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Abstract 

Magnetodynamic problems are present everywhere in electrical systems in general and electrical equipments 
in particular. Thus, studying magnetodynamic problems becomes very important in the electromagnetic 
devices and is always topical subjects for researchers and designers in worldwide.  The idea of this paper is 
to compute and simulate the distribution of local and global fields (magnetic flux density, magnetic field, eddy 
current, joule loss, current and voltage) in conducting and non-conducting regions. The H-Φ  magnetodynamic 
formulations is proposed for massive inductors in order to link/couple with circuit equations defining currents 
or voltages. The method allows to solve problems in high frequency domains to take skin depths and skin 
effects into account.  

Keywords:  Current, voltage, joule power loss, eddy current, magnetic field, skin effect, numerical method 

 
1. Introduction1 

Modeling of electromagnetic problems plays an 
essential role in electrical systems in general and 
electrical equipments in particular. Many papers have 
been recently applied many different methods (e.g. the 
finite element method, finite differential method and 
boundary method) for dealing with magnetodynamic 
problems with low frequencies which current densities 
are fixed in stranded inductors [4-7]. This means that 
skin effects with high frequencies do not take into 
account. 

In this challenge, a finite element technique with 
the h-Φ magnetodynamic formulations is presented for 
massive inductors coupled to circuit equations where 
either voltages or currents can be fixed to compute 
local and global fields (magnetic field distributions, 
electric fields, eddy current losses, joule power losses, 
electromotive forces and skin effects) with high 
frequenices [1, 2]. The validation of the method is 
applied to a practical test [9]. 

2. Definition of magnetodynamic problems 

 A magnetodynamic problem is presented in a 
studied domain 𝛺𝛺, defining boundary conditions (BCs) 
𝜕𝜕Ω  = Γ =  Γℎ ∪ Γ𝑒𝑒 in a space of Eculidean ℜ3.  The set 
of Maxwell’s equations and constitutive behaviors can 
be written as [1]-[8]: 

  curl 𝑬𝑬 = −𝜕𝜕𝑡𝑡𝑩𝑩, curl 𝑯𝑯 = 𝑱𝑱𝑠𝑠, div𝑩𝑩 = 0,     (1a-b-c) 

where constitutive behaviors give: 

 𝑩𝑩 = 𝜇𝜇𝑯𝑯,   𝑱𝑱 = 𝜎𝜎𝑬𝑬,               (2a-b) 
 

* Corresponding author:  Tel.: (+84) 963286734 
Email: vuong.dangquoc@hust.edu.vn 

with BCs: 

 𝒏𝒏 × 𝑬𝑬|Γ𝑒𝑒=0,                         (3) 

where B [T] is the magnetic induction, 𝑯𝑯 (A/m) is 
magnetic field, 𝑬𝑬 (V/m) is the electric field,  𝑱𝑱 (A/m2) 
is the eddy current, 𝜇𝜇 and 𝜎𝜎 are the magnetic 
permeability and electric conductivity, respectively.  
𝑱𝑱𝑠𝑠  (A/m2) is the imposed electric current presented in 
non-conducting regions Ω𝑐𝑐𝐶𝐶 , with Ω𝑐𝑐  = Ω𝑐𝑐 ∪ Ω𝑐𝑐𝐶𝐶  and n 
is the unit normal vector. 

     Maxwell’s equations are solved with the 
associated BC given in (3) taken the tangential 
component into account.  

     For magnetodynamic cases, the fields H, B, E, J 
are checked to satisfy the Tonti diagram [3]. This 
means that the fields 𝑯𝑯 ∈ 𝑯𝑯ℎ  (curl;Ω),                                  
𝑱𝑱 ∈ 𝑯𝑯ℎ  (div;Ω ), 𝑬𝑬 ∈ 𝑯𝑯𝑒𝑒  (curl;Ω ) and                                    
𝑩𝑩 ∈ 𝑯𝑯𝑒𝑒  (div;Ω ), where function spaces 𝑯𝑯ℎ  (curl;Ω) 
and 𝑯𝑯𝑒𝑒  (dive;Ω) present existed fields on boundaries 
Γℎ and Γ𝑒𝑒 of Ω. Hence, Tonti’s diagram of the 
magnetodynamic problem is expressed as [3, 10]: 

 
Fig. 1. Tonti’s diagram [10]. 

