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Abstract 

This paper introduces an approach to Twitter sentiment analysis, with the task of classifying tweets as 
positive, negative or neutral. In the preprocessing task, we propose a method to deal with two problems: (i) 
repeated characters in informal expression of words; and (ii) the affect of contrast word in determining 
sentence polarity. We propose features used in this task, investigate and select an optimal classifying 
algorithm among Decision Tree, K Nearest Neighbor, Support Vector Machine, and a Voting Classifier for 
solving Twitter sentiment analysis problem. Experiment results with Twitter 2016 test dataset shown that our 
system achieved good results (63.7% F1-score) compared to related research in this field. 
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1. Introduction* 

Nowadays, social networking sites such as 
Facebook and Twitter become more and more 
popular with millions of users sharing either 
information or opinions about personalities, 
politicians, products, and events every day. They are 
valuable resources for business analysis, marketing, 
social analysis, etc. Because of that, Twitter 
sentiment analysis has received a lot of interest from 
research community. 

The task of sentiment analysis is to classify a 
review into one from some predefined categories. 
Early works in sentiment analysis deals with long text 
such as product review, movie review, restaurant 
reviews etc. The system has to determine whether 
such an expression is positive, negative, or neutral. 
Classification algorithms such as Support Vector 
Machines (SVMs) [1] work well with sentiment 
analysis at this level since each document is well-
written and long enough for representing as a bag-of-
words. Exploring the sentiment of tweets is more 
challenge than working with traditional text because 
of the following reasons:  

• Tweets are short. The size of a tweet is limited 
to 140 characters, which provides not enough 
information for classification algorithm working 
correctly.  

• The language used is very informal, with 
creative spelling and punctuation, misspellings, slang, 
new words, URLs, genre-specific terminology, 
abbreviations and #hashtags. Such informal words 
make tweets ambiguous and difficult to understand. 

                   
* Corresponding author:  Tel.: (+84) 904.674.102 
Email: huonglt@soict.hust.edu.vn  

For example, "4" can be understood as the number 
"four" or the preposition "for".   

Examples below illustrate these difficulties: 

Example 1:  Ha-ha... I want to see. E macdonalds 
here cheaper. Yum. 

Example 2:  Ya... She wans... But now so late dunno 
still can arrange 4 tmr anot... 

The sentiment of Example 1 can be recognized 
as positive basing on words "want", "cheaper", 
"yum". Example 2 is harder to automatically analyze 
since it contains many informal words, "ya", "wans”, 
“dunno", "4", "tmr", "anot", which are interpreted as 
"yes", "wants", "don't know", "for", "tomorrow", "or 
not", respectively.  This example is considered as 
negative basing on words "late" and "dunno". 

The difficulties mentioned above reduce the 
system performance dramatically when applying 
traditional approaches in sentiment analysis. Several 
efforts have been made to solve this problem. 
Kiritchenko et al. [3] developed a linear-kernel SVM 
classification using a variety of surface form, 
semantic, sentiment, and negation features. The 
sentiment features were primarily derived from novel 
high-coverage tweet-specific sentiment lexicons. 
These lexicons were automatically generated from 
tweets with sentiment-word hashtags and from tweets 
with emoticons. Deshwal and Sharma [2] combined 
several feature types like emoticons, exclamation and 
question mark symbol, word gazetteer, unigrams and 
testing on six supervised classification algorithms.  

Rouvier and Favre [4] used a CNN architecture 
for learning three polarity classifiers, each of which 
uses lexical, part-of-speech and sentiment words of 
the tweet as the input. A  final fusion step was 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ajay%20Deshwal.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sudhir%20Kumar%20Sharma.QT.&newsearch=true
http://dblp.dagstuhl.de/pers/hd/r/Rouvier:Mickael
http://dblp.dagstuhl.de/pers/hd/f/Favre:Beno=icirc=t
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applied, based on concatenating the hidden layers of 
the CNNs and training a deep neural network for the 
fusion. Aueb [6] used supervised learning with GloVe 
word embeddings for Twitter and weighted ensemble 
of classifiers. Lango et al. [8] used Random Forests, 
SVMs, and Gradient Boosting Trees for the 
classification task, with a feature set including 
ngrams, Brown clustering, sentiment lexicons, 
WorldNet, and part-of-speech tagging. NLTK 
WordNetLemmatizer was used in the preprocessing 
step to get the stemmed form of words.  

