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Abstract 

Heart rate monitoring using photoplethysmographic (PPG) signals recorded from wrist during intensive 
physical exercise is challenging because the PPG signals are contaminated by strong motion artifact. In this 
paper, we present a new approach for PPG based heart rate monitoring. We first perform the variational 
mode decomposition to decompose the PPG signal into multiple modes then eliminate the modes whose 
frequencies coincides with those from accelerator signals. Finally, the spectral analysis step is applied to 
estimate the spectrum of the signal and selects the spectral peaks corresponding to heart rate. Experimental 
results on a public available dataset recorded from 12 subjects during fast running validate the performance 
of the proposed algorithm. 
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1. Introduction* 

 Heart rate (HR) monitoring is necessary in 
detection of heart diseases, health monitoring for the 
elderly, and in other applications. Heart rates 
traditionally were estimated by using 
electrocardiography (ECG) signals with sensors 
attached to the chest, hand and reference ground [1]. 
As an alternative to ECG signal, PPG signal is 
preferred for heart rate measurement in many 
applications due to its low cost and convenience [2]. 
Recently, with the emergence of wearable devices 
such as smartwatches and wristbands, the HR 
monitoring has attached much attention.    

 PPG signals can be recorded by illuminating the 
skin with a light emitting diode and detecting changes 
in the reflected light, so the periodicity of the PPG 
signal represents heart rate. The PPG signals can be 
acquired from different body parts like fingertip, 
wrist and earlobe [3]. Thus, the embedded pulse 
oximeters in smartwatches and wristbands can 
facilitate noninvasive monitoring of heart rate. 
However, PPG signals can be easily contaminated by 
motion artifact (MA) due to the loose interface 
between the pulse oximeter and skin surface [1]. 
Especially, when the signals are measured in subjects 
during their intensive physical exercise like fast 
running or cycling. Therefore, accurate heart rate 
estimation from wrist-type PPG signals during 
intensive physical exercise is challenging [2, 4, 5].  

                                           
* Corresponding author:  Tel.: (+84) 868.159.918 
  Email: truong.phamvan@hust.edu.vn 

 There have many signal processing algorithms 
for motion artifact reduction from PPG signals using 
the simultaneously recorded accelerometer signals 
i.e., adaptive filtering [4, 6, 7], independent 
component analysis [8], spectral subtraction [9] 
models. More recently, the empirical mode 
decomposition (EMD) [10] has been proposed for 
MA reduction for PPG signals [3, 11]. Though having 
advantages in motion artifact cancellation, EMD have 
shortcomings. In the EMD, the mode-mixing problem 
should be handled, and the number of modes vary 
with different signals. As an alternative to the EMD 
approach, variational mode decomposition (VMD) 
[12] has been proposed to address shortcomings of 
EMD. Since introduced in 2014, VMD has attracted a 
lot of interests from many researchers in various 
signal processing applications such as detecting rub-
impact fault of the rotor system, and power quality 
events. However, to the best of our knowledge, the 
VMD has not been studied in PPG signals for heart 
rate monitoring.  

 In this paper, inspired by the VMD, we present 
an automatic method to reduce motion artifact from 
the PPG signals. The PPG signal that is contaminated 
with motion artifact, is first decomposed into 
different modes by the VMD. After decomposition of 
the PPG signal, the instantaneous frequencies of the 
modes are calculated and compared with the 
fundamental frequency of the accelerator signals. The 
mode whose frequency coincides with accelerator 
frequency will be assigned as the motion artifact 
component, then the remaining modes are combined 
to obtain a cleansed PPG signal. Based on the 
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cleansed PPG signal, the spectral analysis is 
implemented, and the heart rate monitoring is 
performed. The proposed algorithm has been applied 
for the IEEE Signal Processing Cup 2015 dataset and 
obtained comparative results.   

2. Variational Mode Decomposition 

 Variational mode decomposition (VMD) 
proposed by Dragomiretskiy and Zosso [12] is a 
signal processing technique that decomposes a real-
valued signal, f(t), into different levels modes uk, that 
have specific sparsity properties. It is assumed that 
each mode k to be concentrated around a center 
pulsation ωk determined during the decomposition 
process. Thus, the sparsity of each mode is chosen to 
be its bandwidth in spectral domain. To obtain the 
mode bandwidth, the following steps should be 
implemented: (1) applying Hilbert transform to each 
mode uk in order to obtain unilateral frequency 
spectrum. (2) Shifting the mode’s frequency spectrum 
to “baseband”, by using an exponential tuned to the 
respective estimated center frequency. (3) Estimation 
of the bandwidth through the H1 Gaussian 
smoothness of the demodulated signal, i.e. the 
squared L2-norm of the gradient. More detail about 
VMD approach can be found in [12] 

3. The proposed algorithm 

 The proposed algorithm for heart rate 
monitoring includes following steps: preprocessing, 
variational mode decomposition, motion artifact 
cancellation and heart rate estimation. 

