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Abstract 

This paper presents a method to optimally design electrical machines. Unlike the traditional design method 
“tries-and-errors iterative process”, the optimal design approach consists of combining optimization 
algorithms and multi-physics models to reach the optimum design. A case study of designing a standard 
industrial motor of 6 HP with multi-objectives and constraints is chosen in order to test this optimization 
methodology. The Pareto solution results of two conflicting objectives between the efficiency and the active 
mass of this machine are reached to help designers and customers selecting the best compromised design 
of motor of 6 HP in terms of cost and consuming energy.        

Keywords: Optimal design; standard industrial motor; asynchronous motor; TEFC (totally enclosed fan 
cooled) machine; optimization. 

 

1. Introduction* 

Nowadays, electric motors present in many 
drive system applications such as standard industrial 
motor, pump, fan, metal cutting & forming machine, 
conveyor belt, servo robotic, woodworking/CNC, 
automatic door opener, railway transport, electric and 
hybrid vehicles, etc. [1-6]. The cost reduction 
competition between manufacturers has never 
stopped. Manufacturers need to further optimize the 
R&D cost, e.g. reducing loops of design and test; the 
manufacturing cost, e.g. reducing product mass, 
volume, production steps, changing materials, etc… 

The design of electrical machinery has a long 
tradition and the “common approach” is a tries-and-
errors iterative process, certainly converging but 
usually stopped prematurely because of extensive 
expense. A recent new methodology has been 
suggested by replacing physical prototypes and 
models with virtual prototypes, fully numerical, such 
as those provided by the finite element method [1]. 
Nevertheless, the process ends often with frustration, 
as the designer is uncertain about completely 
exploring the design space that has been offered to 
him. The optimal design approach proposes to 
improve this process through methodology and 
software tools: combining mathematical optimization 
algorithms and multi-physical, multi-level machine 
models. However, this approach is a complex, 
complicated, and multi-disciplinary task [1-12]. The 
researches about the mathematical optimization 
algorithms able to handle discrete variables and 
multi-level models are studied in [2, 7-11]. The multi-
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objective design problems in electrical engineering 
have been conducted in [5, 10, 11]. 

First, the optimal design approach applied for 
optimizing electrical machines will be presented. 
Then, the technical specification, the optimization 
formulation, and the Pareto optimum design results 
will be detailed in the next section multi-objective 
optimal design on a case-test of a standard industrial 
motor of 6 HP. Finally, discussions and conclusions 
will be given. 

2. Optimal Design Approach 

The optimal design approach of electrical 
machines can comprise five steps [11]. Those steps 
are linked sequentially but iterations and returns are 
often indispensable as described in Fig. 1. 

 
Fig.1. Optimal design approach for electrical machines 

2.1. Analyzing technical specification 

The specification of an electromagnetic device 
design is defined by upstream manufacturers. It states 
the basic specifications, standard of a device, i.e. the 
need of users in terms of operation and constraints to 
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be respected. For example, the information will be 
provided on the rated power, torque, speed, 
efficiency, inertia, fed by the power converter, or not. 

2.2. Formulating optimization problem 

This phase aims to translate the optimal design 
problem, described by the specification into an 
equivalent mathematical problem. This is the most 
delicate stage of the design process as the formulation 
of a problem is never unique, particularly the 
definition of the functions that characterize system 
performance [11, 12]. It must define accurately as in 
(1) and (2): 

- The objective function(s); 

- The design variables; 

- The constraints related to the manufacturing 
or the use of the device expressed in the 
specifications; 

- The extra constraints added by the designer.  

Minimize 

F(X) = (f1(X), f2(X),…, fp(X)) 

X = {x1, x2,…, xn} ∈ 𝑆𝑆 ⊂  ℝ𝑛𝑛 

xi ∈ Di = {di1, xi2,…, diq},  i = 1,…,nd 

xi
lb

 ≤  xi  ≤ xi
ub,  i = nd,…,n 

(1) 

Subject to 

gj(X) ≤ 0,    j = 1,…,l 

hk(X) = 0,   k = 1,…,m 
(2) 

The objective function or the objective functions 
(f1(X), f2(X), …, fp(X)) are one or several criteria of the 
device that define the goal. They are the cost that can 
be minimized (e.g. active part, manufacturing cost, 
power consumption, etc.) or the performance that can 
be maximized (e.g. efficiency, power factor, etc.) in 
order to limit environmental impacts (e.g. depletion 
of natural resources, gas emissions, greenhouse 
effect, etc.).  

The input variables or design parameters                   
(X = {x1, x2,…, xn}) that influence performance will 
be changed during the iterations of optimal design 
process. They can be of various types: geometric 
dimensions of stator and rotor lamination shapes, 
material properties, structural topology, etc. These 
can be quantitative or qualitative, continuous, or 
discrete. The choice and number of variables also 
determine the definition of the optimization problem. 
It may be interesting to vary a large number of design 
variables to increase the search space but the 
optimization process will be lengthy and more 
difficult to solve. 

