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Abstract 

Recently, there is an increasing demand for metamaterial research both in theory and practical designs. 
Metamaterial cloaks and partially filled waveguide have been considered for their potential radiation 
enhancement and electromagnetic field confinement of sources. For some particular cases, the analysis can 
be carried out by separation of variables with the use of special functions. This paper present a two-
dimensional problem of electromagnetic scattering from line source located outside of a metallic elliptical 
cylinder coved by isorefractive (right-handed material) and anti-isorefractive dielectric (left-handed material) . 
Analytical solutions of electric and magnetic fields as functions of line source position and layer thickness are 
discussed in frequency domain. 

Keywords: Elliptical cylinder, metamaterial, separation of variables 

 

1. Introduction 

       In recent years, research of left-handed material 
has been remarkably attention thanks to the fact that 
dielectric properties of those medias having both 
negative permittivity and negative permeability. Such 
characteristics can be manipulated to modify the field 
distribution inside dielectric medias as well as field 
scattered from those bodies of evolution [1], [2]. In [3] 
geometry with sources located inside the materials and 
there is no presence of metallic core. The exact 
radiation from electric and magnetic line sources 
located outside confocal elliptical cylinders with 
metallic one in the core is investigated in this paper 
both in near field and far field regions. 

       The problem of radiation of line source located 
outside of confocal elliptical cylinders is amenable to 
an exact solution if linear, homogeneous and isotropic 
material in each layer has a propagation constant of the 
infinite medium surrounding the structure [4], [5]. A 
detailed discussion of these conditions is found in [6], 
[7]. The purpose of this this work is to analyze the 
effects of anti-isorefractive to the surrounding space, 
has on the field trapped inside the layer and on far-
fields into infinite series of Mathieu’s functions and 
determining expansion coefficients by imposing 
boundary conditions at interfaces and on far-field 
condition. All the solutions are derived in the phasor 

domain with a time-dependence factor exp(-iωt) 
omitted throughout. 

        Figure 1 describes the geometry of 2D scattering 
problem. A metallic elliptical cylinder is coated with a 
confocal layer made of either isorefractive material 
(DPS) or anti-isorefractive material (DNG) The 
Elliptical Cylinder coordinate can be described as 
follow: 

𝑥𝑥 = 𝑑𝑑
2

cosh(𝑢𝑢) cos(𝑣𝑣), 

𝑦𝑦 =
𝑑𝑑
2

sinh(𝑢𝑢) cos(𝑣𝑣), 

 𝑧𝑧 = 𝑧𝑧. 

where 0 ≤ 𝑢𝑢 < ∞, 0 ≤ 𝑣𝑣 ≤ 2𝜋𝜋 and −∞ < 𝑧𝑧 < ∞. 

  
Fig. 1. Geometry of the problems * Corresponding author:  Tel.: (+84) 913025858 
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This system can be interpreted by 𝜉𝜉 and ɳ where 𝜉𝜉 =
cosh(𝑢𝑢)and ɳ = cos(𝑣𝑣). 

         When being coated by isorefractive material, the 
electric permittivity is 𝜖𝜖1 and the magnetic per 
meability is 𝜇𝜇 whereas for DNG material those are −𝜖𝜖1 
and −𝜇𝜇1. When the material of coating layer is DNG, 
characteristic impedance 𝑍𝑍1 is always possitive but 
wavenumber, refractive index are always negative 
[1],[3]. The dimensionless parameter of freespace is 
𝑐𝑐 = 𝑘𝑘𝑑𝑑

2
, and −𝑐𝑐 in DNG material. To satisfy this 

eccentricity, permittivity and permeabillity must 
follow the condition 𝜖𝜖0𝜇𝜇0 = 𝜖𝜖1𝜇𝜇1 and the ration 
between two intrinsic impedances is indicated as:  

𝜁𝜁1 = 𝑧𝑧0
𝑧𝑧1

. 

