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Abstract  

  Leveraging Monte Carlo Simulation (MCS) combined with simple random sampling (SRS) to evaluate 
probabilistic locational marginal price (P-LMP) requires long computation time and large computer storage. 
The paper proposes the joint usage of Latin hypercube sampling (LHS) with sample reduction techniques 
called the fast forward selection (FFS) algorithm into Monte Carlo simulation for calculation of the P-LMP. 
This fast forward selection algorithm is needed to cut down the number of samples while keeping most of the 
stochastic information embedded in such samples. The LHS-FFS-based P-LMP is investigated using IEEE 
6-bus and 24-bus systems. This method is compared with SRS and LHS only. The LHS-FFS approach is 
found to be efficient and flexible; therefore, it has the potential to be applied in many power system 
probabilistic problems. 

  Keywords: Latin hypercube sampling (LHS), Monte Carlo simulation (MCS), probabilistic locational marginal 
price (P-LMP), fast forward selection (FFS) algorithm, uncertainty. 

 

1. Introduction 

Currently, many*countries around the world, 
including Vietnam, have been operating wholesale 
electricity markets. In the wholesale electricity 
market, the market participants are generation 
companies (GENCOS) and distribution companies 
(DISCOS). The market operator collects generating 
offers by producers, load bids by consumers and 
clears the market by maximizing social welfare. To 
make payments in the electricity market, locational 
marginal price (LMP) is calculated. The difference in 
LMPs between two nodes of a branch is due to 
congestion and losses on that branch. The locational 
marginal pricing methodology is widely used in 
electricity markets to determine the electricity prices 
and evaluate the transmission congestion cost. 

Furthermore, the issue of climate change has 
required the pressing need for limiting industrial 
emissions of greenhouse gases. In addition to the 
tragic consequences of climate change, there is an 
energy crisis in many countries in the world due to 
the depletion of fossil fuels. Therefore, renewable 
energy has been prominent in most industrialized 
countries with the aim of decarbonizing in the 
electricity sector as well as meeting the rising demand 
for energy and safeguarding the security of the energy 
supply. Solar energy, wind, geothermal, biomass, 
waves and hydrogen energy are major renewables. 
Wind power is an economically attractive renewable 
for producing electricity. Therefore, wind power is 
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being integrated with higher and higher amounts into 
electric energy systems throughout the world [1]. 
However, wind power is also an intermittent source. 
The integration of a significant amount of wind 
power into a power system results in critical 
operational challenges, which, in turn, originate 
alternations in locational marginal prices (LMPs) [2]. 

LMP is the additional cost when the load 
increases at a specific node. The LMP-based 
approach has been dominant to determine electricity 
prices and manage transmission congestion in power 
markets. Locational marginal prices may encompass 
three components: marginal energy price, marginal 
congestion price, and marginal loss price. The 
optimal power flow (OPF) has been applied in the 
power industry to calculate LMP [3]. 

The uncertainty and variability of wind 
generation could lead to LMP variations [4]. 
Evaluating the impacts of the uncertain parameters on 
LMP is of most importance in power system planning 
and operation. Different techniques, such as the 
probabilistic approach [5-6], possibilistic method [7], 
hybrid possibilistic-probabilistic strategies [8], 
information gap decision theory [9], and robust 
optimization [4], have been developed to deal with 
uncertainties. Among these methods, probabilistic 
techniques are more appropriate for the impact 
assessment of renewable energy sources [10].   

Different approaches have been introduced to 
determine the probabilistic locational marginal price 
(P-LMP) from solving the probabilistic optimal 
power flow (P-OPF). In Monte Carlo (MC) based 
techniques, samples from random input variables are 
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generated, and then the deterministic problem is 
solved for each sample [6]. Simple random sampling 
(SRS) is one of the most popular MC techniques in 
which samples are randomly generated from input 
variables' distribution functions. While the SRS can 
provide highly accurate results, it suffers from the 
drawback of heavy computation time and the high 
storage required for many repeated calculations. The 
P-OPF problem can be solved by employing the Latin 
hypercube sampling (LHS) approach [6]. Although 
the number of Latin hypercube samples is reduced 
compared with the simple random samples, the 
number of these samples is generally large to 
represent the uncertainty involved accurately. This 
may render the P-OPF problem intractable for 
electricity market operation [11]. As a result, a 
scenario reduction is applied to decrease an initial 
LHS sample size. There are several methods available 
to reduce scenarios to be used in the P-OPF problem 
[12]. These methods seek to obtain a reduced number 
of scenarios that best retain the essential features of a 
given original scenario set according to a probability 
distance. In [13], a scenario reduction algorithm 
based on submodular function optimization is 
employed to optimize the number of scenarios and 
rank these scenarios. 