3. Discretization with magnetic field formulations 

    Discretized equations with magnetic field 
formulations are established due to the set of 

   



 
Journal of Science & Technology 144 (2020) 006-010 

 

7 

Maxwell’s equations (1a-b-c) and the behavior laws 
(2a-b). In general, to satisfy the Ampere law (1 b), the 
fields 𝑯𝑯 ∈ 𝑯𝑯ℎ  (curl;Ω), 𝑱𝑱 ∈ 𝑯𝑯ℎ  (div;Ω ),                      
𝑬𝑬 ∈ 𝑯𝑯𝑒𝑒  (curl;Ω ) and 𝑩𝑩 ∈ 𝑯𝑯𝑒𝑒  (div;Ω ) must be 
verified and satisfied the constitutive laws presented in 
(2a-b). Thus, based on the Faraday law, the discretized 
equation is written as [5, 7]: 

�𝜕𝜕𝑡𝑡(𝑩𝑩 ∙ 𝑯𝑯′)𝑑𝑑Ω
𝛺𝛺

+ � curl 𝑬𝑬 ∙ 𝑯𝑯′𝑑𝑑Ω
𝛺𝛺

= 0,  

∀ 𝑯𝑯′ ∈ 𝑯𝑯ℎ
0(curl;Ω), (4) 

where 𝑯𝑯′ ∈ 𝑯𝑯ℎ
0(curl;Ω) is a test function does not 

depend on time. By applying a Green formulation to 
(4), one has: 

�𝜕𝜕𝑡𝑡(𝑩𝑩 ∙ 𝑯𝑯′)𝑑𝑑Ω
𝛺𝛺

+ � curl 𝑬𝑬 ∙ 𝑯𝑯′𝑑𝑑Ω
𝛺𝛺

+ �(𝒏𝒏 × 𝑬𝑬) ∙ 𝑯𝑯′𝑑𝑑Γ
Γ

= 0,  

∀ 𝑯𝑯′ ∈ 𝑯𝑯ℎ
0(curl;Ω). (5) 

Combination (5) with behavior laws in (2 a-b), it is 
rewritten as: 

�𝜕𝜕𝑡𝑡(𝜇𝜇𝑯𝑯 ∙ 𝑯𝑯′)𝑑𝑑Ω
𝛺𝛺

+ �𝜎𝜎−1curl 𝑯𝑯 ∙ curl𝑯𝑯′𝑑𝑑Ω
𝛺𝛺

+ �𝒆𝒆 ∙ curl𝑯𝑯′𝑑𝑑Ω
𝛺𝛺

+ �(𝒏𝒏 × 𝑬𝑬) ∙ 𝐻𝐻𝑑𝑑Γ
Γ

= 0.  

∀ 𝒉𝒉′ ∈ 𝑯𝑯ℎ
0(curl;Ω). (6) 

The field 𝑯𝑯 in (6) is decomposed into two parts [10]: 

 𝑯𝑯 = 𝑯𝑯𝑟𝑟 + 𝑯𝑯𝑠𝑠,                                            (7) 

where, 𝑯𝑯𝑠𝑠 is a source field defined via an imposed 
electric current in massive inductors and 𝑯𝑯𝑟𝑟  is a 
reaction field what needs to be defined through  

�
curl 𝑯𝑯𝑠𝑠 =  𝒋𝒋𝑠𝑠            in  Ω𝑚𝑚𝑠𝑠
curl 𝑯𝑯 = 0    in  Ω𝑐𝑐𝐶𝐶 − Ω𝑚𝑚𝑠𝑠                          

(8) 

for  

 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑯𝑯 = 𝟎𝟎    𝒊𝒊𝒏𝒏   𝜴𝜴𝒄𝒄
𝑪𝑪.                                      (𝟗𝟗) 