The inner and outer surfaces of metallic core and 
coating layer are indicated as 𝑢𝑢 = 𝑢𝑢1and 𝑢𝑢 = 𝑢𝑢2 
respectively. The position of line source is illustrated 
by 𝑢𝑢0 and 𝑣𝑣0 where 𝑢𝑢1 < 𝑢𝑢2 < 𝑢𝑢0 and 0 ≤ 𝑣𝑣0 ≤

𝜋𝜋
2
 

2. Analytical solutions 

2.1 The case of Electric line source 

        The electric field of electric line source can be 
expressed as: 

Ei = ẑ E1z
i = ẑ H0

(2) (kR)       .               (1) 

Where H0
(2) is the Hankel function of the second kind 

and R is the distance of the observation point from the 
line source. The incident field can be expressed as the 
function of u0 and v0: 

𝐸𝐸𝑧𝑧𝑖𝑖 = 4∑ [𝑅𝑅𝑅𝑅𝑛𝑛
(1) (𝑐𝑐,𝑢𝑢<) 𝑅𝑅𝑅𝑅𝑛𝑛

(4) (𝑐𝑐,𝑢𝑢>) 𝑆𝑆𝑅𝑅𝑛𝑛 (𝑐𝑐,𝑣𝑣0) 𝑆𝑆𝑅𝑅𝑛𝑛 (𝑐𝑐,𝑣𝑣)

𝑁𝑁𝑛𝑛
(𝑒𝑒) +∞

𝑛𝑛=0

+ 𝑅𝑅𝑅𝑅𝑛𝑛
(1) (𝑐𝑐,𝑢𝑢<) 𝑅𝑅𝑅𝑅𝑛𝑛

(4) (𝑐𝑐,𝑢𝑢>) 𝑆𝑆𝑅𝑅𝑛𝑛 (𝑐𝑐,𝑣𝑣)

𝑁𝑁𝑛𝑛
(0) ].                                      

(2) 

Since the coating layer is either made of isorefractive 
(DPS) dielectric or anti-isorefractive dielectric (DNG). 
The Electric field inside the layer can be written as 
follows: 

𝐸𝐸1,𝑧𝑧
(±) = 4∑ [𝑅𝑅𝑅𝑅𝑛𝑛

(1)(𝑐𝑐,𝑢𝑢0)

𝑁𝑁𝑛𝑛
(𝑒𝑒) (𝑎𝑎(𝑅𝑅),(±)𝑅𝑅𝑅𝑅𝑛𝑛

(1)(±𝑐𝑐,𝑢𝑢)∞
𝑛𝑛=0 +    

          +𝑏𝑏(𝑅𝑅),(±)𝑅𝑅𝑅𝑅𝑛𝑛
(4)(±𝑐𝑐,𝑢𝑢))𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣) +                

          + 𝑅𝑅𝑅𝑅𝑛𝑛
(1)(𝑐𝑐,𝑢𝑢0)

𝑁𝑁𝑛𝑛
(𝑜𝑜) (𝑎𝑎(𝑅𝑅),(±)𝑅𝑅𝑅𝑅𝑛𝑛

(1)(±𝑐𝑐,𝑢𝑢) + 𝑏𝑏(𝑅𝑅),(±) ×                  

          × 𝑅𝑅𝑅𝑅𝑛𝑛
(4)(±𝑐𝑐,𝑢𝑢))𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣)].             (3)                      

The subscript 1 is designated for coating layer, the 
upper sign (+) stands for the case of DPS while the 
lower one (-) stands for the case of DNG. The scattered 
far field can be expressed as: 

Ez
s=4∑ [cn

(c,m)

Nn
(e)

∞
n=0 Ren

(1)(c, u0)Ren
(4)(c, u)Sen(c, v0) ×                           

× Sen(c, v) + cn
(e,m)

Nn
(o) Ron

(1)(c, u0)Ron
(4)(c, u) ×                      

× Son(c, v0)Son(c, v)]         .                                             (4) 

Note that: ξ = cosh𝑢𝑢 , and component 𝐻𝐻𝑣𝑣 can be 
given by Maxwell equation in Elliptical Coordinate: 

𝐻𝐻𝑣𝑣 = ∓𝑗𝑗
𝑐𝑐𝑐𝑐�ξ2− ɳ2

 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑢𝑢

                                (5) 

The upper sign (-) stands for the magnetic field in DPS 
layer while the lower sign is applied for DNG layer. 
Such that, we can derive the asymptotic expression of 
the incident magnetic field: 

𝐻𝐻𝑣𝑣𝑖𝑖=−
−4𝑗𝑗

𝑐𝑐𝑐𝑐0�ξ2− ɳ2 
∑ [𝑅𝑅𝑅𝑅𝑛𝑛

(1)′(𝑐𝑐,𝑢𝑢<)𝑅𝑅𝑅𝑅𝑛𝑛
(4)′(𝑐𝑐,𝑢𝑢>)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐,𝑣𝑣0)

𝑁𝑁𝑛𝑛
(𝑒𝑒) ×∞

𝑛𝑛=0           

  × 𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣)+𝑅𝑅𝑅𝑅𝑛𝑛
(1)′(𝑐𝑐,𝑢𝑢<)𝑅𝑅𝑅𝑅𝑛𝑛

(4),(𝑐𝑐,𝑢𝑢>)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐,𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐,𝑣𝑣)

𝑁𝑁𝑛𝑛
(𝑜𝑜) ].        