The constraints (gj(X), hk(X)) related to multi-
disciplinary electromagnetic – thermal-mechanical 
fields, to the manufacture and the uses, are expressed 
in the specifications. For example, the efficiency of 
power transformers or industrial motors must be high 
to improve the energy efficiency; the winding 
temperature must be lower than its limit insulation 
related to temperature rise class; the motor current 
needed to perform the maximum torque does not 
exceed the maximum current allowed by the power 
converter and the maximum power at high speeds 
must be greater or equal to that required in the 
specifications for servo motors, etc. Similarly, during 
the optimization process, the designer can add more 
constraints not expressed in the specifications but 
implicit for experts. For example, a constraint as the 
fulfilling factor is added in order to ensure that the 
winding does not exceed the stator slot; a maximum 
current density added to ensure thermal behavior; or 
when a parameter is calculated by a quadratic 
equation whose discriminator has to be greater than 
or equal to zero. These added constraints ensure the 
validity of the chosen model and the proper 
functioning of the optimization process. 

2.3. Modeling device 

Once the design problem is transformed into a 
mathematical problem, modeling the device is used to 
calculate the responses of the problem (objective 
function, constraints). The phenomena: electrical, 
magnetic, thermal, mechanical, acoustic can be 
modeled by empirical equations, analytical, or using 
the finite element method [5,8,11]. Expert knowledge 
of the designer for the device is required to have good 
accuracy models. This phase also allows the designer 
to better understand the physical phenomena in the 
electromagnetic device, especially with the help of 
modeling tools using the finite element method 
(FEM). The designer can observe the lines of flux and 
the magnetic induction saturation on the magnetic 
circuit, the torque oscillations, temperature gradients, 
etc. 

The formulation of the optimization problem 
and modeling device is fundamental in the process of 
the optimal design of electrical machines because 
they determine the success of the next steps. They are 
complementary. The formulation of the problem is 
not easy to tackle because the choice of design 
variables is never unique and the current calculation 
means can only manage a limited number. An 
accurate and robust model is an asset for optimization 
algorithms. 

2.4. Solving the optimization problem 

The search for the optimal solution to a problem 
is realized by means of optimization methods. The 
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choice of optimization methods applied to the 
mathematical formulation in (1) depends on the 
nature of the problem (size of the problem, with or 
without constraints, continuous or discrete variables, 
single-objective or multi-objective problem, etc.). It 
also depends on the models of the device (analytic 
models, semi-analytic models, finite element models) 
to avoid excessive optimization computation time. 
Generally, there are two major families of 
optimization methods: deterministic and stochastic 
methods. 

The optimization methods called deterministic 
(Simplex Nelder-Mead, SQP-Sequential Quadratic 
Programming, etc.) [11-13] lead to an initial solution 
always given to the same end result. To find the 
optimum, they are based on a search direction that 
can be provided by the derivatives of the objective 
function. These methods are rapidly converging but 
may converge to a local solution.  

Stochastic methods: Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO), etc. [12-13] as 
their names suggest, are based on probabilistic and 
random transition mechanisms that intelligently 
explore the search space and can converge to the 
global optimum. They require a large number of 
evaluations of the objective function, so a huge 
computation time in comparison with deterministic 
methods. 

The main results of the multi-objective approach 
are called the optimal Pareto front (the optimal Pareto 
solutions) which is the best trade-off between the 
objectives [11,12]. In general, multi-objective 
optimization methods can be divided into two main 
categories: scalar approaches and Pareto approaches.  
Fig. 2 shows some of the most common multi-
objective methods in electrical engineering. The 
principle of scalar multi-objective methods is to 
transform the multi-objective problem into a single-
objective problem.  Multi-objective Pareto methods, 
on the other hand, keep elements of the objective 
vector separately during the optimization procedure 
and typically use a concept of dominance to 
distinguish between dominated and non-dominated 
solutions. 

 
Fig. 2. Classification of multi-objective optimization 
methods 

The most popular multi-objective method 
belongs to the type of scalar methods, called the 
Weighted Sum algorithm [11,12].  The method 
consists of transforming the multi-objective problem 
into a single-objective problem by linearly combining 
the objectives by the weighting coefficients. This 
method is simple and easy to implement, but it 
nevertheless has two drawbacks: the non-uniform 
distribution of the points of the Pareto front and the 
inability to deal with a non-convex problem. 

 The ɛ-constraints algorithm transforms the 
multi-objective problem into a single-objective 
problem comprising some additional constraints            
[11, 12].  An objective function among objectives is a 
priori kept, the others are transformed into constraints 
of inequality. 