In this paper, P-LMP is calculated using MC 
with LHS combined with scenario reduction 
techniques, namely Fast Forward Selection (FFS) 
Algorithm. This paper's main contribution is that P-
LMP determined using three different approaches, 
particularly simple random sampling, Latin 
hypercube sampling, and Latin hypercube sampling 
combined scenario reduction techniques, are 
compared and analyzed.  

The paper's remainder is presented as follows: 
Section 2 presents Latin hypercube sampling; Section 
3 presents the FFS sample reduction technique. The 
LMP calculation method based on the ACOPF 
market-clearing model is presented in Section 4. 
Section 5 describes the MC simulation procedure for 
calculating the probabilistic locational marginal price. 
The calculation examples and the comparisons of 
different P-LMP approaches are presented in Section 
6. The conclusion is given in Section 7. 

2. Latin Hypercube Sampling 

Latin hypercube sampling is a recent 
development in sampling technology designed to 
accurately reflect the input distribution through 
sampling in fewer iterations when compared with the 
simple random sampling method. The key to Latin 
hypercube sampling is the stratification of the input 
probability distributions [5]. Stratification divides the 
cumulative curve into equal intervals on the 
cumulative probability scale (0 to 1.0). A sample is 
then randomly taken from each interval of the input 
distribution. Sampling is forced to represent values in 

each interval and is forced to recreate the input 
probability distribution. With Latin hypercube, a 
sample is drawn from each interval; therefore, the 
samples more accurately reflect the distribution of 
values in the input probability distribution. 

It is assumed that there are the K input random 
variables in a probabilistic formulation, including X1, 
X2,…, XK. The cumulative distribution function of Xk 
is expressed as follows: 

( ) 1,2,...,k k kY F X k K= ∀ =  

If the sample size is N, then the range of Yk is 
separated into N intervals that are not overlapping. 
Each interval has a length of 1/N. One sampling value 
of Yk is selected from the midpoint or random point of 
each interval. After that, the inverse function of the 
cumulative distribution function is employed to 
determine the sampling values of Xk.  

As illustrated in Fig. 1, if the midpoint of each 
interval is adopted, the nth sample of Xk can be 
calculated as follows: 

1 0.5 1,2,...,kn k
nx F k K

N
− − = ∀ = 
 

 

Then, a row of the sampling matrix
[ ]1... ....k kn kNx x x  is formed from the sample values of 
Xk. When all the K input random variables are 
sampled, a sampling matrix X (K × N) can be 
constructed.  

 In this paper, Latin hypercube samples are 
generated using MATLAB software [14]. 

 
Fig. 1. Latin hypercube sampling technology 

3. Sample reduction technique 

3.1 Algorithm 

A scenario reduction methodology seeks to 
downsize a scenario set while still keeping as intact 
as possible the stochastic information embedded in it. 
Next, we briefly explain a scenario reduction 
procedure, which relies on the concept of probability 
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distance, namely the Fast Forward Selection (FFS) 
Algorithm.  

 
Fig. 2. Flow diagram of the Fast Forward Selection 
Algorithm to reduce scenario 

The FFS algorithm is an iterative greedy process 
starting with an empty set. In each iteration, from the 
set of non-selected scenarios, the scenario which 
minimizes the Kantorovich distance between the 
reduced and original sets is selected. Then, this 
scenario is included in the reduced set. The algorithm 
stops if either a specified number of scenarios or a 
certain Kantorovich distance is attained. 