It should be noted that in the non-conducting 
regions  Ω𝑐𝑐𝐶𝐶 , the field 𝑯𝑯𝑟𝑟  can be defined via a magnetic 
scalar potential 𝜙𝜙 such that 𝒉𝒉𝑟𝑟 =  −grad 𝜙𝜙. The scalar 
potential 𝜙𝜙 in Ω𝑐𝑐𝐶𝐶  is the multi-value made a single-
value through cuts in the hole of Ω𝑐𝑐 [7]. 

      The field 𝑯𝑯′ in the discretized equation  (6) is 
defined as a sub-space of 𝑯𝑯ℎ

0(curl;Ω), for curl 𝑯𝑯′ = 0 
in Ω𝑐𝑐𝐶𝐶 , and  𝑯𝑯′ = 𝑯𝑯′𝑟𝑟 + 𝑯𝑯′𝑠𝑠 .  The third integral in (6) 
is equal to zero in Ω𝑐𝑐𝐶𝐶 . Therefore, combination of (6) 
and (7), one has:   

� 𝜕𝜕𝑡𝑡(𝜇𝜇𝑯𝑯𝒄𝒄 ∙ 𝑯𝑯′)𝑑𝑑Ω + �𝜕𝜕𝑡𝑡(𝜇𝜇𝑯𝑯𝒔𝒔 ∙ 𝑯𝑯′)𝑑𝑑Ω
𝛺𝛺𝛺𝛺

 

+�𝜎𝜎−1curl 𝑯𝑯𝒄𝒄 ∙ curl𝑯𝑯′𝑑𝑑Ω
𝛺𝛺

 

+�(𝒏𝒏 × 𝑬𝑬) ∙ 𝑯𝑯′𝑑𝑑Γ
Γ

= 0, 

∀ 𝑯𝑯′ ∈ 𝑯𝑯ℎ
0(curl;Ω),  

with curl 𝑯𝑯𝑟𝑟
′ = 0 in Ω𝑐𝑐𝐶𝐶   and  𝑯𝑯′ = 𝑯𝑯′𝑟𝑟 + 𝑯𝑯′𝑠𝑠 ,    (10) 

where 𝑯𝑯ℎ
0(curl;Ω) is defined in Ω and contains the 

basis function and test function of H linked to the 
scalar potential 𝜙𝜙. 

     The tangential component (𝒏𝒏 × 𝑬𝑬) in the 
discretized equations of (10) is presented on the 
boundary Γ𝑒𝑒 of Ω and is considered as a natural BC 
given in (3). If nonzero, it is defined as massive 
inductors presented in Section 2.2. 

3.1. Global quantities in massive inductors 

 In (10), the electric field 𝑬𝑬 = 𝑬𝑬𝒔𝒔 in  massive 
inductors   Ω𝑚𝑚𝑠𝑠 is unknown and its circulation is 
defined via one electrode of  Ω𝑚𝑚𝑠𝑠 imposed by the 
applied voltage 𝑉𝑉𝒊𝒊 [10]. Moreover, the surface integral 
in (10) can be expressed, i.e. 𝑯𝑯′ = 𝒄𝒄𝑖𝑖   [10], for the 
boundary of the massive inductor  Ω𝑚𝑚𝑠𝑠  : 

�(𝒏𝒏 × 𝑬𝑬) ∙ 𝑯𝑯′𝑑𝑑Γ
Γ

= �(𝒏𝒏 × 𝑬𝑬𝒔𝒔) ∙ 𝒄𝒄𝑖𝑖𝑑𝑑Γ =
Γ

− �(𝒏𝒏 × 𝑬𝑬𝒔𝒔) ∙ grad 𝑞𝑞𝑖𝑖  𝑑𝑑Γ
Γ

= �(grad 𝑞𝑞𝑖𝑖 × 𝑬𝑬𝒔𝒔) ∙ n 𝑑𝑑Γ
Γ

= � curl(𝑞𝑞𝑖𝑖𝑬𝑬𝒔𝒔) ∙ n 𝑑𝑑Γ
Γ

− �𝑞𝑞𝑖𝑖curl𝑬𝑬𝒔𝒔 ∙ n 𝑑𝑑Γ
Γ

.                   (11) 

