

Journal of Science & Technology 144 (2020) 053-057

53

Lightweight Encryption Schemes for the Internet of Things: A Review

Sonxay Luangoudom*, Duc Tran, Nguyen Linh Giang

Hanoi University of Science and Technology, No.1, Dai Co Viet Road, Hai Ba Trung, Ha Noi, Viet Nam
Received: February 17, 2020; Accepted: June 22, 2020

Abstract

Nowadays, Internet of Things (IoT) enables many low resources and constrained devices to communicate,
data analysis, control process and make decision in the communication network. Lightweight encryption
schemes can be implemented in resource-constrained IoT devices with different cryptography primitives.
However, in the heterogeneous environments for IoT, there are many challenges and issues for lightweight
encryption suchlike power consumption, memory space, performance cost, and security. In this paper, we
present and discuss performance of lightweight encryption algorithms integrated on IoT devices which are
limited in resources, power and processing capacity and criteria to choose appropriate algorithm for each
specific IoT application.

Keywords: IoT, security, lightweight encryption

1. Introduction

Cryptography is a process of protecting the
communication data from unauthorized access by
transforming the data into an unrecognizable form.
The general cryptographic algorithms are designed
sophisticatedly based on mathematical theory, making
such algorithms hard to be cracked. However, the
communication exchanged among limited-resource
devices such as Internet of Thing (IoT) devices
requires lightweight cryptography algorithms [1]. The
reduction of the heaviness of cryptography algorithms
has been linked to all performance aspects including
memory, power, and energy consumption.

In IoT environment, it is necessary to secure
communication information with a low power
consumption on both hardware and software.
Lightweight encryption schemes are designed for
resource-constrained environments. Hence, these
algorithms must be fast, consume less energy and store
data more efficiently than conventional encryption and
decryption algorithms [2]. To have an optimized
lightweight encryption algorithm, it is necessary to
balance between the performance, security, and
computational cost.

 It has been well-known that there is a trade-off
between security and performance. Specifically, the
shorter key length is the lower the security level is.
Similarly, the smaller the number of rounds in the
encryption process is the less security and performance
are.

In this paper, we present a comparison between
stream ciphers and block ciphers. The analyzed stream

* Corresponding author: Tel.: (+84) 936.399.476
Email: s.luangoudom@cu.edu.la

ciphers are CCM, GCM, Salsa20-Poly 1305 while the
analyzed block ciphers are AES, DEA, 3DES, and
Blowfish as shown on Fig. 1.

Lightweight Encryption Schemes

Block ciphers Stream ciphers

 AES
 DES
 3DES
 Blowfish

 CCM
 GCM
 Salsa20-Poly1305

Fig. 1. Classification of lightweight encryption
algorithms

The rest of the paper is organized as follows:
Section 2 presents lightweight schemes. Section 3
provides a detailed discussion on the block ciphers.
Section 4 analyzes stream ciphers. Finally, Section 5 is
dedicated to conclusions and future works.

2. Lightweight encryption schemes

In IoT systems, implementing the traditional
cryptography algorithm in the resource-constrained
devices is not a trivial task. Hence, it is necessary to
develop lightweight schemes for such devices.
Lightweight schemes are specially designed for IoT
and Wireless Sensor Networks (WSN). In general,
these schemes can be categorized into two types:
asymmetric encryption and symmetric encryption [3].

Journal of Science & Technology 144 (2020) 053-057

54

Table 1. Block cipher based on the different indices like size of the key, block, rounds, speed and attacks [7]

Block cipher Key length
(bits)

Block length
(bits)

Rounds Speed
(MB/sec)

Attacks

AES 128/192/256 64/128 10/12/14 61.01 Side channel attack,
Man-in-the-middle

DES 64 64 14 21.34 Brute force attack,
Man-in-the-middle attack

3DES 192 64 48 20.78 Theoretical attacks

Blowfish 448 64 16 64.386 Birthday attack,
Known-plaintext attack

Asymmetric encryption relies on public and
private keys to ensure the communication between the
sender and receiver. The public key is used for
encipherment, while the private key is used for
decipherment. Asymmetric encryption can provide
authentication, confidentiality, and integrity. It also
offers a safety mechanism for key-sharing and
supports various security services. However, the large
key size in such method makes the encryption process
slow and complex [4]. The most popular asymmetric
algorithms are Rivest–Shamir–Adleman (RSA),
Digital Signature Algorithm (DSA), Shamir-Adleman,
Diffie-Hellman key exchange (DH), and Elliptic
Curve Cryptography (ECC).