The Kantorovich distance can be equivalently 
determined as: 

( ) ( )
'/

, ' min , '
S

S

KD Q Q ω ωω

π ν ω ω
∈Ω

∈Ω Ω

= ∑        (1) 

where ( ), 'ν ω ω is a cost function, which is the vector 
distance between scenario ω and ω'; Q and Q' are the 
probability distributions in the initial scenario set Ω 
and selected scenario set ΩS, respectively; ωπ is the 
probability of scenario ω. 

FFS algorithm is depicted in Fig. 2. A step-by-
step explanation of the algorithm [15]-[16] is also 
provided in the following: 

Step 0 

Compute cost function [ ] ( )1 , 'ν ω ω for each pair 
scenarios ω  and '.ω  

Step 1 

Compute [ ] ( )1

1
, '

N

dω ω
ω

π ν ω ω ω
Ω

=

= ∀ ∈Ω∑  

Choose 1 arg min dωω
ω

∈Ω
∈  

Update the set 1\J ωΩ ←Ω  

Step n 

Compute [ ] ( ), 'nν ω ω  where 

[ ] ( )
[ ] ( ) [ ] ( ) [ ]1 1 1

1

, '

min , ' , , , '

n

n n n
n J

ν ω ω

ν ω ω ν ω ω ω ω− − −
−

=

= ∀ ∈Ω
 

[ ] [ ] ( )[ ]
[ ]

1
1

'\
',n

J

n n n
Jdω ωω ω

π ν ω ω ω−
−

∈Ω
= ∀ ∈Ω∑

Choose arg min n
n dωω ∈  

Update the set [ ] [ ]1 \n n
J J nω

−Ω ←Ω  

Step 1SN +  

( )

* * *

*
'

'

; \JN
J J S J

J
ω ω ω

ω ω

π π π

Ω

∈

Ω = Ω Ω = Ω Ω

= + ∑  

where  

( ) ( )
( ) ( )

*

*

"

' ' such that

' arg min ", '
S

JJ j

j
ω

ω ω ω ω

ω ν ω ω
∈Ω

= ∈Ω =

=
 

where *
JΩ is the final set of deleted scenarios and *

SΩ
is the set of selected scenarios after the scenario-
reduction process. 

3.2 Illustrative Example 

It is assumed that the four power scenarios 
, 1,..., 4Pω ω =  with associated probabilities ωπ  can 

statistically represent the generating output of a 100 
MW wind farm in a given period.  

Table 1. Four power scenarios of illustrative example 

Scenario 1 2 3 4 

(MW)Pω  5 40 60 100 

ωπ  0.25 0.2 0.2 0.35 

Suppose that the number of wind power 
scenarios being reduced is equal to 2. The fast 
forward selection algorithm works as follows: 

Step 0: Calculate the cost function 

( ) W W
', ' || ||, , 'P Pω ων ω ω ω ω= − ∀ ∈Ω  

where { }1,2,3,4Ω =  

The values of function ν  can be cleverly 
organized into a symmetric matrix whose diagonal 
elements equal zero: 
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0 35 55 95
35 0 20 60

MW
55 20 0 40
95 60 40 0

ν

 
 
 =
 
 
 

 

Step 1: Scenario ω  that minimizes the resulting 
Kantorovich distance between the reduced and 
original sets is chosen: 

1 2 3 4

2 1 3 4

(1, 2) (1,3) (1,4) 51,25 MW
(2,1) (2,3) (2,4) 33,75 MW

d
d

π ν π ν π ν
π ν π ν π ν

= + + =

= + + =
 

3 1 2 4(3,1) (3,2) (3,4) 31,75 MWd π ν π ν π ν= + + =  

4 1 2 3(4,1) (4,2) (4,3) 43,75 MWd π ν π ν π ν= + + =  

Therefore,  

{ }
{ }

[1]

[1]

3 ,

1, 2, 4
S

J

Ω =

Ω =
 

Step 2: The cost matrix is updated as follows: 

{ }
{ }
{ }
{ }
{ }
{ }

[2]

[2]

[2]

[2]

[2]

[2]

