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Abstract 

Web application distributed denial-of-service attack (Web-App DDoS Attack) is a common dangerous 
attack that hackers use to attack the information systems of organizations. Web application is often 
hackers' target because this kind of application is an external interface of an organization to provide the 
organization's activities services. In addition, due to the emergence of weaknesses and security holes in 
applications and operating systems, hackers can easily create a large-scale botnet for more effective Web-
App DDoS Attack. In fact, there have been many research projects related to the defense against this type 
of attack. However, DDoS attacks still cause serious damage to the systems of organizations due to the 
fact that the attack methods are increasingly sophisticated and constantly changing. In this study, we 
propose a method for Web-App DDoS Attack mitigation on the basis of analyzing the relationship among 
the requests sent to the Web application to find out the source IP address of malicious requests and to 
perform mitigation. Our method provides a set of criteria that allows determining whether a source IP 
address is normal or malicious in a short period of time. The criteria also make it difficult for hackers to 
change the attack methods to overcome the characteristics of the criteria.  
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1. Introduction  

DDoS*attack is a dangerous form of network 
attack that destroys the availability of a server or an 
information system by depleting resources or 
bandwidth of the system. DDoS attack is usually 
performed through a collection of hunched computers 
in a botnet and controlled by a C&C Server. Web 
application is a popular application to provide online 
services of many different types of industries and 
fields such as Economy, Politics, Finance,                       
E-commerce, Transport ... Most Web applications 
providing services over the Internet using the 
HTTP/HTTPS protocol. Therefore, in addition to 
dealing with other types of network attacks (SQL 
Injection, XSS…), the Web application also has to 
face the DDoS attack. To perform a DDoS attack on a 
Web application, hackers take advantage of the botnet 
to send overflowing requests to the server, which 
would cause server overload and fall into a state of 
denial-of-service. Hackers often intentionally make 
real requests, like requests sent from a normal 
computer to bypass security devices such as Firewall 
and IDS/IPS. 

In the previous study [1], we proposed a model 
to quickly detect the source of DDoS attacks on the 
Web application on the basis of combining two 
criteria: the frequency of access and the correlation 
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between requests sent from a source IP. However, in 
the previous research, we only proposed ideas and 
solutions to implement them in a very basic and not 
specific way. 

In this study, we propose a specific solution to 
solve the problem of detecting the source of the 
attack request on a Web application using the 
correlation criterion based on a basic idea: Requests 
sent from attackers will have the same characteristics 
and repeat because the attackers and the programs are 
controlled by the same C&C server. Whereas access 
machines normally have a high degree of randomness 
in the frequency of incoming access and requests. 
Here we call our recommended method AntiDDoS-
AC for short. 

Therefore, we seek to build correlation datasets 
among requests sent from the same machine in a 
normal operating state. Correlated data set will be 
used to detect the source of the attack request when a 
DDoS attack occurs on a Web server. We also 
propose different criteria to make it difficult for 
hackers to falsify the correlated data set during its 
construction. 

2. Related Work  

Authors Qin Liao et al. (2014) propose a set of 
features used to detect App-DDoS attacks on the 
basis of a Web Server access log analysis [5]. The 
authors use 9 features retrieved from the access log. 
The features are divided into groups of required time, 
frequency, and length. For experimental evaluation 
data, the authors use ClarkNet-HTTP datasets. This 
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data set are collected over 2 weeks from a Web 
Server with 3,328,587 normal requests. For the attack 
data, the authors simulate the attacks and mixes them 
with the ClarkNet-HTTP dataset. 

The authors compare the efficiency of the three 
methods namely Naive Bayes, RBF Network, and 
C4.5 with the data set obtained and with 14 features 
that the authors proposed. Authors Ko Ko Oo et al 
(2015) propose a method to prevent DDoS attacks on 
the application layer using the Hidden Semi-Markov 
model [6]. The authors use 03 groups of criteria on 
frequency of sending requests to Web applications, 
Web page reading time and order of received 
requests. 

From these 3 groups of criteria, the authors 
choose 7 specific criteria (the total number of 
received packets, the total number of data sizes 
received, the average size of the packet, the frequency 
of packets received, data size per unit time, degree of 
variation in duration and packet size) to provide input 
to the authors method. The authors also proposed an 
algorithm model including 5 steps to distinguish 
attacks or normal packets. 

The authors create test data to evaluate his 
method using Hping3 tool. Authors K. Munivara 
Prasad et al. (2018) propose a method to prevent 
DDoS attacks on Web applications using the machine 
learning method [2]. The authors use the K-Means 
algorithm to group sessions connected to Web Server 
into groups over time. In addition, the authors also 
use the criteria of the request length, the proportion of 
number of packets, and the time interval between 
requests sent to the Web Server to establish attack 
detection thresholds. The authors use LLDOS 2.0.2 

test data set [3,4] to evaluate experimentally the 
proposed method. 

