ=x   (8) 

here φ is a continuous function which was derived as 

( )

( )
( )

2

2

(3 2 1 4 4 ) / 8, 0 1

(5 2 7 12 4 ) / 8, 1 2

0 2

r r r r r

r r r r r

r r

φ

φ

φ

= − + + − ≤ ≤

= − − − + − ≤ ≤

= ≤

  (9) 

The Navier–Stokes equations with the forcing 
terms are then solved for the pressure 𝑝𝑝𝑖𝑖,𝑗𝑗𝑛𝑛+1 and 
velocity field 𝐮𝐮𝑖𝑖,𝑗𝑗𝑛𝑛+1 at the Cartesian grid points using 
finite difference method in a staggered Cartesian grid 
system. The velocity field is then interpolated to find 
the velocity at the control points as, 

( )1 1 1 1 2
, ,

,
/n n n n

k k i j h i j k
i j

d dt hδ+ + + += = −∑X U u x X   (10) 

2.2.3 Navier-Stokes solver 

We find the solution at the (n+1)st time step by 
the following three-step approach:  

Treat nonlinear, viscosity and force density terms 

We would have a time step restriction 
proportional to the special discretization squared, so 
the nonlinear and viscosity terms are treated explicitly, 

( ) ( )/ / /n n n n nt µ ρ ρ∗ − ∆ = − ⋅∇ + ∆ +u u u u u f   (11) 

( )1 1/ /n nt p ρ+ ∗ +− ∆ = −∇u u   (12) 

1 0n+∇ ⋅ =u   (13) 

Pressure correction 

We correct the intermediate velocity field u* by 
the gradient of a pressure pn+1 to enforce 
incompressibility, Eq. (12). The pressure is denoted 
pn+1, since it is only given implicitly. It is obtained by 
solving a linear system. Applying the divergence (∇⋅) 
to both sides of this equation  yields the linear system: 

1 1/ / /n nt t p ρ+ ∗ +∇ ⋅ ∆ −∇ ⋅ ∆ = −∆u u   (14) 

Substituting Eq. (13)  into Eq. (14), we have 
1 / /np tρ+ ∗∆ = ∇ ⋅ ∆u   (15) 

This is a Poisson equation for the pressure pn+1 at 
the time (n+1)st. In summary, the (n+1)st time step 
consists of the following steps. 

Step 1: Compute ∇⋅ u* from the velocity un. 

Step 2: Solve Eq. (15) for the pressure pn+1. 

Step 3: Compute the new velocity field un+1 using Eq. 
(12) with the pressure values pn+1 computed in Step 2. 

Staggered grid 

When solving the Navier-Stokes equations, the 
region Ω is often discretized using a staggered grid, 
with the pressure p in the cell midpoints, the velocities 
u placed on the vertical cell interfaces, and the 
velocities v placed on the horizontal cell interfaces 
(Fig. 2). 

3. Computational problem 

The computational domains for the simulations 
are summarized in Fig. 1. The width of the domain is 
32D. The height of the domain is 16D. The value of D 
is 0.1. There are two cases of simulation: single 
cylinder and two cylinders in a tandem arrangement. 
The Reynold number of the flow is 100 and 200. For 
two cylinder case, the ratio of the distance between two 
cylinders and diameter of the cylinder L/D is 1.5 and 
4.0 were studied. The flow velocity is set to u=1, v=0 
at the inlet. On the top and bottom boundaries, a 
symmetry boundary condition is imposed by setting 
the normal velocity to zero (v= 0).  

4. Numerical results 

4.1 Flow past a single circular cylinder 

Flow past an isolated circular cylinder has 
attractive features like vortex shedding behind the 
cylinder and the periodic variation of the flow field at 
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moderate Reynolds number. In the present study, the 
unsteady flow at Re = 100 and 200 are simulated. The 
size of the grid has been decided based on a grid 
independence study. Fig. 3 and Fig. 4 show the 
streamlines and vorticity contours past a single 
cylinder for Re = 100 and 200 respectively at the 
nondimensional instantaneous time T=U∞t/D=520. 
The Karman vortex street is well established in both 
the cases. Fig. 3 and Fig. 4 also shows the non-
dimensional dependent behavior of the drag 
coefficient (𝐶𝐶𝐷𝐷 = 2𝐹𝐹𝐷𝐷/(𝜌𝜌𝑈𝑈∞2 𝐷𝐷)) and lift coefficient 
(𝐶𝐶𝐿𝐿 = 2𝐹𝐹𝐿𝐿/(𝜌𝜌𝑈𝑈∞2 𝐷𝐷)) on the surface of the cylinder. 
The clear periodicity illustrated in lift and drag 
coefficients implies the periodic vortex shedding from 
the rear surface of the cylinder. Table 1 lists the mean 
value and amplitude of drag and lift coefficients and 
Strouhal number (𝑆𝑆𝑡𝑡 = 𝑓𝑓𝐷𝐷/(𝑈𝑈); f is the vortex 
shedding frequency) of present results as well as the 
literature results. Comparing with fractional step 
method [6]; multigrid and preconditioning method [7]; 
streamfunction-vorticity equations [8, 9]; these results 
show that the IBM method is an appropriative method 
for this problem, especially when it is compared with 
the experiment data [10, 11, 12].  