Symmetric encryption uses a single key for both
encryption and decryption processes. This method is
extremely secure and fast. It is able to guarantee the
integrity and confidentiality but does not assure the
authentication. The disadvantage of symmetric
encryption is due to the key that must be shared
between the communicating parties. If malicious
parties get the key, the encrypted data will be
compromised [4]. The symmetric encryption can be
classified as block ciphers and stream ciphers [1, 5].
These ciphers will be analyzed and discussed in the
following sections.

3. Block ciphers

In a block cipher, the message or plaintext is
divided into blocks of data and the same key is used to
encrypt each block. Block cipher has a fixed number
of bits and different stages of transformation. These
stages are determined by a symmetric. Block cipher
algorithms are versatile and can be very helpful when
deploying in the IoT systems [5]. The advantage of
these methods is that the process has almost identical
encryption and decryption methods. This implies that
the implementation of the encryption and decryption
processes will be reduced. Since the block ciphers
have relatively low latency, they have been considered
as an improved solution for IoT security [6]. There are
different kinds of block ciphers, namely AES, DES,

3DES, Blowfish [7]. Table 1 shows the comparison of
the various block cipher algorithms.

The Advanced Encryption Standard (AES) is a
lightweight cryptography algorithm, which is
standardized by NIST. Its key length can be
128/192/256 bits. AES relies on Substitution–
Permutation Network (SPN) and operates using 4x4
matrices. This scheme has 10 rounds using 128-bit
keys, 12 rounds using 192-bit keys and 14 rounds
using 256-bit keys [8]. The output of the AES
algorithm is a ciphertext, whose length is 128 bits.
AES provides a good security, but its performance is
not acceptable on resource-constrained devices
because AES has large memory requirements to store
s-boxes, large block, and key sizes [4]. AES has an
advantage over 3DES and DES in terms of decryption
time.

DES is also a block cipher encryption standard
that has 64-bit plaintext, while the key length is 64 bits
[9]. DES can be broken with a known-plaintext attack
if the number of rounds is fewer than 16. DES is unsafe
when being deployed in applications that require high
security level. It is susceptible to linear cryptanalysis
attacks, which raise a significant risk since the
encrypted bulk data can be predicted with constant
keys [11]. The DES algorithm also has the problem of
simple relations in its key, which can potentially lead
to a complementary relation between the resulting
ciphertext [10]. DES can be cracked quickly because
the same key is used for encryption and decryption
process, hence, an attacker can get the original text by
simply trying as many keys as possible. Motivated by
the above reason, the 3DES cipher was developed in
1998. In 3DES, the 192-bit key is divided into three
subkeys. Hence, each subkey has the length of 64 bits
[12]. The procedure for encryption is the same as the
regular DES. The data is encrypted and decrypted with
the first and second keys and then encrypted again
using the third key. Note that the 3DES algorithm is
three times as secure as DES if three separate keys are
used.

Blowfish on the other hand, is a symmetric block
cipher that can be treated as a replacement of the DES

Journal of Science & Technology 144 (2020) 053-057

55

algorithm [10]. It is unpatented, and thus, being free of
cost for all usages [13]. Blowfish provides high speed,
compactness, security and simplicity. Its rate of
encryption is 26 cycles/byte on a 32-bit
microprocessor. Blowfish requires less than 5 KB of
memory space. Its block size is 64-bit and the key size
is from 32 bits to 448 bits. The design and
implementation of Blowfish rely on primitive
operations, including lookup tables, XOR and addition
[14]. In [7], Blowfish was observed to be the fastest
algorithm as compared with AES, DES, 3DES and
RC2. Similar observations can be found in [15], where
the various block ciphers were executed on the Beagle
Bone Black and Raspberry PI 3 for different file sizes
ranging from 1 MB to 128 MB.