 

3. Web App-DDoS Attack Prevention Model and 
Method  

3.1. Operating Model and Principle Of Operation  

In this section, we propose the operating model 
and principle of operation of the AntiDDoS-AC 
method. The operation of this system is described 
below. 

The AntiDDoS-AC method has two main 
functions: DDoS Detection (DDoS Detection) and 
DDoS Prevention (DDoS Prevention) through finding 
sources of sending attack requests to update to 
BlackList. Separating the detection and prevention 
functions into two independent functions allows 
optimal performance and efficiency, because there are 
less system resources devoted to the DDoS Detection 
function than to the function DDoS Prevention. On 
that basis, the components of the AntiDDoS-AC 
method are built on two independent DDoS Detection 
and DDoS Prevention functions whose principle of 
operation is as following.  

When the system operates in a normal state, the 
AntiDDoS-AC method will passively monitor the 
network connection to collect Web application access 
information and store it in the database. This database 
is data input for two functions DDoS Detection and 
DDoS Prevention. After a certain period of time, this 
database is retrieved to check whether the system is 
under a DDoS attack through the DDoS Detection 
function. 

 

 
Fig. 1. Functions in AntiDDoS-AC component 
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Fig. 2. Basic model of AntiDDoS-AC method 

In case, DDoS Detection detects an attack, it 
will set the Attack Status flag to 1 to start DDoS 
Prevention function. DDoS Prevention function 
works in an infinite loop and constantly check Attack 
Status, if this value is set to 1, DDoS Prevention will 
perform prevention function through finding the 
source of the attack request and update to Blacklist. 
After finding out the list of source IPs sending the 
attack request, the AntiDDoS-AC method will send to 
the network device (Router) / security device 
(Firweall) to perform blocking. In case the DDoS 
Detection function does not detect the attack, the 
collected data set will be used to update the Whitelist. 
The Whitelist list is used to allow the source IPs in 
this list to have priority access to a Web application 
when an attack occurs [8, 9]. 

3.2. AntiDDoS-AC Method 

The basic idea of the AntiDDoS-AC approach is 
that when the attack occurs, the requests sent to the 
server will include both the attack requests and the 
normal requests. In which, the requirements for the 
attack make up the majority. Therefore, the problem 
that the AntiDDoS-AC method has to deal with is 
finding out the attack sender to put in the Blacklist 
and the normal source to put in the Whitelist. The 
basic idea of the AntiDDoS-AC method is described 
as shown below. 

In this study, the AntiDDoS-AC method uses 
two correlation criteria. This criterion is built on the 
basic idea that when observing the set of requests 
received from the average user's computer, they will 
have a certain correlation and randomness. While the 
requests received from the attacker will have different 
characteristics than usual (for example, these 
machines send only one request repeatedly or a group 
of requests according to the control command of the 
C&C server). Therefore, when the system operates in 
a normal state, we seek to construct a correlated data 
set to identify the source of the attack request and 
normal request when the attack occurs. 

 

 

3.3. Building Correlation Criteria in AntiDDoS-AC 
Method 

The correlation criterion (we call it SAT2 for 
short, as inconsistent with our previous research [1]) 
which is built on the basic idea that for normal users, 
when accessing a Web application, they will access 
various contents on the server (surf the web). 
Therefore, when looking at the server side, we can 
see the correlation of requests sent to the server from 
each source IP. For example, when a user sends an rA 
request to the server, he or she then sends an rB 
request to the server as well. The question is how to 
build correlated datasets to ensure that hackers can 
hardly send false requests on purpose to the server 
during normal operation and use the request set 
during the attack. 

To solve this problem, during normal operation, 
we provide a set of criteria that apply to each source 
IP sending the request and the set of requests sent 
from that source IP. Only when the source IP and the 
requests simultaneously satisfy the conditions, can 
they be included in building the correlated request set 
using the Association Rule algorithm. From there, the 
proposed method includes 02 processes of building 
correlation sets and detecting attack requirements, 
which are described in detail as below: 

a) Build correlation data set 
 

To determine whether a request is anomalous or 
not, we cannot rely on each request individually, 
because requests used in DDoS attack are generated 
as normal requests. Therefore we need to find the 
correlation between them to find the anomaly. 
Through experimental observation, we found that 
there is a difference between requests sent from a 
normal computer and requests sent from an attacker. 
Specifically: for a normal computer, when accessing 
a Web page, the user will send different requests to 
the Web server to access different information on a 
Web page (illustrated as shown below). Whereas the 
requests sent from the attacker are usually the  same  
requests or groups (because they are controlled by  
the same C&C server) or having the same repetitive 
pattern of change. 
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Fig. 3. Illustration of correlation request submission 