(1, 2) min (1,2), (1,3) 35 MW

(1,4) min (1,4), (1,3) 55 MW

(2,1) min (2,1), (2,3) 20 MW

(2,4) min (2,4), (2,3) 20 MW

(4,1) min (4,1), (4,3) 40 MW

(4,2) min (4,2), (4,3) 40 MW

ν ν ν

ν ν ν

ν ν ν

ν ν ν

ν ν ν

ν ν ν

= =

= =

= =

= =

= =

= =

 

Consequently, 

[2]

0 35 55 55
20 0 20 20

MW
55 20 0 40
40 40 40 0

ν

 
 
 =
 
 
 

 

Considering the new cost matrix [2]ν , the 
scenario ω  selected from [1]

JΩ  is the one that 
minimizes the Kantorovich distance between the 
subsequent reduced set [2]

SΩ and the original set Ω : 

[2] [2] [2]
1 2 4
[2] [2] [2]
2 1 4
[2] [2] [2]
4 1 2

(2,1) (4,1) 18 MW
(1,2) (4,2) 22,75 MW
(1,4) (2,4) 17,75 MW

d
d
d

π ν π ν

π ν π ν

π ν π ν

= + =

= + =

= + =

 

Hence, 

{ }
{ }

[2] *

[2] *

3, 4

1,2
S S

J J

Ω = Ω =

Ω = Ω =
 

Step 3: The scenario reduction algorithm stops 
with the optimal transfer of probabilities from the set 
of non-selected scenarios *

JΩ  to selected ones *
SΩ .  

Given that: 

Scenario 3 in *
SΩ  is the closest one to scenario 1 

in *
JΩ  ( ( )1,3 55ν = while ( )1,4 95ν = ) and 

Scenario 3 in *
SΩ  is the closest one to scenario 2 

in *
JΩ  ( ( )2,3 20ν = while ( )2,4 60ν = ). 

It follows: 
*
3 3 2 1
*
4 4

0,65

0,35

π π π π

π π

= + + =

= =
 

To sum up, a reduced scenario set { }* 3, 4SΩ =  

with associated probabilities *
3 0,65π = and *

4 0,35π =  
is provided. 

4. Market-Clearing Model 

The clearing of an electricity market involves 
two primary tasks, namely, determining the 
production (consumption) level of every producer 
(consumer) and settling the locational marginal price 
(LMP) at which every producer (consumer) is paid 
(charged) for its energy production (consumption). In 
this paper, we assume that an independent system 
operator (ISO) is in charge of conducting these tasks 
by solving the following problem: 

4.1 Objective Function 

The objective of the market-clearing problem is 
to maximize the total social welfare (SW), as shown 
in Equation (2) below: 

1 1 1 1
Maximize SW . .

Dj G GiD N N NN

Djk Djk Gib Gib
j k i b

P Pλ λ
= = = =

= −∑∑ ∑∑    (2) 

where λGib is the price of the energy block b offered 
by generating unit i, PGib is the power of the energy 
block b offered by generating unit i, Djkλ is the price 
of the energy block k bid by demand j, DjkP  is the 
power block k bid by demand j. 

4.2 Constraints 

4.2.1 Power balance 

The active power and reactive power injected 
into bus i is subjected to the following power flow 
equations: 

( )

( )

1

1

cos sin

sin cos

i Gi Wi Di
n

i j ij ij ij ij
j

i Gi Wi Di
n

i j ij ij ij ij
j

P P P P

U U G B

Q Q Q Q

U U G B

δ δ

δ δ

=

=

= + −

= +

= + −

= −

∑

∑

 

 

          (3)  
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where ,Gi GiP Q  are real and reactive power generated 
by the conventional generators at bus i, respectively;

,Wi WiP Q  are real and reactive power generated by the 
wind turbine at bus i, respectively;  PDi, QDi are the 
active and reactive power of demand at node i, 
respectively; iU and jU are the magnitudes of 

voltage at node i and j, respectively; ijG and ijB are 
the real and imaginary part of element ij of the 
admittance matrix, respectively; ijδ is the voltage 
angle difference between nodes i and j; n is the 
number of buses in power systems. 

4.2.2 The active power limit of each generation 
block of conventional producer 

( )max0 ,Gib GibP P i b≤ ≤ ∀              (4) 

where max
GibP is the MW size of block b offered by 

generating unit i. 

