Chế tạo và đặc trưng nhạy khí H2S của vật liệu V2O5 cấu trúc nano

Synthesis and H₂S Gas Sensing Characteritics of Nanostructured V₂O₅

Đỗ Quang Đạt¹, Nguyễn Thị Lan Phương¹, Võ Thị Lan Phương¹, Phạm Thị Ngà¹, Lại Văn Duy², Lâm Văn Năng^{1*}, Nguyễn Văn Duy², Nguyễn Đức Hòa^{2*}

¹Khoa Tự nhiên, Trường Đại học Hoa Lư, Ninh Nhất, Ninh Bình, Việt Nam

²Viện Đào tạo Quốc tế về Khoa học Vật liệu (ITIMS), Trường Đại học Bách Khoa Hà Nội, Hà Nội, Việt Nam *Email: ndhoa@itims.edu.vn, lvnang@hluv.edu.vn

Tóm tắt

Trong nghiên cứu này, vật liệu nano V_2O_5 đã được tổng hợp thành công bằng phương pháp thủy nhiệt và ứng dụng thử nghiệm cho chế tạo cảm biến phát hiện khí độc H₂S. Kết quả ảnh SEM cho thấy vật liệu có hình dạng các tấm nano với kích thước không đồng đều vào khoảng 100-500 nm. Giản đồ nhiễu xạ tia X cho thấy vật liệu thể hiện các đỉnh nhiễu xạ đặc trưng của pha tinh thể Orthorhombic đơn pha V_2O_5 . Kết quả khảo sát tính chất nhạy khí cho thấy vật liệu có khả năng đáp ứng với khí H₂S ở nồng độ thấp (2.5-20 ppm) với thời gian đáp ứng và hồi phục tương đối nhanh. Nghiên cứu này chứng tỏ tiềm năng ứng dụng của vật liệu V_2O_5 trong cảm biến khí H₂S.

Từ khóa: V₂O₅, cảm biến, khí H₂S, thuỷ nhiệt.

Abstract

In this study, V₂O₅ nanomaterials were successfully synthesized by a facile hydrothermal method and tested for application in preparing toxic H₂S gas sensor. SEM image shows that the material has the shape of nanoplates with different sizes ranging from 100 to 500 nm. The XRD pattern shows that the material has a single phase of Orthorhombic crystal of V₂O₅. The results of the gas sensitivity survey show that the material respond well to H₂S at low concentrations (2.5-20 ppm) with relatively fast response and recovery time. This study demonstrates the potential of application of V₂O₅ material in H₂S gas sensors.

Keywords: V₂O₅, gas sensor, H₂S, hydrothermal.

1. Giới thiệu

 H_2S là một loại khí độc không màu, mùi trứng thối, nặng hơn không khí, và là nguồn gây ô nhiễm không khí ở các hồ ao, sông ngòi của Hà Nội. Các nguồn chính của khí H_2S là từ sự phân rã của các vật liệu hữu cơ, khí tự nhiên, khí núi lửa, dầu mỏ, nước thải và các mỏ lưu huỳnh [1,2]. Tiếp xúc với khí H_2S có thể gây tác hại đến sức khỏe con người như đau đầu, hôn mê, co giật và thậm chí tử vong [3,4]. Do đó, nghiên cứu phát triển các loại cảm biến để phát hiện sự tồn tại của khí H_2S nhằm giúp con người phòng, tránh được những tác hại của nó là thực sự cần thiết, và hiện nay đang thu hút sự quan tâm mạnh mẽ của các nhà nghiên cứu [5].

Vanadi là một kim loại chuyển tiếp, tồn tại rất phong phú trong vỏ Trái đất. Ở dạng \hat{o} -xít nó thể hiện với đa dạng các trạng thái \hat{o} -xy hoá, từ 2⁺ đến 5⁺, bao gồm VO, V₂O₃, VO₂, V₂O₅ [6]. Trong số những dạng \hat{o} -xít này, V₂O₅ là trạng thái bão hoà \hat{o} -xy, có nhiều tính chất đặc biệt như: năng lượng vùng cấm nhỏ (khoảng 2,3 eV), là chất khá bền với các tác nhân hoá học và nhiệt độ [7]. Gần đây vật liệu nano V₂O₅

ISSN: 2734-9381

https://doi.org/10.51316/jst.149.etsd.2021.31.2.19

đã được nhiều nhóm nghiên cứu cho các ứng dụng khác nhau như: Làm vật liệu catốt dung lượng cao cho pin ion-kẽm [8], siêu tụ [9], cảm biến khí [10], quang xúc tác [11] và pin mặt trời [12]. Các nghiên cứu về cảm biến khí trên cơ sở vật liệu V_2O_5 đã cho thấy triển vọng ứng dụng của vật liệu này để phát hiện đa dạng các loại khí như NO₂, NH₃, Xylen [10,13]. Tuy vậy, nghiên cứu về tính chất nhạy khí H₂S của vật liệu V₂O₅ hiện nay còn hạn chế.