3.1. Signal Preprocessing and MA analysis 

 Input signals including PPG and accelerometer 
signals are first filtered with a 4th order Butterworth 
band-pass filter (0.5-4Hz) to remove baseline wander 
and high frequencies. The PPG signals are then 
normalized to zero mean for further processing. The 
accelerometer signals are resampled to 125Hz, the 
sampling rate of the PPG signals. The data of each 
subject are divided into multiple epochs with 50% 
overlapping, each epoch lasts 10 seconds. 

 Since the PPG signal is corrupted by the motion 
artifact, the frequency of motion artifact signal 
measured by accelerometer contribute to the PPG 
signal. Then the heart rate can be estimated by 
removing the MA component from the PPG signal. 
However, with strong motion artifact, it is difficult to 
estimate the heart rate from frequency distribution of 
the PPG signal. This is demonstrated in Fig.1. In this 
figure, two epochs from a recording are extracted, 
given the true heart rates, denoted with a circle in the 
frequency distributions of the corresponding epochs. 
In particular, in epoch (A), with less motion artifact, 
the maximal value of the spectral envelope is 1.95Hz, 

coincides with the true heart rate, 1.95Hz (equivalent 
to 117bpm). However, in epoch (B), in the presence 
of strong motion artifact, the maximal value of the 
spectral envelope is 2.81Hz, does not coincide with 
the true heart rate 2.26Hz (equivalent to 135bpm).  
3.2. PPG signal decomposition  

 As analyzed above, with strong motion artifact, it 
is difficult to estimate the heart rate from frequency 
distribution directly from the PPG signal. To separate 
the heart rate from the motion artifact, we apply the 
mode decompose approach using VMD. In more 
detail, after being filtered by bandpass filter, the PPG 
signals are applied to the VMD method [12]. By the 
VMD algorithm, the signal can be separated into 
modes. Figure 2 shows an example of the 
decomposition step by VMD for a representative 
epoch B in Fig.1. In this epoch, the VMD 
decomposes the PPG signal into 5 modes. The 
frequency distribution obtained by performing Fast 
Fourier Transform (FFT) for each mode. Along with 
the time-series plot of each mode, the frequency 
distribution with spectral envelopes of PPG epoch 
and decomposed modes are also provided. As can be 
observed from Fig 2, though not being identified 
from the PPG epoch, the heart rate is separated from 
the highest spectral envelope of mode 3. It also can 
be observed from Fig.2 that the maximal envelope in 
the input PPG is associated with the motion artifact, 
and this maximal value coincides with the maximal 
envelope in mode 4.  

3.3. MA cancellation and HR estimation 

   Based on PPG and MA signals, in this study, we 
propose a new approach for MA cancellation. Our 
approach stems from the fact that the acquired PPG 
signal is contaminated with motion artifact. This can 
be seen in Fig.3, the two envelopes (peaks denoted by 
circles) in the input PPG signal coincide with the 
envelopes in the accelerators. Accordingly, it is 
reasonable to remove the MA signal from the 
decomposed PPG’s modes. 

The paradigm for the proposed approach to 
estimate the PPG signal is described as follows. For 
each signal epoch, we decompose the PPG into 
modes, then compute the instantaneous frequency of 
each mode. The mode whose instantaneous frequency 
outside the range [0.5-3.5] Hz is excluded. Besides, 
we calculate a set of spectral envelopes from 
frequency distributions of the accelerometer signals, 
denoted as Facc of that epoch. Then, we compare the 
frequency of the modes (f1, f2,.., fN) with the MA 
frequency set, Facc. If the frequency of one mode 
coincides with Facc with a tolerance of 0.15Hz, it is 
eliminated. The remaining modes are then combined 
to get a cleansed PPG signal. After the motion artifact 
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cancellation step, we estimated the heart rate from the 
cleansed PPG signals adapting the spectral peak 

tracking algorithms by Zhang et al. [5]. 

 
Fig. 1. Representative illustration for the challenge of HR estimation during physical exercise: Plots (a) and (b) 
shows the spectrogram of a PPG data of a subject and the true heart rate in beat per minute (bpm). Plots (c) and 
(d) show examples of two epoch (A) and (B) from the PPG subject. Plots (e) and (f) show the spectral envelopes 
of the examples. The true HR is denoted with a circle. 