(6)                                                                                             

Magnetic field inside the layer (𝑢𝑢1 < 𝑢𝑢 < 𝑢𝑢2) 

𝐻𝐻𝑣𝑣
1,(±)= ∓4𝑗𝑗

𝑐𝑐𝑐𝑐1�ξ2− ɳ2
∑ [𝑅𝑅𝑅𝑅𝑛𝑛

(1)(𝑐𝑐,𝑢𝑢0)

𝑁𝑁𝑛𝑛
(𝑒𝑒)

∞
𝑛𝑛=0 (𝑎𝑎(𝑅𝑅),(±) ×                    

 × 𝑅𝑅𝑅𝑅𝑛𝑛
(1)′(±𝑐𝑐,𝑢𝑢) + 𝑏𝑏(𝑅𝑅),(±)𝑅𝑅𝑅𝑅𝑛𝑛

(4)′(±𝑐𝑐,𝑢𝑢)) ×                        

× 𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣) + 𝑆𝑆𝑅𝑅𝑛𝑛
(1)(𝑐𝑐,𝑢𝑢0)

𝑁𝑁𝑛𝑛
(𝑜𝑜) (𝑎𝑎(𝑅𝑅),(±) × 

× 𝑅𝑅𝑅𝑅𝑛𝑛
(1)′(±𝑐𝑐,𝑢𝑢) + 𝑏𝑏(𝑅𝑅),(±)𝑅𝑅𝑅𝑅𝑛𝑛

(4)′(±𝑐𝑐,𝑢𝑢))𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0) ×  

× 𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣).                                                                      (7) 

The scattered magnetic field can be expressed as: 

𝐻𝐻𝑣𝑣
𝑠𝑠,𝑚𝑚= −4𝑗𝑗

𝑐𝑐𝑐𝑐0�ξ2− ɳ2
∑ [𝑐𝑐𝑛𝑛

(𝑒𝑒),𝑚𝑚

𝑁𝑁𝑛𝑛
(𝑒𝑒) 𝑅𝑅𝑅𝑅𝑛𝑛

(1)′(𝑐𝑐,𝑢𝑢0) ×∞
𝑛𝑛=𝑅𝑅                             

        × 𝑅𝑅𝑅𝑅𝑛𝑛
(4)′(𝑐𝑐,𝑢𝑢)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣) + 𝑐𝑐𝑛𝑛

(𝑅𝑅),𝑚𝑚

𝑁𝑁𝑛𝑛
(𝑅𝑅) ×                        

× 𝑅𝑅𝑅𝑅𝑛𝑛
(1)′(𝑐𝑐, 𝑣𝑣0)𝑅𝑅𝑅𝑅𝑛𝑛

(4)(𝑐𝑐, 𝑣𝑣)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣)].      (8) 

Far field condition can be applied ᶓ → ∞ 

𝑅𝑅𝑅𝑅, 𝑅𝑅𝑛𝑛
(4)(c, ξ) ≈ 𝑗𝑗

𝑛𝑛

�𝑐𝑐ξ
𝑅𝑅−𝑗𝑗𝑐𝑐ξ+j

𝜋𝜋
4  ≈  𝑗𝑗𝑛𝑛

�𝑘𝑘𝑘𝑘
𝑅𝑅−𝑗𝑗𝑐𝑐ξ+j

𝜋𝜋
4               (9) 

where          𝑝𝑝 = �𝑥𝑥2 + 𝑦𝑦2,          𝑝𝑝 |𝜉𝜉→∞ ≈ 𝑑𝑑
2
𝜉𝜉, where        

𝜉𝜉 = cosh (𝑢𝑢).                  