 The lexicographic method consists of 
sequentially minimizing the different objectives of a 
multi-objective problem [12]. The order of 
minimization of the objectives is set by the user who 
keeps, at any time of the process, and depending on 
the results obtained, the possibility of giving priority 
to one criterion rather than another. 

The MOGA method (Multiple Objective 
Genetic Algorithm) [14] is the first algorithm which 
uses the notion of dominance directly to evaluate the 
performance of individuals. However, this method 
does not allow, in certain cases, to obtain a full 
representation of the Pareto front. 

The method, known as SPEA-II (Strength 
Pareto Evolutionary Algorithm II) [14], ranks non-
dominated solutions in an external population 
between the size of the archive and that of the current 
population.  This method differs from its predecessor 
(SPEA) which is sensitive to the balance between the 
size of the archive and that of the current population, 
by a size of the archive fixed and a more refined 
calculation of the performance of individuals. 

The NSGA-II (Non-Dominated Sorting Genetic 
Algorithm II) method [15] is one of the most widely 
used multi-objective methods. In this NSGA-II 
method, parents and children are ranked according to 
the rank of dominance.  When more than half of the 
parents and children combined are dominant, a 
solution density measure is used. The NSGA-II 
algorithm will be used for the application case of 
designing an industrial motor in the next section. 

2.5. Exploiting and analyzing optimal results 

After resolving the problem, it is imperative to 
exploit the results and evaluate the quality of the 
obtained solution. In case of failure, it is essential to 
question the choices made in previous phases. 
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Loop (I) in Fig. 1 is a return to the solving the 
problem phase.  It can be motivated by a problem of 
convergence of the algorithm indicated by a stop of 
the procedure following an excessive computing 
time, or by obtaining an optimum local or a bad 
solution.  It is then possible to modify the adjustment 
parameters of the algorithm for stochastic methods or 
the initial point for deterministic methods.  
Sometimes, it happens that the algorithm used is not 
or is little adapted to the treated problem, therefore it 
is advisable to change the optimization method or to 
modify the problem to facilitate its resolution. 

When the resolution of the problem leads to an 
unrealizable or aberrant solution, the loop (II) in Fig. 
1 questions the modeling phase of the device.  It is 
necessary to check that there is no calculation error 
and that the described equations of the physical 
phenomena have taken reasonable assumptions, so 
the outputs are well calculated.  Likewise, if the 
results do not change, the loop (III) is essential.  It is 
a return to the formulation of the optimization 
problem.  In this case, the approach allows the 
designer to refine his experience through a series of 
trials/errors during which he learns more about the 
limits of the models used and how to formulate the 
optimization problem to achieve relevant solutions. It 
is then advisable to add constraints to avoid imprecise 
or aberrant solutions, as well as other constraints to 
prevent the optimization algorithm not going into the 
areas of imprecision or fatal errors of the models. 

The longest loop (IV) in Fig. 1 consists of 
returning to the analysis of the specifications when 
the solution is not feasible, or there is no solution 
because of too severe constraints or because the 
objective function is not relevant.  It may happen that 
the design process leads to the conclusion that there is 
no solution to the specifications expressed. In this 
case, the designer relaxes the constraints to arrive at a 
feasible solution by dialoguing with the client to 
decide on the possible choices. 

3. Multi-Objective Design of an Industrial Motor 

3.1. Technical Specification 

Fig. 3 shows cross sections of a typical 
industrial TEFC (Totally Enclosed Fan Cooled) 
motor. This foot mounting motor is an asynchronous 
machine with aluminum cage die-casting rotor. The 
standard technical specification of a 6 HP motor 
directly connected to 3-phases electric network with 
the line-to-line voltage of 380 Vrms and frequency of 
50 Hz requires 4.5 kW mechanical output power; the 
synchronous speed of 1500 rpm; efficiency and 
power factor of 85 % and 0.8; maximum torque ratio 
of 2.2; starting torque ratio of 2.0; starting current 
ratio of 6.0. 

Fig. 3. Cross sections of a standard industrial motor 

3.2. Optimization formulation design problem 

The multi-objective optimization problem of a 
standard industrial motor can be formulated as: 

- 02 objective functions:  

o maximize the efficiency of the motor 

o minimize the total active mass of motor 
(stator/rotor cores & copper winding, 
aluminum cage) 