4. Stream ciphers

Stream ciphers use keys with the size that is equal
to the size of the data. In stream ciphers, the ciphertext
is obtained by bit operations on the plaintext.
Particularly, a keystream that is generated using a key
and an Initialization Vector (IV), is XORed with the
plaintext to create ciphertext. Stream ciphers are
potentially more compact, simpler, and faster as
compared to the block ciphers [16]. In this section, the
various stream ciphers are reviewed and discussed in
detail.

CBC-MAC (CCM) stands for Cipher Block
Chaining Message Authentication Code. CCM is
originally designed to be used with 128-bit block
ciphers but can be extended to be used with other block
sizes [17]. CCM provides confidentiality and
authenticity of data using an approved symmetric
algorithm, whose block size is 128 bits with 12-byte
nonce. CCM allows varying degrees of protection
against unauthorized modifications by using variable-
length authentication tags. In CCM, a single key to the
block cipher must be established beforehand among
the communication parties. For this reason, such
scheme should be implemented within a well-designed
key management structure. The security properties of
CCM are much dependent on the secrecy of the pre-
shared key.

Galois/Counter Mode (GCM) for authenticated
encryption with associated data is constructed from an
approved symmetric block cipher with a block size of
128 bits with 12-bytes nonce. GCM has two functions,
i.e., authenticated encryption and authenticated
decryption. GCM can provide data confidentiality with
various counter modes of operation since its hash
function is defined over a binary Galois field. The
encryption and authentication of GCM is safe from the
attack [18].

Salsa20 [19] is a stream cipher that was designed
and introduced in 2005. Salsa20 has 256-bit keys. The

20-round stream cipher Salsa 20/20 is consistently
faster than AES. The Salsa20/12 and Salsa20/8 are
among the fastest 256-bit stream ciphers. In Salsa20,
the key is a uniform random sequence of 32 bytes; The
24-byte nonce is never used for any other 32-byte
messages that are exchanged between the source to the
destination. The nonce is long enough to minimize the
risk of collision. Salsa20 encryption function by
hashing the key, nonce and block number and xor’ing
the result with the plaintext [19].

Poly1305 authenticator is designed by D. J.
Bernstein in 2005. Poly1305 is a one-time polynomial
evaluation Message Authentication Code (MAC). It
aims at providing fast authentication mechanisms on
software platforms. Poly1305 is considered as a secure
message authentication if AES is secure. It relies on a
32-byte secret key and a 16-byte nonce to compute the
16-byte authenticator of a given message. A popular
implementation of Poly1305 can be found in NaCl
library [20]. More importantly, the >100-bit security
level of Poly1305 prevents forgery attack. The
Poly1305 authenticator, which has been standardized
in RFC 7539 [21], is designed to ensure that those
forged messages are rejected with a probability of 1-
(n/(2^102)), even after 2^64 legitimate messages have
been sent. In other words, such method is unforgeable
against chosen message attacks. Poly1305 is known to
have consistent high speed, even when being run on
many different Central Processing Units (CPUs).

Table 2. shows the comparison between
lightweight stream ciphers based on the key size, block
size, performance, number of rounds and the possible
attacks [22]. CCM employs counter mode for
encryption. However, reusing the same Initialization
Vector (IV) with the same key is catastrophic. This
potentially leads to an IV collision and the leakage of
information in data packets. For this reason, it is
inappropriate to use CCM with static keys. Additional
measures would be needed to prevent the reuse of IV
values with the static key.

Implementations of GCM mode often utilize
short IV. This potentially results in the collision
probability of random IV. The reuse of the GCM
nonce/key combination also destroys the security
guarantees and leads to the degradation of the
confidentiality of a given plaintext. Because the GCM
mode uses a variation of the counter mode to ensure
confidentiality. As a result, it can be extremely
difficult to deploy GCM securely when using static
keys. In many cases, GCM has been proved to be faster
than AES in CBC mode, especially when the hardware
supports cryptographic engine [23]. AES-GCM is
faster than AES-CCM. When it comes to performance,
AES-GCM is a better alternative to be used in
applications.