Then, the Electric Scattered Far Field can be written 
as: 

𝐸𝐸𝑧𝑧
𝑠𝑠,𝑚𝑚|ξ→∞ ≈ 𝑅𝑅−𝑗𝑗𝑗𝑗𝑗𝑗

�𝑘𝑘𝑘𝑘
𝑅𝑅𝑗𝑗

𝜋𝜋
44∑ 𝑗𝑗𝑛𝑛∞

𝑛𝑛=0 [𝑐𝑐𝑛𝑛
(𝑒𝑒),𝑚𝑚

𝑁𝑁𝑛𝑛
(𝑒𝑒) 𝑅𝑅𝑅𝑅𝑛𝑛

(1)(𝑐𝑐,𝑢𝑢0) ×                                

   × 𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑐𝑐𝑅𝑅𝑐𝑐𝑐𝑐) + 𝑐𝑐𝑛𝑛
(𝑜𝑜),𝑚𝑚

𝑁𝑁𝑛𝑛
(𝑜𝑜) 𝑅𝑅𝑅𝑅𝑛𝑛

(1)(𝑐𝑐,𝑢𝑢0) ×                                                           

    × 𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑐𝑐𝑅𝑅𝑐𝑐𝑐𝑐)].                                        (10) 

The solution for even mode is provided, and that for 
odd mode is obtained by replacing 𝑅𝑅𝑅𝑅𝑛𝑛

(1),(4) and their 
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derivatives with 𝑅𝑅𝑅𝑅𝑛𝑛
(1),(4) and their derivatives. Then 

the expansion coefficients are retrieved by solving the 
boundary conditions at 𝑢𝑢 = 𝑢𝑢1;𝑢𝑢 = 𝑢𝑢2 for electric 
field and magnetic field can be written as:  

𝐸𝐸1,𝑧𝑧
(−)|ξ=ξ1 = 0 

𝐸𝐸1,𝑧𝑧
(−)|ξ=ξ2 = (𝐸𝐸𝑧𝑧

𝑠𝑠,2 + 𝐸𝐸𝑧𝑧𝑖𝑖)|ξ=ξ2 , 

𝐻𝐻1,𝑧𝑧
(−)|ξ=ξ2 = (𝐻𝐻𝑣𝑣

𝑠𝑠,2 + 𝐻𝐻𝑣𝑣𝑖𝑖)|ξ=ξ2 . 

Solving these three equations, the expansion 
coefficients can be retrieved: 

𝑎𝑎(𝑅𝑅),(±) = 𝑅𝑅𝑅𝑅(4) (±𝑐𝑐,𝑢𝑢1)𝛼𝛼
∆(±)

             ,           (11) 

𝑏𝑏(𝑅𝑅),(±) = −𝑅𝑅𝑅𝑅(1) (±𝑐𝑐,𝑢𝑢1)𝛼𝛼
∆(±)

             ,            (12) 

𝑐𝑐(𝑅𝑅),(±)=− 1
∆(±)

𝑅𝑅𝑅𝑅(1)(𝑐𝑐,𝑢𝑢0)𝑅𝑅𝑅𝑅(1)′(𝑐𝑐,𝑢𝑢2) ×                         

              × 𝑅𝑅𝑅𝑅(4)′(𝑐𝑐,𝑢𝑢0)∆1(±) ∓ 𝜁𝜁1𝑅𝑅𝑅𝑅(1)(𝑐𝑐,𝑢𝑢2) ×                            
             × 𝑅𝑅𝑅𝑅(1)′(𝑐𝑐,𝑢𝑢0)𝑅𝑅𝑅𝑅(4)(𝑐𝑐,𝑢𝑢0)∆2(±)               (13) 

And then the notation ∆1(±); ∆2(±); 𝛼𝛼 and ∆ (±) can 
be expressed as : 

∆1(±) = 𝑅𝑅𝑅𝑅(1)(±𝑐𝑐,𝑢𝑢1)𝑅𝑅𝑅𝑅(4)(±𝑐𝑐,𝑢𝑢2) −                      
                 −𝑅𝑅𝑅𝑅(1)(±𝑐𝑐,𝑢𝑢2)𝑅𝑅𝑅𝑅(4)(±𝑐𝑐,𝑢𝑢1)                   (14) 

∆2(±) = 𝑅𝑅𝑅𝑅(1)(±𝑐𝑐,𝑢𝑢1)𝑅𝑅𝑅𝑅(4)′(±𝑐𝑐,𝑢𝑢2) −                
            −𝑅𝑅𝑅𝑅(1)′(±𝑐𝑐,𝑢𝑢2)𝑅𝑅𝑅𝑅(4)(±𝑐𝑐,𝑢𝑢1)                            (15) 