 
Fig. 4. Illustration send request  

As per our above analysis, the problem is how to 
build clean correlation data sets that hackers can 
hardly attack into the training phase with false 
requests. In order to solve the problem, we build a set 
of criteria applied to the source of requests and 
corresponding requests to verify whether the requests 
are sent from ordinary users. After specific period of 
time, we pull the information out for verification. The 
qualified requests and senders will be input to the 
Association Rule algorithm to create correla data set. 
The criteria we use are as following. 

b)  Random criteria regarding time of access 

This criterion is to figure out whether URL sent 
from different source IP are eligible to build 
correlated datasets. We observed that, if the system 
operates smoothly, any requests from different IP 
sources can be sent randomly in time to the server. 
However, if the system is attacked, departure time of 
requests will no longer be random because they are 
all forced to send simultaneously as shown below. 

According to the above observation, for this 
criterion, we use Entropy to calculate the randomness 
in time to send the requests. We use unit TT and this 
unit is divided into smaller units ∆t (the value of ∆t is 
set according to each specific protection-needed 
system by the administrator). And the value of 
Entropy H (X) is calculated based on the arrival 
probability of each request being sent within a certain 
time and divided as mentioned above. Let n be the 
required number of submissions per sampling, so the 
Entropy of the H (X) value is calculated as follows: 

( ) 2
1

 
n

i i
i

H X p log p
=

= −∑  

We need to determine the Entropy value for the 
point of arrival of normal mode requests. We have 

sampled the last k times. Let HT  be the Entropy value 
calculated after k sampling times. Therefore, we can 
calculate the value. 

1
( )k

T nn
H H X

=
= ∑  

From the analysis above, we realize that the 
ability of randomness happening to the arrival of the 
requests is higher than that towards the time of the 
DoS / DDoS attack. Therefore, we choose threshold 
value Thd = HT/α. Then, Entropy calculated with 
sampled Hdata data will be calculated and compared 
with Thd value. If Hdata < Thd, then DoS / DDoS 
attack has occurred. α is the value applied by the 
administrator in order to be able to change 
accordingly protection-needed server. 

c) The validity of each source IP sending the request 

In the next step, we need to determine whether 
the source IPs which have satisfied the above 
criterion meet the set of criteria below or not. In the 
case that the source IPs satisfy the following set of 
criteria, these IPs will be put on the Whitelist list and 
requests sent from this source will be constructed 
with the correlative data set. The criteria include: 

- Requests that are not sent again in Δs time. We 
find that the normal user when accessing a website 
takes time to read the content of that page and do not 
resubmit the request within a certain period of time. 
However, with attacking computers, the same request 
can be sent continuously during a small amount of 
time. Therefore, we believe that the normal source 
should satisfy the condition of not resending sent 
requests within a certain period of Δs time. The Δs 
value may vary from system to system based on 
monitoring the system's performance without being 
hacked. In this study, we choose Δs = 5s, based on the 
collected attack log data to evaluate the proposed 
solution. 

- Average arrival time deviation of requests will 
be sent from a DTR source IP: The moment when 
requests are sent from the same source IP from a 
normal machine will have some degree of 
randomness, while requests are sent from the attacker 
has a certain degree of correlation (due to being sent 
through a same malicious program). To identify clean 
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sending sources, we determine the total time 
deviation calculated by the time of arrival of each 
request. With normal sending sources, this value will 
have a certain magnitude, while with attackers this 
value will below. We use an MR array of n elements 
to store information about the duration of requests 
received from a source IP. For example with normal 
source MR = [12,3,5,10,…,n]), with attack source             
MR = [2,2,3,2,…,n]). Let i be the ith request received 
and Ti the time the request is received. From there the 
total time deviation between the requirements is 
calculated by the following formula:  

 11
 

 
n

i ii
TR

T T
D

n
+=
−

=∑  

A TTR threshold is set to determine whether the 
arrival times of requests received from a source IP 
satisfy a normal condition or not. If the total deviation 
DTR > TTR, the arrival time of requests received from 
an IP is then deemed to satisfy the condition. In this 
study, we choose the value TTR = 10s, on the attack 
log data we use the experimental evaluation model of 
the proposed solution. This value may vary 
depending on each protected system. 