4.2.3 Power limit of the generating units 

For a generating unit, its active power is 
subjected to the constraint (5), as follows: 

( )
( )

min max

max0
Gi Gi Gi

Wq Wq

P P P i

P P q

≤ ≤ ∀

≤ ≤ ∀
               (5) 

4.2.4 Limits on the price-sensitive loads 

In a wholesale power market, the loads are 
considered to consist of two components: fixed load 
and price-sensitive load. The demand curve of price-
sensitive loads can consist of several blocks, each 
with a lower and an upper limit, as shown in (6)-(7). 

( )E min E maxE
Dj Dj DjP P P j≤ ≤ ∀           (6) 

( )E max0 , kE
Djk DjkP P j≤ ≤ ∀             (7) 

where E
DjP  is elastic power of demand j and E max

DjkP is 
the MW size of block k bid by demand j. 

4.2.5 Branch flow limits 

The branch flow can be expressed by a function 
of injected active power via the power distribution 
factors [3]. 

( )max max

1

n

k k k i Gi Wi Di k
i

P P GSF P P P P−
=

− ≤ = + − ≤∑     (8) 

where GSFk-i is the sensitivity of branch power flow k 
with respect to injected power i and max

kP is the power 
flow limit on branch k. 

Sensitivity of branch power flow k with respect 
to injected power i is defined as a power flow 
increase on the kth line when the power injected in ith 
node increases by 1 MW and is computed as follows: 

i
k

k i
i

P
GSF

P−

∆
=
∆

                         (9) 

The GSFk-i above depends solely on the 
structure of electrical networks; therefore, these 
factors can be calculated offline using sparse matrix 
techniques. However, the GSFk-i depends on the 
location of the voltage reference node.  

Note that wind production is treated as a 
negative demand that can be spilled. This is the case 
in which wind power is treated in most energy 
systems worldwide. Moreover, this is equivalent to 
assuming that wind producers offer their energy 
production at zero price and are not penalized in the 
real-time market for their energy imbalances. 

4.3 LMP Calculation and Components 

The locational marginal price (LMP) of 
electricity at a location is defined as the least cost to 
supply the next incremental of demand at that 
location consistent with all power system operating 
constraints. The active power LMP at each bus i is 
simply the Lagrange multiplier related to that bus's 
real power balance constraint.  

The locational marginal price consists of the 
following components [4]: 

 . .i E i E k i k
k

LMP LMP LF LMP GSF µ−= − +∑      (10) 

where LMPE is the marginal energy price, LFi is the 
loss factor for node i, μk is the shadow price of 
transmission constraint on the kth line.  

The loss factor can be computed as follows: 

2
loss

1

M

k k
k

P P R
=

= ∑          (11) 

2loss

1

M

k k
ki i

P
P R

P P =

∂ ∂  
=  ∂ ∂  

∑   (12) 

( )
1 1

n n

k k i Gi Wi Di k i i
i i

P GSF P P P GSF P− −
= =

= + − = ×∑ ∑   (13) 

where Rk is the resistance of line k, Ploss is the total 
loss of the power system, and M is the number of 
lines.  

Equation (12) can be expanded further as 
follows: 

( )

( )

2loss

1

1

1 1

2

2

M

k k
ki i
M

k
k k

k i

M n

k k i k i Gi Wi Di
k i

P
P R

P P
P

R P
P

R GSF GSF P P P

=

=

− −
= =

∂ ∂
=

∂ ∂

∂
= × ×

∂

 = × × × + − 
 

∑

∑

∑ ∑

  

(14) 
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The market-clearing model (2)-(8) is a nonlinear 
optimization problem. A great variety of optimization 
techniques can be used to solve this problem, 
including the generalized reduced gradient [17], 
Newton's method [18], sequential linear programming 
[19], and more recently, interior point methods [20]. 

4.4 Sequential Linear Programming (SLP) 

This subsection describes the sequential linear 
programming method to deal with the above-
mentioned optimization problem, which is 
implemented in POWERWORLD software. The 
solution procedure consists of the following steps: 

Step 1: Select the set of initial control variables. 

Step 2: Solve the power flow problem to obtain a 
feasible solution that satisfies the power balance 
equality constraints. 