 By using the Stokes formula, the second integral 
on RHS of (11) is 

�(𝒏𝒏 × 𝑬𝑬𝒔𝒔) ∙ 𝒄𝒄𝑖𝑖𝑑𝑑Γ =
Γ

� 𝑞𝑞𝑖𝑖𝑬𝑬𝒔𝒔
𝜕𝜕Γ

.𝑑𝑑𝑑𝑑 = � 𝑬𝑬𝒔𝒔
𝛾𝛾

.𝑑𝑑 

= 𝑉𝑉𝑖𝑖                                     (12) 

where 𝛾𝛾 is the part of the oriented contour 𝜕𝜕Γ. In the 
same way, the test function 𝑯𝑯′ = 𝒄𝒄𝑖𝑖 with (12), 
equation (10) becomes 

�𝜕𝜕𝑡𝑡(𝜇𝜇𝑯𝑯𝒄𝒄 ∙ 𝒄𝒄𝑖𝑖  )𝑑𝑑Ω +
𝛺𝛺

�𝜎𝜎−1curl 𝑯𝑯𝒄𝒄 ∙ 𝒄𝒄𝑖𝑖  𝑑𝑑Ω
𝛺𝛺

= −𝑉𝑉𝑖𝑖 , 

∀𝒄𝒄𝑖𝑖  ∈ 𝑯𝑯ℎ
0(curl;Ω). (13) 

 The equation (10) is a circuit equation for massive 
inductors. 
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3.2. Discretization of fields 𝑯𝑯𝑟𝑟  and Φ 
 In  (13), the field 𝑯𝑯𝑟𝑟  is discretized with edge finite 
elements  with the function space 𝑯𝑯ℎ

0(curl;Ω) 
expressed in the mesh of Ω, that is [10] 

 𝑯𝑯𝑟𝑟 = ∑ 𝐻𝐻𝑒𝑒𝑠𝑠𝑒𝑒 ,𝑒𝑒∈𝐸𝐸(Ω)                                         (14) 

where 𝐸𝐸(Ω) is the set of edges of Ω, 𝑠𝑠𝑒𝑒  is a shape 
function associated with the edge “e”, and 𝐻𝐻𝑒𝑒  is the 
circulation of 𝐻𝐻𝑟𝑟  along the edge “e”. In this study, the 
mesh elements are triangle and rectangular elements. 
As presented, the field 𝑯𝑯𝑟𝑟 = 0 in Ω𝑐𝑐𝐶𝐶 , thus                      
𝑯𝑯𝑟𝑟 =  −grad 𝜙𝜙. Hence, the scalar potential is 
expressed as [4]: 

 𝜙𝜙 =  ∑ 𝜙𝜙𝑐𝑐,𝑛𝑛𝑣𝑣𝑐𝑐,𝑛𝑛𝑛𝑛∈𝑁𝑁(Ω𝑐𝑐𝐶𝐶)                                   (15) 

where the field 𝜙𝜙𝑐𝑐,𝑛𝑛 is defined in the non-conducting 
region. The discretization of 𝑯𝑯𝑟𝑟 −  𝜙𝜙 is rewritten as: 

𝑯𝑯𝑟𝑟 = � 𝐻𝐻𝑒𝑒𝑠𝑠𝑒𝑒 ,
𝑒𝑒∈𝐸𝐸(Ω𝑐𝑐)

+ � 𝜙𝜙𝑐𝑐,𝑛𝑛𝑣𝑣𝑐𝑐,𝑛𝑛

𝑛𝑛∈𝑁𝑁(Ω𝑐𝑐𝐶𝐶)