- DL url length average deviation criterion: 
Normal machines when sending a request to the 
server usually have different lengths (calculated by 
the number of characters in the url) due to the 
different content visited on the server. While the 
lengths of the requests sent from attackers is usually 
the same and repeatable. Therefore, the DL deviation 
of the attack machines will be much smaller than the 
normal ones. 

- Similar to the above approach, we use the ML 
array to store the length of n requests sent to the 
server from a source IP. For example with normal 
source ML = [12,30,50,120,…,n]), with attack source 
MR = [30,30,55,55,…,n]). Let i be the ith request 
received and Ci be the length of each request 
received. Average deviation DL is determined by the 
following formula: 

 ( )
( )

2

1         
n

ii i
L

CC D c
D D c

n n
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−  = =∑  

From there, for each source IP with inbound 
request set, we determined that this DL value must be 
greater than a pre-set TDL threshold based on each 
specific system that needs to be protected. In this 
study, we choose TDL = 60 characters on the attack 
log data, to evaluate the proposed solution 
experimentally. After finding the source IPs and 
requests sent from those IPs satisfing the same 
conditions above, the source IP will be put into the 
Whitelist and the data set including the IP and 
requests will be used as input of the Association Rule 
algorithm to construct the correlation data set. 

To determine the input parameters for the 
Association Rule algorithm (level of support and 
reliability), we collect logs of access data on the 
actual network environment at Hanoi University of 
Science and Technology when the system is not 
under attack. Then, we apply the Association Rule 
algorithm to the data set with different levels of 
support and reliability to find out a suitable value for 
the largest correlation set. Through experiments, we 
determined the level of support equal 2 and reliability 
greater than 50% are the appropriate values for the 
largest number of correlation sets. However, for each 
system that requires different level of protection, 
those values may be changed accordingly. 

 

3.4. Design the Data Structure for the Algorithm 

The second issue that comes along with this 
criterion is how to quickly to detect whether requests 
are offensive or normal ones, in the case that the 
server receives a lot of requests when an attack 
occurs. To solve this, we design 02 structured data 
tables (TR và TA) with the algorithm that allows 
storage and quick searching for a set of requests 
satisfying correlated conditions when the server 
receives many requests at the same time.  

 
Fig. 5. Structure of TR data sheet 

TR datasheet has the structure as shown above, 
used to store information about the hash value of each 
url and corresponding index in the hash-table. We use 
TR table separately to store index and hash 
information (url) due to large number of urls which 
need to store information. Storing that information 
separately will optimize storage space and processing 
time. We will present in details as shown in the 
algorithm below. 

We use the TA data sheet, structured as shown in 
figure 6, to store information to be processed when 
the first request from a source IP arrives. The 
information about the correlated request set in the TR 
table is then transferred to the TA table to verify 
whether that subsequent requests from each incoming 
source IP are normal or attack. Information in the 
table only has a lifetime of Δtc based on the time the 
test takes place and the time when the server received 
the first request. 
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Fig. 6. Structure of TA data sheet 

In this study, we choose the value Δtc = 300s. 
This means we assume that in about 5 minutes the 
user sends another request to the server and we can 
verify whether that the source IP is normal or not. 
300 seconds is the amount of time required to verify 
if a sender is normal or not. However, if the IP is 
attacking, it will be verified as soon as the next 
request is sent to the server without wasting Δtc 
(300s). 

3.5. Detect the Source of the Attack Using the 
Correlation Data Set 

a)  Some concepts used in the method 
 

FT threshold to detect suspect attack set: FT 
attack detection threshold is pre-set threshold to 
define the same requests that the server receives in a 
unit of time. 

Set of suspected RA attack requests: A request 
that satisfies a condition with the frequency of 
sending a FT request from the same source IP 
address. 

The BL list is used to store the source IP 
addresses information identified as the attack sources 
after requests sent from these source IP addresses 
have been checked against the set of criteria. For each 
different attack request R(i), we have a list of 
different source IP addresses S(s,i) and corresponding 
to the frequency of sending requests f(s,i). 

The list of sources sending BlackList attack 
requests is denoted BL = {B1, B2, …, Bn}, Bi = 
[S(s,i),R(i),f(s,i)].  

DInp Input Data Set: Structured data set used to 
store the request information sent to the server. For 
each new request sent to the system, DInp will be 
updated. 

Data set to store suspect attack requests DSus: 
This data set has the same structure as the DInp, used 
to store all information related to the request which 
are considered suspected attack after satisfying the 

required sending frequency greater FT, after each 
interval check for the condition of DInp. 

b) Set the input parameters for the algorithm: 
 

Value ∆s = 0.5s, test time with new request for 
each SrcIP; The value Count = 3, the value specifies 
the number of repeated requests in a period of ∆s 
from a srcIP; The above values are pre-set and may 
vary by system. 