4.2 Flow past two cylinders in tandem arrangement 

In order to investigate the proximity effect on 
vortex shedding, simulations have been carried out for 
cylinders in tandem arrangements. The Reynolds 
number for all the simulations is equal to 200. The ratio 
of the distance between two cylinders and diameter of 

the cylinder L/D is 1.5 and 4.0 were used. The 
streamline and vorticity contours are shown in Fig. 5 
and 6. The plots in these figures are at the 
nondimensional instantaneous time T = 520 and T = 
1000, respectively. The wakes are represented by the 
respective streamline. In Fig. 5, the cylinders act as a 
single body. There is only one large vortex wake 
forming behind the downstream cylinder. The 
downstream body is involved by the separating shear 
layer from the upstream cylinders. The interaction 
between these shear layers takes place only in the base 
region of the downstream cylinder. Comparing the 
formation distance of an isolated cylinder with the case 
of the arrangement shown in Fig. 5, it is clearly 
perceived that in the former the vortex shedding 
process occurs much closer to the base of the body. 
The lift coefficient has a small amplitude. The drag 
coefficient is positive for the upstream cylinder. For 
the downstream cylinder, it is negative.  

In Table 2, the drag and lift coefficients and 
Strouhal numbers of the cases simulated are shown and 
compared with those of other researchers. There are no 
experimental data for verifying the results. There are 
the different results between the current research and 
another referencers because of mesh size between two 
cylinders, the step time, and the size of the domain. For 
L/D=1.5 the drag coefficient of downstream is 
negative, indicating that the downstream cylinder is 
immersed on a low-pressure region formed by the 
separated shear layers emanating from the upstream 
body. 

Table 1. Summary of results for single cylinder 

 Re=100 Re=200 
 CD CL St CD CL St 
Present 1.40±0.015 ±0.311 0.162 1.3±0.030 ±0.542 0.189 

Other results found in the literature 
[6] - - - 1.31±0.04 ±0.65 0.20 
[7] 1.35±0.012 ±0.339 0.164 1.31±0.049 ±0.69 0.192 
[8] 1.33±0.014 ±0.298 0.175 1.17±0.058 ±0.67 0.202 
[9] 1.38±0.007 ±0.300 0.169 1.29±0.022 ±0.50 0.195 

Experiments 
[10]      0.18-0.2 
[11]    1.3   
[12]   0.16-0.17   0.17-0.19 

 

Table 2. Summary of results for two cylinders, Re = 200 

CD CL St CD CL St 
1.1 0.034 0.166 -0.105 0.087 0.165 

1.1121 0.024 0.174 −0.216 0.05 0.174 
0.83 ± 0.05 0.2 0.14 −0.17 ± 0.15 0.3 0.14 

1.26 0.698 0.174 0.8 1.96 0.174 
1.23 0.737 0.18 0.473 1.69 0.18 
1.29 0.745 0.19 0.6 1.9 0.19 
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Fig. 3. The flow past single cylinder at Re = 100 

 
Fig. 4. The flow past single cylinder at Re = 200 

 

 
Fig. 5. The flow past single cylinder / 1.5L D =  



 
Journal of Science & Technology 130 (2018) 033-038 

38 

 
Fig. 6. The flow past single cylinder at / 4L D =  

The wake visualizations and vorticity contours 
presented in Fig. 5 corroborates this conclusion. Due 
to the interference, for the case of L/D=1.5, the 
Strouhal number is lower than the one found in the 
case of an isolated cylinder. When the gap is increased 
from 1.5D to 4D, a very distinct change in the flow 
characteristics occurs. Fig. 6 shows the results for the 
gap of 4D. The upstream cylinder starts to shed 
vortices. The lift coefficients of both cylinders 
oscillate, with the highest amplitude experienced by 
the downstream body. The drag of this cylinder 
becomes positive, even though with an intensity 
considerably lower than the one from the upstream 
body. If the gap is further enlarged, the drag on both 
cylinders increases, suggesting that at higher gaps the 
result of the drag from an isolated cylinder may be 
recovered. 

5. Conclusions 

In this work, the immersed boundary method is 
used for the calculation of the flow around a single 
cylinder (Re =100, 200) and two cylinders in tandem 
arrangement (Re = 200). The streamline and vorticity 
contours and force coefficient time histories were 
presented. The results were similar to those observed 
in the literature. The vortex-induced vibration will be 
considered in the future to investigate the flow 
characteristics over vibrational cylinders. 
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