Trong nghiên cứu này, chúng tôi trình bày các kết quả nghiên cứu chế tạo và đặc trưng nhạy khí H_2S của vật liệu nano V_2O_5 được tổng hợp bằng phương pháp thủy nhiệt. Các kết quả nghiên cứu cho thấy vật liệu nano V_2O phù hợp trong ứng dụng phát triển cảm biến phát hiện khí H_2S trong khoảng nồng độ thấp từ 1-10 ppm, đáp ứng yêu cầu trong quan trắc khí độc H_2S ở các trang trại chăn nuôi v.v.

2. Thực nghiệm

2.1. Chế tạo vật liệu nano V2O5

Vật liệu V_2O_5 đã được chúng tôi chế tạo bằng phương pháp thuỷ nhiệt, quy trình cụ thể như sau: 0,585 g (5,0 mmol) NH₄VO₃.5H₂O và 0,315 g (2,5 mmol) C₂H₂O₄.2H₂O hòa tan hoàn toàn trong 100 ml nước khử ion bằng máy khuấy từ gia nhiệt. Hỗn hợp thu được được đưa vào bình thủy nhiệt

Received: June 17, 2020; accepted: September 03, 2020

Hình 1. Giản đồ nhiễu xạ tia X của vật liệu nano V_2O_5 chế tạo được

(100 ml) và tiến hành ủ trong thời gian 6h ở nhiệt độ 150°C. Sản phẩm kết tủa thu được được rửa nhiều lần bằng nước khử ion và cồn, sau đó tiến hành quay ly tâm với tốc độ 5000 rpm và đem sấy khô trong tủ sấy ở 60 °C qua đêm. Tiếp theo, sản phẩm kết tủa được đem nung trong lò nung ở 500 °C trong 1h để thu được vật liệu nano V₂O₅. Hình thái bề mặt và tính chất của vật liệu V₂O₅ được nghiên cứu bởi kính hiển vi điện tử quét (SEM, S-4800, Hitachi), giản đồ nhiễu xạ tia X (XRD-D8 ADVANCE, Bruker).

2.2. Khảo sát đặc trưng nhạy khí

Đặc trưng nhạy khí của vật liệu được nghiên cứu thông qua phép đo sự thay đổi điện trở trong môi trường khí H_2S với các nồng độ khác nhau. Vật liệu V_2O_5 sau khi phân tán trong dung dịch cồn sẽ được phủ trực tiếp lên điện cực để chế tạo cảm biến bằng công nghệ màng dày, sau đó tiến hành ủ ở 400 °C trong 1 giờ để ổn định điện trở. Tính nhạy khí H_2S của cảm biến được nghiên cứu trên hệ Keithley 2700 với phần mềm VEE Pro tại phòng thí nghiệm Nghiên cứu phát triển và ứng dụng cảm biến nano tại viện ITIMS (Đại học Bách Khoa Hà Nội). Chi tiết về quy trình chế tạo cảm biến, và khảo sát đặc trưng nhạy khí tương tự như đã công bố trong tài liệu [14].

3. Kết quả và thảo luận

Hình 1 là giản đồ nhiễu xạ tia X của vật liệu V_2O_5 thu được sau khi thủy nhiệt và xử lý tại 500°C/1h. Giản đồ nhiễu xạ thể hiện các đỉnh nhiễu xạ đặc trưng ở các góc 20 lần lượt là 20,8°; 22,2°; 26,7°; 31,5°; 41,7° và 49,3° tương ứng với các mặt phẳng (001), (110), (101), (400), (020) và (021) đặc trưng của mạng tinh thể V_2O_5 có cấu trúc Orthorhombic (JCPDS standard card No. 89-0612). Các đỉnh nhiễu xạ đều có cường độ lớn và các đỉnh nhọn chứng tỏ mẫu tổng hợp được có độ kết tinh cao của pha tinh thể Orthorhombic. Ngoài ra, không quan sát thấy các đỉnh nhiễu xạ tạp chất chứng tỏ mẫu chế tạo là đơn pha. Đỉnh nhiễu xạ (001) có cường độ mạnh nhất, chứng tỏ đây là hướng tinh thể ưu tiên của vật liệu chế tạo được.