In this paper, we introduce our approach to 
Twitter sentiment analysis, with the task of 
classifying tweets as positive, negative or neutral,  
concentrating on reducing the effectiveness of the 
two problems mentioned above. A modified 
application of word embeddings is proposed to deal 
with informal expression and to compute semantic 
meaning of words. We investigate a method to deal 
with contrast words in determining sentence polarity. 
We propose features and investigate an optimal 
classification algorithms using these features to 
obtain the best outcome. Decision Tree (DT), K 
Nearest Neighbor (kNN), Support Vector Machine 
(SVM) are chosen as classification algorithms for the 
system. Since a tweet can be classified differently by 
different algorithms, a voting algorithm is used to 
vote from the above mentioned classifiers, in order to 
get more reliable results.  

The remainder of this paper is organized as 
follows. Section 2 briefly describes word embeddings 
and our method of using word embeddings in our 
system. Section 3 introduces our approach to Twitter 
sentiment analysis. Our experimental results with 
different strategies to combine features are 
represented in Section 4. Section 5 concludes the 
paper and proposes directions for future work. 

2. Word Embeddings 

Word embedding is a technique to map words or 
phrases from a vocabulary to a vector of real 
numbers. This representation is more efficient and 
expressive than the traditional bag-of-words. The 
bag-of-words approach, especially in the case of 
representing tweets, often results in huge, very sparse 
vectors, where the size of each vector is equal to the 
vocabulary size. Word embedding aims to create a 
vector representation with a much lower dimensional 
space. Basing on the idea that words appearing in the 
same contexts share the same meaning, words are 
embedded in a vector space where semantically 
similar words are located to nearby points.  

FastText [9] is a commonly used model for 
word embedding. It is an extension of word2vec, 
created by Facebook. It uses a fast and effective 

method to learn word representations and perform 
text classification. It has released pre-trained word 
vectors for 294 languages, trained on Wikipedia.  
However, these word vectors are not good for our 
task since Wikipedia and Twitter use different text 
types. Because of that, we create our own model in 
300 dimensions by training FastText on 
Sentiment140 1† [10] - a large Twitter dataset with 
many word extensions created by repeating some of 
its characters (e.g., "hello" vs. "helllooooo"). This 
dataset is preprocessed by replacing all three or more 
duplicate consecutive characters with two (e.g.,  
niccccceeee to niccee) as described in Section 3.1 
before being trained. The purpose is to reduce the 
vocabulary of Sentiment140 before training, in order 
to have a more concrete representation of word 
vectors.  

 
Fig. 1. Proposed system architectures 

3.  Proposed Twitter Sentiment Analyzer 

The architecture of our proposed system is 
shown in Fig.1. Our system has been implemented 
with different scenario aiming at testing the 
effectiveness of our proposed preprocessing steps and 
finding the best classifying features. Numbers 1 to 6 
in the preprocesing module correspond to six 
processing steps mentioned in Section 3.1, in which 
steps 5 and 6 are our proposed one. The boxes with 
dot lines in Extracting Features and Training Process 
modules indicate that only one of these boxes can be 
used in the given module at a time. Details of our 
testing scenario are discussed in Section 4.2.  

                   
†1 Available at http://help.sentiment140.com/for-
students 
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 The remained part of this section will discuss 
about our proposed preprocessing steps and features 
in details.  

3.1 Preprocessing 

As mentioned in Section 1, understanding 
tweets is challenging since many informal 
expressions with numerous spelling errors, url and 
emoticon are used. Therefore, a crucial task is to 
preprocess tweets to reduce text's ambiguities. It 
helps to reduce the tweets' representation space and to 
increase the similarity between two similar tweets 
written in two different ways. Our preprocessing task 
includes of the following steps:  

1. Lowercasing all the input text;  

2. Converting all url to URL and @username to 
AT_USER;  

3. Converting all abbreviations, slang and 
emoticons to their meaning (e.g., :) to “happy”, 
“dunno” to “don’t know”);  

4. Removing all duplicate whitespace;   

5. Replacing all three or more duplicate consecutive 
characters with two (e.g.,  niccccceeee to niccee).  

6. Extracting the main clause in a tweet having a 
contrast relation 

Since steps 1, 2, and 4 are simple, only step 3, 5, 
and 6 are described in the rest of this section.  