Journal of Science & Technology 144 (2020) 053-057

56

Table 2. Stream cipher based on the different indices like initialization vector (IV), size of the key, block, nonce
and attacks [22]

Stream cipher IV
(bits)

Key size
(bits)

Block size
(bits)

Nonce
(bytes)

Attacks

CCM 64 128 64/128 12 Unauthorized modifications

GCM 64 128 64/128 12 Chosen plaintext attack, replay attack

Salsa 20- Poly 1305 128 256 512 24 Forged attack

The Salsa20 stream cipher and Poly1305

authenticator were also evaluated by the CFRG. Based
on such evaluation, the RFC7539 [21] and RFC7905
[24] have been established. Salsa 20 and Poly1305
have been designed for high-performance software
implementations and to minimize leakage of
information through side channel attacks.

Salsa 20 is simple and easy to setup. It can
achieve a good overall performance and is selected as
part of the eSTREAM portfolio of stream ciphers [21].
Poly 1305 is never used the same nonce for two
different messages. Poly1305 has extremely high
speed and low overhead. XSalsa20-Poly1305 is
proved to be a well-suited algorithm that can be used
to encrypt and decrypt data packets in a wide range of
applications, where time and memory usage are
considered as important factors. XSalsa20-Poly1305 is
three times faster than AES-GCM on mobile devices.
It spends less time on decryption and thus providing
faster page rendering and better battery [25]. In [26], it
was observed that GMC, CCM, SIV and EAX are not
feasible to perform in the current swarm architecture
and configuration. GCM and CCM are only feasible
when risk is accepted. Overall, the best choice by far
is XSalsa20-Poly1305. XSalsa20-Poly1305 should be
a viable option in any scenario, where classified data
is not being created or handled [26].

5. Conclusion

The security and privacy issues have drawn a lot
of consideration, while other concerns such as
availability, reliability, and performance of the
constrained IoT devices still require more attention. In
this paper, we provide a comprehensive discussion on
the lightweight security solutions, i.e., stream ciphers
and block ciphers for the IoT systems. Based on such
discussion, we can conclude that there is no single best
scheme that is able to meet the needs of the IoT
applications. Block ciphers and stream ciphers achieve
a good performance in terms of computational cost and
improve the security level slightly. Future research is
therefore dedicated to designing a lightweight cipher
that can provide fast confusion and diffusion in a
smaller number of rounds for block ciphers and extend
the nonce for the stream ciphers.

Acknowledgements

This work is supported by the Centre for
Technology Environment Treatment.

References
[1] Bansod, Gaurav, et al., An ultra-lightweight encryption

design for security in pervasive computing, Big Data
Security on Cloud (BigDataSecurity), IEEE
International Conference on High Performance and
Smart Computing (HPSC). (2016) 79-84.

[2] Hammi, Mohamed Tahar and Livolant, Erwan and
Bellot, Patrick and Serhrouchni, Ahmed and Minet,
Pascale, A lightweight IoT security protocol, Cyber
Security in Networking Conference (CSNet). (2017) 1-
8.

[3] Dutta, Indira Kalyan and Ghosh, Bhaskar and
Bayoumi, Magdy, Lightweight Cryptography for
Internet of Insecure Things: A Survey, Annual
Computing and Communication Workshop and
Conference (CCWC). (2019) 475-481.

[4] Bhardwaj, Isha and Kumar, et al., A review on
lightweight cryptography algorithms for data security
and authentication in IoTs, International Conference
on Signal Processing, Computing and Control. (2017)
504-509.

[5] Batina, Lejla, et al., Dietary recommendations for
lightweight block ciphers: power, energy and area
analysis of recently developed architectures,
International Workshop on Radio Frequency
Identification: Security and Privacy Issues. Springer,
Berlin, Heidelberg. (2013) 103-112.

[6] M. A. Philip, A Survey on Lightweight Ciphers For
IoT Devices, Int. Conf. Technol. Adv. Power Energy
(TAP Energy). (2017) 1-4.

[7] Nadeem, Aamer and Javed, M Younus, A performance
comparison of data encryption algorithms,
international Conference on information and
communication technologies. (2005) 84-89.