 
Fig. 7. AntiDDoS-AC algorithm 

The AntiDDoS-AC-STA2 algorithm is 
performed with the following steps: 

Step 1: For each request in the DSus 
corresponding to the corresponding source IP, define 
the index and the corresponding set of that source 
C(srcIP) in the TR, then input into the TA as well as 
update the corresponding timestamp. 

Step 2: Periodically after each ∆s period, check 
in the DInp table if there are new requirements for 
each srcIP in TA. If yes, check the following steps. 

Step 3: Calculate the hash value of the request. 
If the hash value of the incoming request exists in the 
C(srcIP) correlation set then put that IP in Whitelist. 

If the hash value matches R value then update 
count value for that srcIP and check if count value 
(srcIP) ≥ 3 or not. If so, put that IP in Blacklist. 

The IPs put in Whitelist and Blacklist will be 
deleted in DInp and DSus correspondingly to release 
memory. 

6. Experimental and Result 

6.1. Creat Experimental Data 

For experimental evaluation, we have built a 
botnet on a virtual environment on 03 highly 
configurable physical servers. Experimental system 
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with a scale of 13 Cisco routers and 45 client 
computers, installed with Win XP and Centos 
operating systems. These computers are infected with 
malicious code and under the control of a C&C server 
to perform TCP Syn Flood attack on Web Server. 
Routers are set up in a virtual environment using 
GNS3 software [7] with the Cisco 7200 Router series. 

After performing a simulated attack for a period 
of 3 minutes, we obtained a data set stored as PCAP 
which contained 66,851 packets. The resulting 
database got 1,310 requests, including both attack and 
normal requests, and was stored in MySQL database. 

We perform log sampling accessing website of 
Graduate Training Institute (Hanoi University of 
Science and Technology) from October 17, 2018, 
18:21:22 to October 18, 2018, 09:20:35. As a result, 
we obtained 6,686 requests from 372 different srcIPs.  

6.2. Experimental Evaluation 

We perform an experimental testing evaluation 
with a dataset using the following parameters used as 
follows: 

- Threshold of detection of suspicious FT attack 
requests (requests / second). 

- The quantity required in the DSus. 

- The quantity of suspicious requests to attack 
RA. 

- The correct detection rate of the sources 
sending attacks: Detection Rate - DR. 

- The false detection rate (define a normal 
request as an attack one): False Positive - FP. 

Experimental testing results prove a high 
detection rate of our method as shown below: 

Table 1. Experimental testing results of the 
AntiDDoS-AC method 

FT DSus RA DR FP 

50 250 185 75.32% 1.28% 

100 500 365 92.56% 1.11% 

150 750 668 94.08% 0.89% 

200 1000 897 88.75% 1.47% 

300 1310 863 67.89% 1.49% 

From the above experimental testing results, it 
shows that the rate of detecting the source of the 
attack request depends on the FT value. This value 
should be adjusted to suit each server that needs to be 
protected. If the FT value is set too small, the false 
detection rate will increase. If the FT value is set too 
large, attack senders with low request frequency will 
be omitted and the rate of detecting DR attack 
sources will decrease as well. 

6.3. Comparison of the effectiveness of the 
AntiDDoS-AC Method with Other Methods 

Table 2. Comparison of experimental testing results 
among AntiDDoS-AC, KNN, and NB 

Methods Detection 
Rate False Positive 

KNN [10] 89.03% 1.03% 

NB [9] 92.47% 1.47% 

AntiDDoS-AC 93.75% 0.89% 

Results of comparison regarding processing time is 
shown in figure 8: 

 
Fig. 8. Test data processing time of AntiDDoS-AC, 
KNN, and NB 

The results showed that, on the same test data 
set, the AntiDDoS-AC method has a higher rate of 
detecting attack requests (Detection Rate - 93.75%) 
and the false detection rate (False Positive) is 0.89%, 
compared to the two compared methods. 

7. Conclusion 

In this study, we propose a specific solution to 
solve the problem of detecting the source of the 
attack request on the Web application using the 
correlation criterion with the proposed method, 
AntiDDoS-AC. Experimental testing results show 
that our proposed method has a higher rate of 
detection of attack sources with less amount of time 
needed. However, the experimental results are only 
evaluated on the data set generated from a self-built 
test environment. 

In our next research, we will continue to study 
new criteria to make our methods more accurate and 
effective. In addition, we will keep on studying 
experimental evaluation on many different data sets 
which will surely enhance the degree of objectivity in 
evaluating the proposed method. 
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