Step 3: Converting all abbreviations, slang and 
emoticons to their meaning 

To get the meaning of abbreviations, slang and 
emoticons,  a Twitter dictionary is manually 
constructed from Webopedia  Twitter dictionary 2‡ 
(including 119 Twitter slang words and 
abbreviations) and other twitter corpora. A part of our 
Twitter dictionary is shown in Table 1 below.  

Table 1: A part of Twitter Dictionary 

Twitter expression Meaning 
:) 

wat 
hee 

r 

happy 
what 
here 
are 

Abbreviations, slang and emoticons can be solved 
partly by using a Twitter dictionary. However, the 
Twitter dictionary is never completed since new 
abbreviations are created everyday and there is no 
rule to generate such slang and abbreviations. 
Another solution to this problem is to learn word 

                   
2‡http://www.webopedia.com/quick_ref/Twitter_Dicti
onary_Guide.asp 

meaning from a large training data. Words need to 
appear frequently enough to be learned by the system. 
Beside the Twitter dictionary, word embedding 
model is also used in our system to get the actual 
meaning of slang and abbreviations.  

Step 5: Replacing all three or more duplicate 
consecutive characters with two 

Another case of  informal words is word 
extensions being created by repeating some of its 
characters (e.g., helllooooo).  Several solutions have 
been used by previous reseearch to solve this 
problem. The simplest way is to use predefined rules 
to normalize misspelling words by convert all repeat 
characters into one. For example, 'yeeesss' is changed 
to 'yes'. However, this approach also change correct 
word into incorrect one (e.g., 'too' vs. 'to', 'loop' vs. 
'lop', ‘hello’ vs. ‘helo’, etc.). We call this situation as 
over-normalization.  

Hamdan [7] addressed this problem by using 
Brown corpus with 1000 hierarchical clusters over 
217 thousand words. Original words and theirs 
extensions are kept in one cluster (e.g. yes, yess, 
yesss, yep).  However, the Brown corpus cannot 
foresee and store all words' extensions (e.g., 
yeeeesssssss). As a result, these words are 
unrecognized by the system. Rouvier and Favre [4] 
solved the problem of informal expressions by using 
word embedding. However, many variants of words 
still cause the sparseness of the feature space, thus 
reduce the system's learning capability. 

To solve the above mentioned problems 
(unforeseeable/ new words and over-normalization),  
first we remove all repeat characters in a word until 
two repeat characters are remained. The output of this 
step still contains misspelling words, which are not in 
a word dictionary. However, this method can reduce 
the representation space of tweets. Word vectors 
generated by Fasttext word2vec are then applied to 
get the semantic representation of words. At this 
point, words with similar meaning and theirs 
extensions will be located nearby in the semantic 
space.  

Step 6: Extracting the main clause in a tweet 
having a contrast relation 

In natural language, contrast relation is used to 
connect two or more clauses with contrast meaning. 
For example, "I thought it was good, but it was 
awful." The first clause of the about sentence is 
positive, however the sentence is negative as the 
second clause is negative. Since tweets often are 
ungrammatical sentences, we do not sepatate clauses 
in a tweet based on a syntactic parser. Instead, 
contrast words such as "but", "however", "on the 
contrary", …  are used to do this task. If there is a 

http://dblp.dagstuhl.de/pers/hd/r/Rouvier:Mickael
http://dblp.dagstuhl.de/pers/hd/f/Favre:Beno=icirc=t
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contrast word in a sentence, the text after this word 
determines the sentiment polarity of the sentence. 
Therefore in this step, if a sentence contains a 
contrast word, the sentence is replaced by the text 
after that word. A list of contrast words is manually 
created in our system.   

Steps 5 and 6 are our new proposed pre-
processing steps compared to other researches in this 
field. Therefore these steps will be tested carefully in 
our experiments, mentioned in Section 4. 