[8] Martin Feldhofer, Sandra Dominikus, and Johannes
Wolkerstorfer, Strong Authentication for RFID
Systems Using the AES Algorithm, in Cryptographic
Hardware and Embedded Systems–CHESS Lecture
Notes in Computer Science, Springer. (2004) 357-370.

Journal of Science & Technology 144 (2020) 053-057

57

[9] O.A. Hamdan, and B.B. Zaidan, New Comparative
Study Between DES, 3DES and AES within Nine
Factors, Journal Of Computing. 2 (2010).

[10] Y. Kumar, R. Munjal, and H. Sharma, Comparison of
Symmetric and Asymmetric Cryptography with
Existing Vulnerabilities and Countermeasures,
International Journal of Computer Science and
Management Studies. 11 (2011) 60-63.

[11] Mathur, Raghav and Agarwal, Shruti and Sharma,
Vishnu, Solving security issues in mobile computing
using cryptography techniques—A Survey,
International Conference on Computing,
Communication \& Automation. (2015) 492-479.

[12] Adhie, Roy Pramono and Hutama, Yonatan and
Ahmar, A Saleh and Setiawan, MI, Implementation
cryptography data encryption standard (DES) and
triple data encryption standard (3DES) method in
communication system based near field
communication (NFC), Journal of Physics:
Conference Series. 954 (2018) 012009.

[13] S.P. Singh, and R. Maini, Comparison of Data
Encryption Algorithms, International Journal of
Computer Science and Communication. 2 (2011) 125-
127.

[14] A. Kumar, Comparative Analysis between DES and
RSA Algorithm’s, International Journal of Advanced
Research in Computer Science and Software
Engineering. 2 (2012) 386-391.

[15] Deshpande, Kedar and Singh, Praneet, Performance
evaluation of cryptographic ciphers on IoT devices,
International Conference on Recent Trends in
Computational Engineering and Technologies. (2018)
1-6.

[16] Armknecht, Frederik, and Vasily Mikhalev, On
lightweight stream ciphers with shorter internal states,
International Workshop on Fast Software Encryption.
Springer, Berlin, Heidelberg. (2015) 451-470.

[17] Whiting, D and Housley, R and Ferguson, N,
RFC3610: Counter with CBC-MAC (CCM). (2003).

[18] McGrew, David and Viega, John, The Galois/counter
mode of operation (GCM), submission to NIST Modes
of Operation Process. 20 (2004).

[19] Bernstein, Daniel J, The Salsa20 family of stream
ciphers, New stream cipher designs, Springer. (2008),
84-97.

[20] Bernstein, Daniel J, The Poly1305-AES message-
authentication code, In International Workshop on Fast
Software Encryption. (2005) 32-49.

[21] Y. Nir and A. Langley, ChaCha20 and Poly1305 for
IETF Protocols, RFC 7539, https://rfc-
editor.org/rfc/rfc7539.txt. (2015).

[22] https://libsodium.gitbook.io

[23] Bogdanov, Andrey and Mendel, Florian and
Regazzoni, Francesco and Rijmen, Vincent and
Tischhauser, Elmar, ALE: AES-based lightweight
authenticated encryption, International Workshop on
Fast Software Encryption. (2013) 447-466.

[24] A. Langley, W.-T. Chang, N. Mavrogiannopoulos, J.
Strombergson, and S. Josefsson, ChaCha20-Poly1305
Cipher Suites for Transport Layer Security (TLS),
RFC 7905, https://rfc-editor.org/rfc/rfc7905.txt.
(2016).

[25] Islam, Maliha Momtaz and Paul, Sourav and Haque,
Md Mokammel, Reducing network overhead of IoT
DTLS protocol employing ChaCha20 and Poly1305,
International Conference of Computer and Information
Technology (ICCIT). (2017) 1-7.

[26] Thompson, Richard B and Thulasiraman, Preetha,
Confidential and authenticated communications in a
large fixed-wing UAV swarm, IEEE 15th International
Symposium on Network Computing and Applications
(NCA). (2016) 375-382.

	1. Introduction