𝛼𝛼 = 𝑅𝑅𝑅𝑅(1)(𝑐𝑐,𝑢𝑢0)𝑅𝑅𝑅𝑅(1)′(𝑐𝑐,𝑢𝑢2)𝑅𝑅𝑅𝑅(4)(𝑐𝑐,𝑢𝑢2) ×                     
     × 𝑅𝑅𝑅𝑅(4)′(𝑐𝑐,𝑢𝑢0) − 𝑅𝑅𝑅𝑅(1)(𝑐𝑐,𝑢𝑢2)𝑅𝑅𝑅𝑅(1)′(𝑐𝑐,𝑢𝑢0) ×                 
     × 𝑅𝑅𝑅𝑅(4)(𝑐𝑐,𝑢𝑢0)𝑅𝑅𝑅𝑅(4)′(𝑐𝑐,𝑢𝑢2)                                   (16) 

The  ∆ is retrieved as: 

∆(±) = 𝑅𝑅𝑅𝑅(1)(𝑐𝑐,𝑢𝑢0)𝑅𝑅𝑅𝑅(1)′(𝑐𝑐,𝑢𝑢0)[𝑅𝑅𝑅𝑅(4)′(𝑐𝑐,𝑢𝑢2) ×       
× ∆1(±) ∓ 𝜁𝜁1𝑅𝑅𝑅𝑅(4)(𝑐𝑐,𝑢𝑢2)∆2(±)].                            (17)     

2.2 Magnetic line source 

Incident magnetic field of a magnetic line source  

can be expressed as:  

𝐻𝐻𝑖𝑖 = ẑ 𝐻𝐻𝑧𝑧𝑖𝑖 = ẑ 𝐻𝐻0
(2) (kR).                   (18) 

This incident field can be expressed as in equation [18] 
electric field of electric line source. The same can be 
applied to retrieve the scattered magnetic field and 
approximation of magnetic field with the far field 
condition. Note that, electric field Ev is derived from 
magnetic field by Maxwell’s equation in Elliptical 
Coordinate: 

𝐸𝐸𝑣𝑣 = ±𝑗𝑗𝑐𝑐
𝑐𝑐�ξ2− ɳ2

𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝑢𝑢

        ,                      (19) 

Where 𝜉𝜉 = cosh𝑢𝑢. Such that, the asymptotic 
expression of the incident electric field: 

𝐸𝐸𝑣𝑣𝑖𝑖 = 4𝑗𝑗𝑐𝑐0
𝑐𝑐�ξ2− ɳ2

∑ [𝑅𝑅𝑅𝑅𝑛𝑛
(1)′(𝑐𝑐,𝑢𝑢<)𝑅𝑅𝑅𝑅𝑛𝑛

(4)′(𝑐𝑐,𝑢𝑢>)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐,𝑣𝑣0)

𝑁𝑁𝑛𝑛
(𝑒𝑒)

∞
𝑛𝑛=0 ×           

× 𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐,𝑣𝑣)+𝑅𝑅𝑅𝑅𝑛𝑛
(1)′(𝑐𝑐,𝑢𝑢<)𝑅𝑅𝑅𝑅𝑛𝑛

(4)′(𝑐𝑐,𝑢𝑢>)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐,𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐,𝑣𝑣)

𝑁𝑁𝑛𝑛
(𝑜𝑜) ].          

(20) 

Electric field inside the layer (𝑢𝑢1 < 𝑢𝑢 < 𝑢𝑢2) 

𝐸𝐸1,𝑣𝑣
(±) = 4𝑗𝑗𝑐𝑐0

𝑐𝑐�ξ2− ɳ2
∑ [𝑅𝑅𝑅𝑅𝑛𝑛

(1)′(𝑐𝑐,𝑢𝑢0)

𝑁𝑁𝑛𝑛
(𝑒𝑒) (𝑎𝑎(𝑅𝑅),(±) ×∞

𝑛𝑛=0                          

× 𝑅𝑅𝑅𝑅𝑛𝑛
(1)′(±𝑐𝑐,𝑢𝑢) + 𝑏𝑏(𝑅𝑅),(±)𝑅𝑅𝑅𝑅𝑛𝑛

(4)′(±𝑐𝑐,𝑢𝑢))𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0) ×                       

× 𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣) + 𝑅𝑅𝑅𝑅𝑛𝑛
(1)′(𝑐𝑐,𝑢𝑢0)