Step 3: Linearize the objective function and 
inequality constraints around the power flow solution 
and formulate the linear programming (LP) problem. 

Step 4: Solve the LP problem and attain optimal 
incremental control variables GiP∆  

Step 5: Update the control variables  
( ) ( )1k k

Gi Gi GiP P P+ = + ∆  

Step 6: Obtain the power flow solution with updated 
control variables. 

Step 7: Check the convergence. If GiP∆ in step 4 are 
below the user-defined tolerance, the solution 
converges. Otherwise, go to step 3. 

5. Probabilistic Locational Marginal Price (P-
LMP) 

5.1 Wind Farm Distribution 

According to the significant amount of data 
collected from wind farms, the relationship between 
the output power of wind turbine generators and the 
wind speed is commonly expressed as: 

0 out in

in
W Wr in r

r in

Wr r out

v v or v v
v v

P P v v v
v v

P v v v

 > <


−= ≤ ≤
−

 ≤ ≤

 (15) 

where WrP is the rated power of wind turbine, v is 
wind speed, inv is cut-in wind speed, outv is cut-out 
wind speed, rv is the rated wind speed. 

The probability density function (PDF) of the 
wind speed can be described accurately by the 
Weibull distribution [21]: 

( ) 1

0 0

exp 0
k k

v

v

f v k v v v
c c c

−

<


 =     − ≥          

       (16) 

where k and c is the shape and scale factor of Weibull 
distribution, respectively. 

5.2 Simulation Procedure 

LMP random sequences for forecasted wind 
speed with Weibull probability density function 
(PDF) are generated using Monte Carlo simulation. 
Monte Carlo simulation is based on simulating the 
value of uncertain parameters using random number 
generators to determine the value of the sampled 
statuses and estimating the outputs. After a large 
number of simulations are implemented, it is 
expected that the probability distribution of the 
outputs will be obtained with a degree of confidence 
to the confidence interval.  

To produce a non-uniform probability 
distribution sequence, we first generate a uniform 
distribution sequence and then use mathematical tools 
to transform this sequence into the Weibull 
distribution sequence. Steps of solving probabilistic 
LMP are given as follows: 

- Construct a probability model for wind speed, 
according to (16). 

- Generate Latin hypercube random sequences of 
wind speed using the constructed models in step 
1, according to Section 2. In this study, the 
number of Latin hypercube samples are 500 and 
1000, respectively. 

- Compute Latin hypercube random sequences of 
wind power using Equation (15)  and random 
wind speed sequences in step 2. 

- Reduce the sample number of wind power using 
the FFS technique, as manifested in Section 3. 
In this paper, the Latin hypercube samples after 
scenario reduction implementation are 100. 
These reduced Latin hypercube samples are 
used as inputs for the market-clearing model 
described in Section 4. 

- Solve the market-clearing model for each Latin 
hypercube sample by leveraging 
POWERWORLD software [22] and obtain the 
Locational Marginal Prices. 

- Perform statistical analysis to obtain the 
statistical property of the P-LMP, such as PDF 
and mean value, after solving N problems for 
market-clearing.  

The Monte Carlo simulation will stop when a 
predefined convergence threshold ε has been reached. 
The stopping criterion is mathematically shown as 
follows: 
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( )
( )

E LMP
E LMP

σ
ε

   ≤                        (17) 

where ( )E LMP is the mean value of LMP, σ is the 
variance of a random variable. The mean value is 
determined as the following expressions: 

 ( ) 1

N

k
k

LMP
E LMP

N
==
∑

 

where N is the number of samples. 

6. Case Studies 

A series of P-OPF studies with SRS, LHS, and 
LHS-FFS are carried out on 6-bus and IEEE 24-bus 
test systems, respectively. 

6.1 IEEE 6-Bus System 

A six-bus system is considered, which is shown 
in Fig.3. The branch data and bus data are presented 
in Table 1 and Table 2, respectively. Generator offers 
are provided in Table 3. 

 To parameters of the system as per unit, the 
power base of the six-bus system is set at 100 MVA. 
The voltage base of this system is set at 230 kV. 