3.2 Feature Selection 

Different features have been implemented and 
tested in our system in order to choose the most 
useful features for sentiment classification. Our 
proposed features are introduced next.  

3.2.1 Word unigrams 

Bag-of-Words is one of the most successful 
feature representations in text categorization tasks. It 
is also used in sentiment analysis (e.g., [7,8]) to 
classify sentiment polarity, with each tweet being 
represented as a vector of unigrams. This feature is 
also used in our system to test the  effectiveness of 
unigram in sentiment classification. There are 
1,749,910 unigrams in our unigrams dictionary in 
total.   

3.2.2 Semantic feature 

Since tweets are very short and containing 
various modifications of words, representing tweets 
as vectors of unigrams as in some previous research 
(e.g., [7,8]) will give us a large and spare vector 
space, which will slow down the classification 
process and result in inaccurate predict. To solve this 
problem, instead of representing each tweet by a bag 
of unigrams, semantic meanings of these words are 
used. Based on our word2vec model trained by 
Fasttext mentioned in Section 2, semantic values of 
all words in a tweet are summed by each dimension 
to get values for semantic features of the tweet. All 
tweets are now represented by 300 dimension-vector 
containing information about semantic meaning of 
the tweet.  

3.2.3  Sentiment feature 

The sentiment score of a tweet is calculated by 
summing word-sentiment associations of this tweet. 
SentiWordNet [11] are used to get word-sentiment. 
SentiWordNet is a lexical resource for sentiment 
analysis which assigns to each synset of WordNet 
three sentiment scores - positivity, negativity, 
objectivity - between 0.0 and 1.0. It is used to find 
semantically related words and to get words' 
sentiment scores. Sample entries of SentiWordNet 
can be found in Table 2. 

Table 2: Sample SentiWordNet Entries 

PO
S 

ID PosSc
ore 

NegS
core 

SynsetT
erms 

Gloss 

a               
 

01740 0.125 0 able#1 (usually followed 
by `to') having the 
necessary means … 

a 19731 0.125 0.125 handy#1 easy to reach ... 
 

In the above table, each line contains 
information about part-of-speech, synset's ID, 
positive score, negative score, synset term, and 
glossary. POS with the value 'a' means that the synset 
is an adjective. The sum of positive scores and the 
sum of negative scores are added to the feature 
vector. 

3.2.4 Negation feature 

Negation words such as “not”, "cant", and 
"never" can change the sentiment of a sentence from 
positive to negative and vice versa. Therefore, this is 
an important feature in sentiment classification.  

Some research uses question mark ("?") as a 
negation feature. However, our empirical study find 
that it is not always the case. For example, the 
statements "Why am I feeling worse" is a negative 
statement; "Why am I feeling worse?" is still a 
negative notion. Therefore, question mark is not used 
as a feature in our classification system.  

If a sentence contains negation words, the 
negation feature is 1, and 0 if otherwise. To detect 
negation words, a negation dictionary is manually 
constructed from Sentiment140 dataset, including 19 
negation words and symbols.  

3.3. Classification algorithm 

We consider the task of classifying a tweet as 
positive, negative, and neutral. Several classifying 
algorithms are tested in order to find the best 
performance one. K Nearest Neighbor and Support 
Vector Machines are chosen since they are widely 
used and provide high perfomance in this task. By 
empirical study different values of k, the number of 
neighbors (k) is set to 24, which gave us most 
accurate results. Besides, a Voting Classifier - a 
modifying version of Adaboost - is also used. This is 
a type of "Ensemble Learning" where multiple 
learners are employed to build a stronger learning 
algorithm. Since Decision Tree is often used as a 
default weak learner in Adaboost, it is also 
considered as a classifier in our experiments.  

Our Voting Classifier applies a soft voting 
method to predict the class labels by averaging the 
class-probabilities which taken from the outputs of 
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Decision Tree, kNN, and SVM. The soft voting for 
each tweet is computed as: 

yVoting Classifier = argmaxv(∑i wi*pi,v)  (1)  

where wi is the weight of the classifier i; pi,v is the 
probability that the classifier i assigning sentiment 
polarity v for the input tweet. wi≥0 and ∑ 𝑝𝑝𝑖𝑖,𝑣𝑣𝑣𝑣 = 1 
for ∀i. 