- 12 design variables: 

o outer/inner stator diameters  

o active length of stator/rotor cores 

o all dimensions of stator/rotor slots 

o number of turns and number of wires 

o motor slip  

- 09 multi-disciplinary equality and inequality 
constraints:  

o output power ~1500rpm = 4.5 kW 

o manufacturing fulfill slot ≤ 80% 

o current density ≤ 4.5 A/mm2 

o power factor ≥ 0.8 

o maximum torque ratio ≥ 2.2 

o starting torque ratio ≥ 2.0 

o starting current ratio ≥ 6.0 

o others on the feasibility of 
dimensions,… 

Two conflicting objectives are chosen: 
maximizing the efficiency and minimizing the 
electromagnetic active mass of motor containing 
(stator/rotor electrical steel lamination cores, copper 
stator winding and aluminum rotor cage). Modifying 
12 design variables directly impacts the cost and 
efficiency of the motor. The multi-objective 
optimization design of this standard industrial motor 
of 6 HP consists to find the best trade-off (Pareto 
front) between these both conflicted objectives.  
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Fig. 4. Efficiency-Active Mass multi-objective results Fig. 6. Main motor parameters 

  
Fig. 5. Main design variables of 7000 evaluations Fig. 7. Pareto optimal front results (zoom) 

 

3.3. Optimal design results 

Using NSGA-II with a set-up of the population 
size of 70 and 100 generations, coupling to an 
analytical electromagnetic model in Matlab 
environment, the results of the whole 7000 
evaluations of model are shown in Fig. 4-6. The 
results of both conflicting objectives: maximizing the 
efficiency and minimizing the motor active mass are 
presented in Fig.4. The best compromise, Pareto front 
is converging in the area of 85% of efficiency and 
will be zoomed in Fig. 7.  

Fig. 5 presents the main design variables: 
outer/inner stator diameters, core length, number of 
turns per slot and number of wires per turn during the 
optimization process. The continuous design 
variables values vary [150:220] mm, [100:170] mm 
and [150:210] mm for outer, inner stator diameters 
and core length respectively. The discrete design 
variables such as the number of turns per slot and 
number of wires vary respectively {15:21} turns and 
{3:9} standard wires of 0.8 mm of diameter.  

Motor mechanical output and electric input 
powers during the optimization calculations can be 
observed in Fig. 6. The mechanical power values are 
kept constant of 4.5 kW as well as constraint 
requirement while the ones of electric power vary 
depending on each design and converge closing to the 
output power (better efficiencies). The motor current 
(Fig. 6) is a reflected image of the input power while 
the output power is kept constant. Some designs are 
not feasible because they do not respect constraint 
requirements such as the fulfill coefficient values are 
higher than 80% as seen in Fig. 6. 

The Pareto front is detailed in Fig. 7. With the 
same materials (electrical steel M470-50A, copper 
winding and aluminum cage), the best trade-off 
between efficiency and active masse is obtained: 
variation of 85% ÷ 87.5% for 34 kg ÷ 46 kg for this 
industrial motor of 6 HP. Using another electrical 
steel with lower iron losses (i.e. M330-50A, 3.3 W/kg 
vs 4.7 W/kg) [4] and/or copper rotor cage can 
improve the efficiency of a motor, then change the 
characteristic of this Pareto front. 
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Fig. 8 shows the stator/rotor lamination design 
of a selected optimum on the Pareto front in Fig. 7. 
The main parameter values of this motor are detailed 
in Table 1. The selected design has an efficiency of 
86% with a minimum active mass of 36.6 kg (lowest 
motor cost for this efficiency). To achieve efficiency 
to 87%, the best design solution is to increase the 
weight to 42 kg (Fig. 7). 

Table 1. Main design parameters of the optimum 

 Main results Optimum 

O
bj

. F
un

c.
 

Efficiency % 86.0 

Active mass kg 36.6 

     Stator/rotor cores kg 15.2 / 13.5 

     Copper winding /   
     Aluminum cage 

kg 5.7 / 2.2 

Si
zi

ng
 p

ar
am

et
er

s 

Stator/rotor slots - 48 / 42 

Nbr of poles - 4 

Outer/inner diameters mm 206.5 / 
146.5 

Active length/airgap mm 164.9 / 0.5 

Nbr of turns/Nbr of wires - 18 / 4 

Wire diameter without 
insulation mm 0.8 

 

 
Fig. 8. Stator/rotor shape of the selected optimal design 

4. Conclusion 

A methodology of design of electrical machines 
based on the optimal design approach has been 
proposed and described. This numerical approach has 

been applied to the multi-objective optimization 
problem of a standard industrial motor application of 
6 HP. The best trade-off Pareto solutions between 
efficiency and active masse for this TEFC 
asynchronous motor are obtained after 7000 
evaluations of the model using Non-Sorting Genetic 
Algorithm-II.  

One selected optimum design on this Pareto 
front with an active mass of 36.6 kg can achieve 86 % 
of efficiency. Other designs can increase efficiency 
but with more weight. The optimal Pareto front 
results can help the designer and/or customers to 
choose the best design compromising cost and 
energetic efficiency.  
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