A wind farm is assumed to have been 
constructed at bus 6. This wind farm consists of 2.5 
MW wind generators, model Nordex N80/2500 with 
a hub height of 105 m. The power curve of this 
turbine model is supplied by the Danish Wind 
Industrial Association [21]. The Weibull distribution 
with shape parameter (k), and scale parameter (c) 
equal to 1.6 and 9.7, respectively, is deployed to 
model wind speed.  

 
Fig. 3. Six-bus system topology 

Table 1. Line data for 6-bus system 

From To R (pu) X (pu) B (pu) Rate (MVA) 

1 2 0.1 0.2 0.04 100 

1 4 0.05 0.2 0.04 100 

1 5 0.08 0.3 0.06 100 

2 3 0.05 0.25 0.06 60 

2 4 0.05 0.1 0.02 60 

2 5 0.1 0.3 0.04 60 

2 6 0.07 0.2 0.05 60 

3 5 0.12 0.26 0.05 60 

3 6 0.02 0.1 0.02 60 

4 5 0.2 0.4 0.08 60 

5 6 0.1 0.3 0.06 60 

 
Table 2. Bus data for 6-bus system 

Number Type 
PD  

(MW) 

QD  

(MVAr) 

max
GP  

(MW) 

min
GP  

(MW) 

1 3   200 50 

2 2   150 37.5 

3 2   180 45 

4 1 100 15   

5 1 100 15   

6 1 100 15   
Type 3 = swing bus, type 2 = generator bus, type 1 = load bus 

 
Fig. 4. 24-bus power system 
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Table 3. Generator offers (VND/kWh) for 6-bus system 

 Generator 1 Generator 2 Generator 3 

Block 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Power 
(MW) 50 50 50 30 20 37.5 30 30 20 32.5 45 40 30 25 40 

Price 
(đ/kWh) 500 800 1200 1500 2000 200 800 1200 1600 2500 600 1000 1300 1800 2300 

 
Table 4. The mean LMP (VND/kWh) of six-bus system 

Bus 1 2 3 4 5 6 

SRS (5000 samples) 1196.898 1214.634 1217.834 1269.807 1278.744 1249.164 

LHS (1000 samples) 1196.762 1214.38 1217.388 1269.585 1278.411 1248.612 

LHS-FFS (100 samples) 1196.775 1214.366 1216.895 1269.547 1278.014 1247.022 

 
Fig. 5. The mean LMP of IEEE 24-bus system 

 
Using the proposed P-OPF model, the 

probabilistic locational marginal prices are obtained 
through Monte Carlo simulation with three different 
sampling methods, namely simple random sampling 
(SRS), Latin hypercube sampling (LHS), and Latin 
hypercube sampling combined with Fast Forward 
Selection Algorithm (LHS-FFS). 

The obtained results that are depicted in Table 4 
show that the solution of P-OPF with three sampling 
techniques is very similar. However, the 
computational time and computer storage for solving 
the P-OPF problem with LHS-FFS are considerably 
reduced.  

6.2 IEEE 24-Bus System 

This subsection presents the calculated results of 
mean LMP using the IEEE 24-bus system [21]. The 
diagram of this 24-bus system is revealed in Fig. 4. 
The resulting LMPs from this system are depicted in 
Fig. 5.  

Fig. 5 shows that the P-OPF problem with three 
sampling methods all results in identical solutions. 
On the other hand, there is a significant decrease in 
the computational time for solving the P-OPF with 
LHS-FFS (around 5 seconds with 100 samples), 
compared to approximately 4 minutes when applying 
SRS (5000 samples). 
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7. Conclusion  

This paper presents methods for calculating 
probabilistic locational marginal price (LMP) using 
Monte Carlo Simulation integrated with different 
sampling techniques. Three sampling approaches are 
compared, including simple random sampling (SRS), 
Latin hypercube sampling (LHS), and LHS combined 
with the fast forward selection (FFS) algorithm to 
reduce the number of samples. The results show that 
the mean LMP obtained with these sampling 
procedures is very similar; however, the 
computational performance such as time and 
computer storage is markedly improved when 
applying LHS-FFS. This contributes to the efficient 
operation of electricity markets. 
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