4. Experiments 

4.1 Dataset 

Three Twitters datasets were used in our 
experiments: Sentiment140, Twitter 2013 in 
SemEval2013 and Twitter 2016 in SemEval2016 for 
task 4, subtask A§. Sentiment140 dataset with 1.6 
millions tweets was used to train by word2vec model 
to get its word embedding.Twitter 2013 and Twitter 
2016 training and developing dataset were used to 
train our sentiment classifiers. The total data in two 
Twitter training datasets is more than 15000 samples. 
Each sample has a link for retrieving data from 
Twitter. However, some of the links were no longer 
available on Twitter. As a result, only  19337 tweets 
are retrieved with 8152 positives, 8133 neutral, and 
3052 negatives.  For the test dataset, 3547 tweets are 
retrieved from 3813 ones in Twitter 2013 test dataset; 
20632 tweets were retrieved form Twitter 2016 test 
dataset with no tweet unavailable.  

 Since the size of Twitter 2013 test corpus we 
can get is smaller than actual dataset used in SemEval 
2013 competition, we cannot directly comparable our 
result with other research used Twitter 2013 test 
dataset. Therefore, only Twitter 2016 dataset were 
used for evaluating our system performance. The 
detail description of the data available for download 
is given in Table 3. 

Table 3. Statistics of the successfully downloaded 
part of the SemEval 2013 and SemEval 2016 Twitter 
sentiment classification dataset. 

Dataset Total Posit. Negat. Neutr. 
Twitter 2013 (train) 9,684 3,640 1,458 4,586 
Twitter 2013 (dev) 1,654 575 340 739 
Twitter 2016 (train) 6,000 3,094 863 2,043 
Twitter 2016 (dev) 1,999 843 391 765 
Our training data 19,337 8,152 3,052 8,133 
Twitter 2016 (test) 20,632 7,059 3,231 10,342 

4.2 Experimental Setting 

                   
§Since we are unable to get Twitter dataset in 
SemEval 2017, the datasets in SemEval 2013 and 
SemEval 2016 are used in our experiments.  

Since all systems that we compared withused macro-
averaged F1-score to evaluate the system 
performance, this measure was also used in our 
system.  The first experiment was carried out to find 
the best algorithm among four classification 
algorithms mentioned in Section 3.3. Our proposed 
feature sets used in this experiment including 
semantic features, sentiment features, and negation 
feature. Table 4 presents our system performance 
withthese classifiers. 

Table 4: Our System Performance with Four 
Classifiers 

Classifier F1-score (%) 
DecisionTree 52.2 
KNN 57.0 
SVM 59.6 
Voting Classifier 63.7 

Table 4 points out that SVM is the best among 
three classifiers Decision Tree, kNN, and SVM. The 
weight wi of each classifier (i.e., Decision Tree, kNN, 
SVM) were optimized during the training time of the 
Voting algorithm. Different sets of weights have been 
tested using the training data. The best values are   
wDT = 1, wkNN = 1, wSVM = 2. Experimental results 
shown that the Voting Classifier provided a better 
result than SVM with the F1-score 4.1% higher.  

By analyzing system results, we found one 
reason for the low F1-score of sentiment analyzing 
systems in general is that tweets (and maybe other 
text types) often contain a mix of positive and 
negative sentiment. For example, the text "Yup no 
more already... Thanx 4 printing n handing it up." 
can be classified as either positive or negative 
sentiment. Putting such a tweet in only one class 
(e.g., positive, negative) will reduce the system 
accuracy.  

To test the effectiveness of our proposed 
preprocessing steps 5 and 6, unigrams, semantic and 
negation features, we carried out experiments with 
our best classifier - Voting Classifier, using the 
following scenario: 

1. using all preprocessing steps + unigrams + 
sentiment + negation features 

2. using all preprocessing steps + semantic + 
sentiment + negation features 

3. using all preprocessing steps + semantic + 
sentiment 

4. using preprocessing steps 1,2,3,4,6 + 
semantic + sentiment + negation features 

5. using preprocessing steps 1,2,3,4,5 + 
semantic + sentiment + negation features 
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Experimental results are shown in Table 5 
below. 