 
Fig. 2. PPG signal and its decomposed modes: (a) signals in time domain, (b) spectrograms, and (c) frequency 
distributions. Red circle denoted the highest spectral envelope. 

Table 1. The performance of the proposed algorithm for HR estimation from 12 subjects 

Subjects 1 2 3 4 5 6 7 8 9 10 11 12 

avAE (bpm) 3.60 2.44 1.45 1.90 1.38 1.54 1.28 1.87 1.28 5.53 1.98 3.31 

sdAE (bpm) 3.20 2.55 1.32 1.79 1.26 1.72 1.04 1.59 1.03 7.19 1.91 5.37 

avRE (%) 2.87 2.39 1.18 1.64 1.06 1.34 1.04 1.64 1.16 3.76 1.29 2.79 
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Fig. 3. Signals, corresponding frequency distributions, and spectrograms of a PPG, accelerometer signals (X, Y, 
and Z axes). (a) Signals in time domain; (b) Gabor Spectrograms; and (c) Frequency distributions. Red circle 
denoted the highest spectral envelope.  
 

4. Evaluation Results 

4.1. Database and Evaluation metrics 

 We apply the proposed method for 12 subjects 
during intensive physical exercises from the dataset 
provided for the IEEE Signal Processing Cup 2015, 
For each subject, the PPG sensors and three-axis 
accelerometer were embedded in a comfortable 
wristband. The ECG signal was recorded 
simultaneously for computing reference heart rate, 
then the heart rates from ECG are used as ground 
truth for heart rate estimation by PPG and accelerator 
signal. The data including PPG, ECG, and 
accelerators signals lasts from 300 to 350 seconds.   

4.2. Metrics 

 To evaluate the performance of the proposed 
heart rate estimate, we compare the heart rates 
computed by the proposed approach with those by 
reference heart rates. The metric includes: Average 
Absolute Error, Standard Deviation of Absolute 
Error, and Average Relative Error (avRA) are which 
are usually computed in other studies [1, 5].  The 
Average Absolute Error (avAE), Standard Deviation 
of Absolute Error (stAE), and Average Relative Error 
(avRE) are defined as: 
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where ( ) ( )i est trueAE f i f i= −  is the Absolute error 
(AE) used to evaluate the accuracy of each HR 
estimate, with fest(i) and ftrue (i) respectively denote 
the estimated and true heart rate values in the i-th 
epoch, in beats per minute (bpm).  

4.3. Performance assessment of Heart rate 
estimation   

 The performance of the proposed algorithm for 
HR estimation for 12 subjects is summarized in Table 
1. The reported results included following 
parameters: Average Absolute Error, Standard 
Deviation of Absolute Error, and Average Relative 
Error (avRA), as computed in Eqs. 1-3. The reported 
results by the proposed method for 12 subjects of the 
dataset achieves an average absolute error (avAE) of 
2.29 bpm, that is smaller than avAE value reported by 
the TROIKA method, 2.34 bpm, in [5]. The average 
absolute value in this study, though larger than that 
commonly obtained by using gel electrodes, it is 
adequate since the acquisition is peformed during 
intensive physical exercises, with large heart rate 
variabilty. From this table, we can see that subject 9 
gives the best performance achieved by the proposed 
HR estimation algorithm. The agreement between the 
estimated HR for subject 9 by the proposed method 
and the true heart rate is interpreted in Fig.4.   
 To further demonstrate the correlation and 
agreement between the estimated and true heart rates, 
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we provided the Pearson correlation plots and Bland-
Altman plots of heart rates in Fig.5. The figure shows 
high correlation coefficient (R=0.99) and a good 
agreement between the estimated heart rates by the 
proposed algorithm and the true heart rates. 

 
Fig. 4. An example of the heart rate estimation results 
on subject 9 using the proposed algorithm 

 
Fig. 5. The Pearson correlation (a) and Bland-Altman 
plot (b) of the heart rate estimation of 12 subjects in 
the dataset. R denotes the correlation coefficient. 

5. Conclusion 

 The study has proposed a new approach for 
heart rate monitoring from the PPG signals during 
physical exercise. The PPG contaminated with 
motion artifact is decomposed in to modes via VMD. 
The frequency of each mode is computed and 
compared with fundamental frequency of the motion 
artifact related signal. Then, the cleansed PPG signal 
is estimated by eliminating the modes whose 
instantaneous frequencies coincided with the 
frequency of MA related signal. The assessment of 
heart rates estimated by proposed algorithm shows a 
good agreement with those reference heart rate, that 
demonstrates the performance of the proposed 
method. 
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