𝑁𝑁𝑛𝑛
(𝑜𝑜) (𝑎𝑎(𝑅𝑅),(±)𝑅𝑅𝑅𝑅𝑛𝑛

(1)′(±𝑐𝑐,𝑢𝑢) +               

+𝑏𝑏(𝑅𝑅),(±)𝑅𝑅𝑅𝑅𝑛𝑛
(4)′(±𝑐𝑐,𝑢𝑢))𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣)].     (21)            

The scattered magnetic field can be expressed as: 

𝐸𝐸𝑣𝑣
𝑠𝑠,𝑚𝑚 =  4𝑗𝑗𝑐𝑐0

𝑐𝑐�ξ2− ɳ2
∑ [𝑐𝑐𝑛𝑛

(𝑒𝑒),𝑚𝑚

𝑁𝑁𝑛𝑛
(𝑒𝑒) 𝑅𝑅𝑅𝑅𝑛𝑛

(1)′(𝑐𝑐,𝑢𝑢0)∞
𝑛𝑛=0                                 

× 𝑅𝑅𝑅𝑅𝑛𝑛
(4)′(𝑐𝑐,𝑢𝑢)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣) + 𝑐𝑐𝑛𝑛

(𝑜𝑜),𝑚𝑚

𝑁𝑁𝑛𝑛
(𝑜𝑜) ×                      

× 𝑅𝑅𝑅𝑅𝑛𝑛
(1)′(𝑐𝑐,𝑢𝑢0)𝑅𝑅𝑅𝑅𝑛𝑛

(4)′(𝑐𝑐,𝑢𝑢)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣). (22)                                                                             

Approximation of far is applied when 𝜉𝜉 → ∞ 

𝑅𝑅𝑅𝑅, 𝑅𝑅𝑛𝑛
(4) (𝑐𝑐, 𝜉𝜉) ≈  

𝑗𝑗𝑛𝑛

�𝑐𝑐ξ
𝑅𝑅−𝑗𝑗𝑐𝑐ξ+j

𝜋𝜋
4   

≈  𝑗𝑗𝑛𝑛

�𝑘𝑘𝑘𝑘
𝑅𝑅−𝑗𝑗𝑐𝑐ξ+j

𝜋𝜋
4                (23) 

Where 𝑝𝑝 = �𝑥𝑥2 + 𝑦𝑦2,𝑝𝑝|→∞ ≈ 𝑑𝑑
2
𝜉𝜉; where 𝜉𝜉 =

cosh(𝑢𝑢). 

Then, the scattered magnetic far field can be  

written as: 

𝐻𝐻𝑧𝑧
𝑠𝑠,𝑚𝑚|ξ→∞ ≈  𝑅𝑅

−𝑗𝑗𝑗𝑗𝑗𝑗

�𝑘𝑘𝑘𝑘
𝑅𝑅𝑗𝑗

𝜋𝜋
4  4∑ 𝑗𝑗𝑛𝑛[𝑐𝑐𝑛𝑛

(𝑒𝑒),𝑚𝑚

𝑁𝑁𝑛𝑛
(𝑒𝑒) 𝑅𝑅𝑅𝑅𝑛𝑛

(1)(𝑐𝑐,𝑢𝑢0) ×∞
𝑛𝑛=0                                

× 𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑐𝑐𝑅𝑅𝑐𝑐𝑐𝑐) + 𝑐𝑐𝑛𝑛
(𝑜𝑜),𝑚𝑚

𝑁𝑁𝑛𝑛
(𝑜𝑜) 𝑅𝑅𝑅𝑅𝑛𝑛

(1)(𝑐𝑐,𝑢𝑢0) ×               

× 𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑣𝑣0)𝑆𝑆𝑅𝑅𝑛𝑛(𝑐𝑐, 𝑐𝑐𝑅𝑅𝑐𝑐𝑐𝑐)].                                        (24) 

The solution for even mode is provide, and that for old 
mode is obtained by replacing 𝑅𝑅𝑅𝑅𝑛𝑛

(1),(4) and their 
derivatives with 𝑅𝑅𝑅𝑅𝑛𝑛

(1),(4) and their derivatives. Then 
the expansion coefficients are expressed as: 