Table 5. Our System Performance with Different 
Feature Sets 

Scenario 1 2 3 4 5 

F1-score (%) 55.2 63.7 58.3 53.5 63.5 

Table 5 proves that using semantic features 
instead of unigrams does not only reduce the 
representation space but also improve the system 
performance (from 55.2% to 63.7%).  It confirms that 
replacing unigrams by semantic features is a good 
choice in the sentiment analysis task for social 
network text. The F1-score in scenario 3 drops from 
63.7% (in scenario 2) down to 58.3%, proving that 
negation feature is necessary for the sentiment 
analysis task. 

To investigate the effectiveness of Step 5 in our 
preprocessing step, we removed this step from the 
preprocessing task; retrained Fasttext's word 
embedding model; retrained and tested the system 
with the new preprocessing module. The F1-score in 
this case fell dramatically from 63.7% to 53.5%. It 
proves that this step is very important in dealing with 
informal text as in social network.  

The F1-score in scenario 5 reduces a little bit 
(0.2%) comparing to the case using contrast words. It 
indicates that using contrast words has a positive 
effect in this task. Analyzing system outputs points 
out that the text before the contrast word can be used 
to determine the sentence polarity when the sentiment 
polarity of the text after the contrast word is unclear. 
We believe that integrating this idea into our system 
can promote the system performance further. This 
will be one of our future works.  

Our experiments with different scenario gave us 
the best result of 63.7%, when using the Voting 
Classifier with the feature sets: semantic features, 
sentiment features, and negation feature.  

5. Comparison with other systems 

Results of SemEval2016 competition prove that 
deep learning is the most powerful approach, with all 
top four systems use deep neuron networks. In this 
experiments, our system was compared with the top 
three systems at SemEval2016, which are 
Switchcheese [12], Sensei-LIF [4], and Unimelb [5]. 
We also compared our system with Aueb [6] and 
PUT [8]. Aueb achieved the highest result among the 
ones did not used deep learning at this contest. PUT 
[8] applied some boosting mechanisms (i.e., Random 
Forests, Gradient Boosting Trees) similar to us. 
However, it did not have the preprocessing steps 5 

and 6 proposed by us. Note that each research used a 
different training set. Sensei-LIF [4] used the train 
and development corpora from Twitter 2013 to 2016 
for training and Twitter 2016-dev as a development 
set. Aueb [6] trained the system by using data from 
SemEval-2013 Task 2 and SemEval-2016 Task 4. 
Therefore, we did not seek for systems using the 
same training set like us. Instead, our system and the 
systems that we compared with must have the same 
test set (Twitter 2016).  

Table 6. Performance Comparison 

 Rank in 
SemEval 2016 

F1-score 
(%) 

Switchcheese [12] 1 63.3 
Sensei-LIF [4] 2 63.0 
Unimelb [5] 3 61.7 
Aueb [6] 5 60.5 
PUT [8] 14 57.6 
Our system  63.7 

Since our research concentrates on improving 
preprocessing task, investigating and proposing 
important features for classification algorithms, deep 
learning is not used in our system. However, Table 6 
shows that our system outperforms the first ranked 
system in SemEval 2016 campaign using deep 
learning techniques. It proves that our preprocessing 
step 5 is very efficient in promoting the system 
performance. It boosts the F1-score of our system 
from a value lower than that of the 14th ranked system 
in SemEval 2016 to a value higher than that of the 
first ranked one (see Table 5 - scenario 2 and 4, and 
Table 6 for details). 

6. Conclusions 

This paper has introduced our approach to 
Twitter sentiment analysis. In the preprocessing step, 
we have proposed methods to deal with repeated 
characters in informal expression of words and 
contrast words in text. Different feature types have 
been carefully investigated and selected for the 
classification task. A voting classifier - a soft-voting 
method has been proposed to combine results from 
three classifications (i.e., Decision Tree, kNN, and 
SVM). Our experiment results show that our 
proposed system achieved good results compared to 
related research in this field, using the same testing 
dataset. Our future work include carrying out a more 
carefully investigation on the use of contrast words, 
as well as proposing new features using in classifying 
algorithms. Deep learning methods are also one of 
our research targets in order to improve the system 
performance of our sentiment analyzing system.   
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