.        (16) 

 Now, by substituting (16) into (13), one gets:  

� 𝜕𝜕𝑡𝑡 � 𝐻𝐻𝑒𝑒𝑠𝑠𝑒𝑒 ∙ 𝒄𝒄𝑖𝑖
𝑒𝑒∈𝐸𝐸(Ω𝑐𝑐)

𝑑𝑑Ω
𝛺𝛺

+ � 𝜕𝜕𝑡𝑡 � 𝜙𝜙𝑐𝑐,𝑛𝑛𝑣𝑣𝑐𝑐,𝑛𝑛

𝑛𝑛∈𝑁𝑁�Ω𝑐𝑐𝐶𝐶�

∙ 𝒄𝒄𝑖𝑖𝑑𝑑Ω
𝛺𝛺

 

+ � 𝜎𝜎−1curl � 𝜙𝜙𝑐𝑐,𝑛𝑛𝑣𝑣𝑐𝑐,𝑛𝑛

𝑛𝑛∈𝑁𝑁�Ω𝑐𝑐𝐶𝐶�

∙ 𝒄𝒄𝑖𝑖  𝑑𝑑Ω +
𝛺𝛺

 

+� 𝜎𝜎−1curl � 𝐻𝐻𝑒𝑒𝑠𝑠𝑒𝑒
𝑒𝑒∈𝐸𝐸(Ω𝑐𝑐)

∙ 𝒄𝒄𝑖𝑖  𝑑𝑑Ω
𝛺𝛺

= −𝑉𝑉𝑖𝑖 , 

∀𝒄𝒄𝑖𝑖  ∈ 𝑯𝑯ℎ
0(curl;Ω). (17) 

4. Application example 

 The application is herein a practical test consisting 
of a cover plate of a transformer of 2000kVA and three 
massive inductors (bus bars) shown in Figure 1 [10]. 
The balanced three – phase currents following in the 
massive inductors are respectively                                            
𝐼𝐼𝑎𝑎 = 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 sin(𝜔𝜔𝜔𝜔 + 0),  𝐼𝐼𝑏𝑏 = 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 sin �𝜔𝜔𝜔𝜔 − 2𝜋𝜋

3
� and 

𝐼𝐼𝑐𝑐 = 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 sin(𝜔𝜔𝜔𝜔 + 2𝜋𝜋/3). All dimensions of the 
cover plate and massive inductors are given in mm, 
where the cover plate thickness is 6 mm. The cover 
plate is produced by two different materials (magnetic 
and non-magnetic regions).  The conductivities and 
relative permeabilities in region 1 and region 2 are 
respectively 𝜎𝜎1 = 4.07 MS/m, 𝜎𝜎2 = 1.15 MS/m,                   
𝜇𝜇𝑟𝑟,1 = 300 and 𝜇𝜇𝑟𝑟,2 = 1. The problem is tested with 
𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 = 2.5𝑘𝑘𝑘𝑘, and frequency of 50 Hz, 300 Hz and 
1000Hz. The scenario of the problem is considered 
with same and different materials 

 

 
 

Fig. 1. Geometry of the cover plate with three massive 
inductors (all dimensions are in mm) [9]. 

Fig. 3. A three phase current massive inductors. 

  

Fig. 2. 3D-dimensional mesh of the cover plate and massive 
inductors. 

Fig. 4. Eddy current distribution in massive inductors with 
the same material of the cover plate, for 𝜎𝜎1 = 𝜎𝜎2 = 4.07 MS/m, 
𝜇𝜇𝑟𝑟,1 = 𝜇𝜇𝑟𝑟,2 =300  and f = 300 Hz. 
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Fig. 6. Eddy current value for same materials along the cover 
plate with effects of different frequencies (𝜎𝜎1 = 𝜎𝜎2 = 4.07 
MS/m, 𝜎𝜎2 = 1.15 MS/m, 𝜇𝜇𝑟𝑟,1 = 300 and 𝜇𝜇𝑟𝑟,2 = 1).  