Hình 2. Ảnh SEM của vật liệu nano V₂O₅

Hình 2 là ảnh SEM của vật liệu V_2O_5 chế tạo bằng phương pháp thủy nhiệt thu được sau khi xử lý nhiệt ở 500 °C/1h. Trên ảnh chúng ta có thể quan sát thấy các cấu trúc nano với dạng tấm. Chiều dài trung bình của các tấm vào khoảng 0,5 đến 1 µm. Các tấm có chiều rộng nhỏ hơn vào khoảng 100 đến 500 nm. Các tấm nano tách rời và định hướng khác nhau trong không gian.

Hình 3. Tính chất nhạy khí H_2S của cảm biến ở các nhiệt độ khác nhau của cảm biến

Hình 3 là đồ thị thể hiện sự thay đổi điện trở của cảm biến tại các nhiệt độ và nồng độ khí H_2S khác nhau theo thời gian. Đặc trưng nhạy khí H_2S của vật liệu đã được chúng tôi khảo sát tại các nhiệt độ làm việc là: 250, 300, 350, 400 và 450 °C, với các nồng độ khí đo là 2,5, 5, 10 và 20 ppm. Kết quả cho thấy,

tại tất cả các nhiệt độ và nồng độ khí đã khảo sát, cảm biến làm việc ổn định và đều hồi phục về điện trở nền sau mỗi chu kỳ đóng - mở khí. Điện trở của cảm biến giảm khi tiếp xúc với khí H₂S, điều này phù hợp với lý thuyết, vì H₂S là một khí khử, khi tiếp xúc với vật liệu, chúng phản ứng với các ion ô-xy hấp phụ trên bề mặt vật liệu (O⁻, O₂⁻, O²⁻) và giải phóng các điện tử và khí SO₂. Chính vì thế mà điện trở cảm biến giảm. Kết quả này hoàn toàn phù hợp với các công bố về vật liệu V₂O₅ cho cảm biến khí [15].

Hình 4 là kết quả tính toán đô đáp ứng khí H₂S của vật liệu khi khảo sát ở các nhiệt độ khác nhau. Có thể thấy rằng cảm biến đáp ứng tốt ở tất cả các nồng độ khí và nhiệt độ khảo sát. Khi nhiệt độ tăng thì độ đáp của cảm biến tăng. Độ đáp ứng đạt cao nhất khi cảm biến được đo ở nhiệt độ 350 °C (khoảng 2,8 lần tại 20 ppm khí đo), độ đáp ứng thấp nhất đạt khoảng 1,3 lần tại 250 °C và 2,5 ppm khí đo. Tuy nhiên, độ đáp ứng của cảm biến giảm khi tiếp tục tăng nhiệt độ lên trên 350 °C. Chứng tỏ nhiệt độ làm việc tối ưu của cảm biến để có độ đáp ứng cao nhất là 350 °C. Độ đáp ứng của cảm biến nhìn chung tăng khá tuyến tính theo các nồng đô khí H2S ở các nhiệt đô khác nhau. Kết quả khảo sát chứng tỏ vật liệu V₂O₅ rất phù hợp trong chế tạo cảm biến khí H₂S làm việc trong khoảng nồng độ từ 2,5 đến 20 ppm. Khoảng làm việc của cảm biến phù hợp với ứng dụng trong quan trắc ô nhiễm môi trường.

Hình 4. Đáp ứng khí H₂S của cảm biến ở các nhiệt độ khác nhau

Hình 5 là thời gian đáp ứng và thời gian hồi phục của cảm biến được tính toán dựa trên dữ liệu điện trở - thời gian. Có thể thấy rằng ở tất cả các nhiệt độ và nồng độ khí đo thời gian đáp ứng và hồi phục khá ngắn (đáp ứng dưới 80 giây và hồi phục dưới 400 giây). Tại nhiệt độ 400 °C thời gian đáp ứng là dưới 10 giây và thời gian hồi phục là khoảng dưới 150 giây tại tất cả các nhiệt độ, nồng độ khí đo. Các kết quả về thời gian đáp ứng và hồi phục của vật liệu V_2O_5 cho ứng dụng cảm biến khí H_2S của chúng tôi là ngắn hơn nhiều so với vật liệu CuO/ZnO và vật liệu Pd/CuO trong một số công bố trước đây cho cảm biến phát hiện khí H_2S [16].

Hình 5. Thời gian đáp ứng (a) và thời gian hồi phục (b) của cảm biến tại các nhiệt độ của cảm biến.