𝑎𝑎(𝑅𝑅),(±) =  ∓𝜁𝜁1𝑅𝑅𝑅𝑅
(4)′  (±𝑐𝑐,𝑢𝑢1)𝛼𝛼
∆(±)

     ,                   (25) 

𝑏𝑏(𝑅𝑅),(±) = ±𝜁𝜁1𝑅𝑅𝑅𝑅(1)′ (±𝑐𝑐,𝑢𝑢1)𝛼𝛼
∆(±)

      ,                   (26) 

𝑐𝑐(𝑅𝑅),(±) = − 1
∆(±)

[𝑅𝑅𝑅𝑅(1)(𝑐𝑐,𝑢𝑢2)𝑅𝑅𝑅𝑅(1)′(𝑐𝑐,𝑢𝑢0) ×                  

× 𝑅𝑅𝑅𝑅(4)(𝑐𝑐,𝑢𝑢0)∆1(±) ± 𝜁𝜁1𝑅𝑅𝑅𝑅(1)(𝑐𝑐,𝑢𝑢0)𝑅𝑅𝑅𝑅(1)′(𝑐𝑐,𝑢𝑢2) ×                            
× 𝑅𝑅𝑅𝑅(4)(𝑐𝑐,𝑢𝑢0)∆2(±)],                                                 (27) 
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𝛼𝛼 = 𝑅𝑅𝑅𝑅(1)(𝑐𝑐,𝑢𝑢0)𝑅𝑅𝑅𝑅(1)′(𝑐𝑐,𝑢𝑢2)𝑅𝑅𝑅𝑅(4)(𝑐𝑐,𝑢𝑢2) ×                   
× 𝑅𝑅𝑅𝑅(4)′(𝑐𝑐,𝑢𝑢0) − 𝑅𝑅𝑅𝑅(1)(𝑐𝑐,𝑢𝑢2)𝑅𝑅𝑅𝑅(1)′(𝑐𝑐,𝑢𝑢0) ×                    
× 𝑅𝑅𝑅𝑅(4)(𝑐𝑐,𝑢𝑢0)𝑅𝑅𝑅𝑅(4)′(𝑐𝑐,𝑢𝑢2)         ,                             (28) 

∆1(±) =  𝑅𝑅𝑅𝑅(1)′(±𝑐𝑐,𝑢𝑢1)𝑅𝑅𝑅𝑅(4)′(±𝑐𝑐,𝑢𝑢2) −
−𝑅𝑅𝑅𝑅(1)′(±𝑐𝑐,𝑢𝑢2)𝑅𝑅𝑅𝑅(4)′(±𝑐𝑐,𝑢𝑢1) ,                               (29) 

∆2(±) =  𝑅𝑅𝑅𝑅(1)(±𝑐𝑐,𝑢𝑢2)𝑅𝑅𝑅𝑅(4)′(±𝑐𝑐,𝑢𝑢1) −
 −𝑅𝑅𝑅𝑅(1)′(±𝑐𝑐,𝑢𝑢1)𝑅𝑅𝑅𝑅(4)(±𝑐𝑐,𝑢𝑢2)    ,                   (30) 

Parameter ∆ is retrieved as: 

∆(±) =  𝑅𝑅𝑅𝑅(1)(𝑐𝑐,𝑢𝑢0)𝑅𝑅𝑅𝑅(1)′(𝑐𝑐,𝑢𝑢0)[𝑅𝑅𝑅𝑅(4)(𝑐𝑐,𝑢𝑢2) ×       
× ∆1(±) ± 𝜁𝜁1𝑅𝑅𝑅𝑅(4)′(𝑐𝑐,𝑢𝑢2)∆2(±).                           (31) 

 

 
Fig.4. Comparison of behavior of |Ez| when electric 
line source is located at u0 = 2, v0 = π/6, u1 = 1, u2 = 
1.85, δ = 2: (a) DPS coating and (b) DNG coating 

 
Fig. 5. Effect of the coating layer dimension and 
material properties on magnetic far field pattern of 
magnetic dipole from the structure when being coated 
by DPS and DNG, where 𝜁𝜁 = 0.5. 