 
Fig. 7. Joule power loss density for same materials along the 
cover plate with effects of different frequencies (𝜎𝜎1 = 𝜎𝜎2 = 
4.07 MS/m, 𝜎𝜎2 = 1.15 MS/m, 𝜇𝜇𝑟𝑟,1 = 300 and 𝜇𝜇𝑟𝑟,2 = 1). 

Fig. 5.  Magnetic flux density distribution with the same 
material (top) (𝜎𝜎1 = 𝜎𝜎2 = 4.07 MS/m, 𝜇𝜇𝑟𝑟,1 = 𝜇𝜇𝑟𝑟,2 =300) and 
different materials (bottom) (𝜎𝜎1 = 4.07 MS/m, 𝜎𝜎2 = 1.15 
MS/m, 𝜇𝜇𝑟𝑟,1 = 300 and 𝜇𝜇𝑟𝑟,2 = 1), for  f = 300 Hz in both cases. 

 
The first test is solved with the different 

properties of the cover plate. The 3-D dimensional 
mesh of the cover plate and three massive inductors is 
shown in Figure 2, where the cover plate is used 
triangle meshes and rectangular meshes for three 
massive inductors. A global three-phase current 
following in the massive inductors is pointed out in 
Figure 3. The eddy current distribution in massive 
inductors due to the global currents (Fig. 3) is pointed 
out in Figure 4. It can be seen that skin effect maps on 
the eddy current focus on the surfaces of three massive 
inductors, for  𝜎𝜎1 = 𝜎𝜎2 = 4.07 MS/m, 𝜇𝜇𝑟𝑟,1 = 𝜇𝜇𝑟𝑟,2 =300 
and f = 300 Hz, skin-depth 𝛿𝛿 = 0.83 𝑚𝑚𝑚𝑚. Its skin 
depth obviously decreases with higher frequencies. 
Distribution of the magnetic flux density in the cover 
plate due to the currents in massive inductors is 
indicated in Figure 5 (top). It should be noted that the 
field value focuses on the surface and in the middle of 
the cover plate, where the eddy current value is higher 
than other areas.  

The second test is considered with different 
materials. The field distribution on B is presented in 
Figure 5 (bottom). For non-magnetic region of  𝜇𝜇𝑟𝑟,1 =1, 
the magnetic field is very small in comparison with the 
region of 𝜇𝜇𝑟𝑟,1 =300. It can be shown the areas where 
the joule power loss is the biggest (𝜎𝜎1 = 4.07 MS/m,              
𝜎𝜎2 = 1.15 MS/m, 𝜇𝜇𝑟𝑟,1 = 300 and 𝜇𝜇𝑟𝑟,2 = 1 and for f = 200 Hz). 

The significant eddy current along the cover plate 
with effects of different frequencies are depicted in 
Figure 6. It can be seen that for a higher frequency (e.g.  

f = 1000 Hz), the skin-depth is smaller (i.e.                                
𝛿𝛿 = 0.45 mm), the skin effect is greater, the eddy 
current mainly focus on the surface of the plate, and 
also with the region of the higher magnetic 
permeability. In the same way, by integrating of the 
eddy current along the thickness of the cover plate, the 
joule power loss density is also expressed in Figure 7 
with different frequencies.  
5. Conclusion 

The numerical method with the H-Φ 
magnetodynamic formulations has been successfully 
developed for modeling of massive inductors. The 
presented method permits to evaluate local and global 
fields (electric current, eddy current loss, magnetic 
flux, and eddy current loss) taken skin effects into 
account with different frequencies.  In particular, with 
the obtained results, the method shows the general 
picture where the field distribution appears. This is 
also a good step to study thermal problems in 
electromagnetic devices in next study.  

The discretized magnetodynamic formulation has 
been done for the practical problem in the frequency 
domain with the linear case. The expanded method can 
be implemented for non-linear cases.   
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