4. Kết luận

Chúng tôi đã chế tạo thành công vật liệu nano V_2O_5 bằng phương pháp thủy nhiệt đơn giản nhằm ứng dụng trong cảm biến khí. Vật liệu tạo ra có dạng tấm kích thước vào khoảng 100 - 500 nm. Chúng tôi cũng đã chế tạo thành công cảm biến khí và khảo sát tính chất nhạy khí H₂S trên cơ sở vật liệu nano V_2O_5 . Kết quả cho thấy vật liệu có khả năng đáp ứng với khí H₂S trong dải nhiệt độ từ 250 đến 450 °C ở dải nồng độ khí từ 2,5 đến 20 ppm với thời gian đáp ứng tương đối ngắn. Nghiên cứu này cho thấy vật liệu V_2O_5 có tiềm năng lớn trong việc ứng dụng cho cảm biến khí.

Lời cảm ơn

Nghiên cứu này được thực hiện với sự tài trợ của Bộ GD&ĐT với mã số B2020-BKA-24-CTVL, và một phần của đề tài nghiên cứu khoa học của trường Đại học Hoa Lư (Lâm Văn Năng).

Tài liệu tham khảo

- Y. Zeng, et al, Rapid and selective H₂S detection of hierarchical ZnSnO₃ nanocages, Sens. Actuators B Chem. 159(2011), 245–250.
- [2]. R. Bari, S. Patil, A. R. Bari, Detection of H₂S gas at lower operating temperature using sprayed nanostructured In₂O₃ thin films, Mater. Sci. 36(2013), 967–972.
- [3]. Chou. C, Hydrogen Sulfide: Human Health Aspects: Concise International Chemical Assessment Document 53(2003); World Health Organization: Geneva, Switzerland.

- [4]. A. D. Wiheeb, et al, Present Technologies for Hydrogen Sulfide Removal from Gaseous Mixtures. Rev. Chem. Eng. 29(2013), 449–470.
- [5]. A. Boontum, et al, H₂S sensing characteristics of Nidoped CaCu₃Ti₄O₁₂ films synthesized by a sol-gel method, Sensors and Actuators B: Chemical. 260(2018), 877–887.
- [6]. T. K. Le, M. Kang, S. Kim, A review on the optical characterization of V₂O₅ micro-nanostructures, Ceramics International. 45(2019), 15781–15798.
- [7]. K. Schneider, M. Lubecka, A. Czapla, V₂O₅ thin films for gas sensor applications, Sensors and Actuators B: Chemical. 236(2016), 970–977.
- [8]. P. Hu, et al, Porous V₂O₅ microspheres: A high-capacity cathode material for aqueous zinc–ion batteries", Chemical Communications, 55(2019), 8486-8489.
- [9]. M. Ghosh, et al, A rationally designed self-standing V_2O_5 electrode for high voltage non-aqueous all-solidstate symmetric (2.0 V) and asymmetric (2.8 V) supercapacitors, Nanoscale. 10(2018), 8741-8751.
- [10]. A. A. Mane, et al, Effect of substrate temperature on physicochemical and gas sensing properties of sprayed orthorhombic V₂O₅ thin films, Measurement. 131(2019), 223-234.
- [11]. S. K. Jayaraj, et al, Enhanced photocatalytic activity of V₂O₅ nanorods for the photodegradation of organic

dyes: A detailed understanding of the mechanism and their antibacterial activity, Materials Science in Semiconductor processing. 85(2018), 122–133.

- [12]. A. Kuddus, et al, Role of facile synthesized V₂O₅ as hole transport layer for CdS/CdTe heterojunction solar cell: Validation of simulation using experimental data, Superlattices and Microstructures. 132(2019), 106168.
- [13]. Y. Vijayakumar, et al, V₂O₅ nanofibers: Potential contestant for high performance xylene sensor, Journal of Alloys and Compounds. 731(2018), 805– 812.
- [14]. Đ. Q. Đạt, et al, Synthesis and NH₃ gas sensing characteristics of rGO/WO₃ nanocomposite, Journal of Science and Technology. 124 (2018) 068–071.
- [15]. Y. Vijayakumar, et al, Nanostructured flower like V₂O₅ thin films and its room temperature sensing characteristics, Ceramics International. 41(2015), 2221–2227.
- [16]. Z. Wu, et al, Ultrafast Response/Recovery and High Selectivity of the H₂S Gas Sensor Based on α-Fe₂O₃Nano – Ellipsoids from One-Step Hydrothermal Synthesis, ACS Appl Mater Interfaces. 11(2019), 12761-12769.