3. Numerical analysis 

       In figure 4, near field pattern in the area inside the 
coating layer is shown when electric line source is 
located at 𝑢𝑢0 = 2, v0 = 𝜋𝜋/6, u1 = 1, u2 = 1.85, all the 
quantities are normalized to ⋋, material property 𝛿𝛿 =
2. It can be seen that the field trapped in DPS in much 
more of that in the case of DNG and more equally 
distributed in the structure. In Figure 5, all the 
quantities are normalized with reference to circular 
cylindrical coordinates (𝜌𝜌,𝑐𝑐,z) In order to validate the 
proposed computational scheme, two magnetic dipoles 
are placed symmetrically to –y axis, when dipole 1: u1 
= 2, 𝑣𝑣1 = 𝜋𝜋/6 and dipole 2: u2 = 2, v2 = 5𝜋𝜋/6. Such 
that, scattered far field of dipole 1 (red solid line) and 
dipole 2 (blue dash-dot line) are exactly symmetric to 
–y axis. When changing the coating layer for the case 
of  Dipole 1 to DPS, scattered magnetic field 𝐻𝐻∅ is 
represented in marked black line, with the pattern is 
shifted toward the position of dipole. 

4. Conclusion 

For this particular geometry, with hollow and 
infinite structures, commercial simulator cannot 
always provide exact solution. In order to tackle this 
issue, fields in elliptical cylinder coordinate are 
derived. The structure in this paper is worth 
investigating because it contains sharp edges of 
metallic core, hollow and infinite bodies of layers. 
Analytical solutions for this geometry can be used as 
reference to validate the accuracy of the other 
electromagnetic solvers. 

Appendix A. Mathieu’s functions and properties 

Regarding computational cost and accuracy of 
this boundary-value problem, all the fields are 
represented in a closed from of asymptotic expression. 
In this care, the infinity is restricted to twenty-five 
terms of     summation to achieve an error less than one 
percent. This fact means that if the field is calculated 
as twenty-five terms of summation, the absolute 
difference is less than one percent. Radial Mathieu’s 
functions of the third kind and fourth kind in even 
mode can be given as: 

𝑅𝑅𝑅𝑅𝑛𝑛
(3)(𝑐𝑐,𝑢𝑢) =  𝑅𝑅𝑅𝑅𝑛𝑛

(1)(𝑐𝑐,𝑢𝑢) + 𝑖𝑖𝑅𝑅𝑅𝑅𝑛𝑛
(2)(𝑐𝑐,𝑢𝑢)   

𝑅𝑅𝑅𝑅𝑛𝑛
(4)(𝑐𝑐,𝑢𝑢) =  𝑅𝑅𝑅𝑅𝑛𝑛

(1)(𝑐𝑐,𝑢𝑢) − 𝑖𝑖𝑅𝑅𝑅𝑅𝑛𝑛
(2)(𝑐𝑐,𝑢𝑢)  

And also for the odd mode: 

𝑅𝑅𝑅𝑅𝑛𝑛
(3)(𝑐𝑐,𝑢𝑢) =  𝑅𝑅𝑅𝑅𝑛𝑛

(1)(𝑐𝑐,𝑢𝑢) + 𝑖𝑖𝑅𝑅𝑅𝑅𝑛𝑛
(2)(𝑐𝑐,𝑢𝑢)   

𝑅𝑅𝑅𝑅𝑛𝑛
(4)(𝑐𝑐,𝑢𝑢) = 𝑅𝑅𝑅𝑅𝑛𝑛

(1)(𝑐𝑐,𝑢𝑢) − 𝑖𝑖𝑅𝑅𝑅𝑅𝑛𝑛
(2)(𝑐𝑐,𝑢𝑢)  

It is also worth pointing out that the scheme of 
Mathieu’s functions by Jiangmin Jin [8] and Erricolo 
[6] which have q = 𝑘𝑘

2𝑑𝑑2

16
. This research carried out in 
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this context implements the dimensionless parameter c 
= 𝑘𝑘𝑑𝑑

2
, such that c = 𝑞𝑞

2

4
. Radial functions follow the 

Wronskian relation for both even mode and add mode 
in the both DPS (c) and DNG (-c) material. 

Re,o(1)𝜕𝜕𝑅𝑅𝑅𝑅,𝑅𝑅(2)

𝜕𝜕𝑢𝑢
− 𝑅𝑅𝑅𝑅, 𝑅𝑅(2) 𝜕𝜕𝑅𝑅𝑅𝑅,𝑅𝑅(1)

𝜕𝜕𝑢𝑢
= 1                                 (32) 
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