
 
 JST: Smart Systems and Devices 

Volume 31, Issue 1, May 2021, 050-058 
 

50 

 
Adaptive Control for Dual-Arm Robotic System Based  

on Radial Basis Function Neural Network 
 

Luu Thi Hue2, Nguyen Pham Thuc Anh1* 
1Hanoi University of Science and Technology, Hanoi, Vietnam  

2Electrical Power University, Hanoi, Vietnam 
 *Email: anh.nguyenphamthuc@hust.edu.vn 

 
Abstract 

The paper has developed an adaptive control using neural network for controlling a dual-arm robotic system 
in moving a rectangle object to the desired trajectories. Firstly, the overall dynamics of the manipulators and 
the object have been derived based on Euler-Lagrangian principle. And then based on the dynamics, a 
controller has been proposed to achieve the desired trajectories of the grasping object. A radial basis 
function neural network has been applied to compensate uncertainties of dynamic parameters. The adaptive 
algorithm has been derived owning to the Lyapunov stability principle to guarantee asymptotical 
convergence of the closed dynamic system. Finally, simulation work on MatLab has been carried out to 
reconfirm the accuracy and the effectiveness of the proposed controller. 
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1. Introduction* 

Researches on multi-manipulator control have 
received increasing attention due to their advantages 
over single-manipulator in industrial applications 
such as assembling, transporting heavy objects, etc.  
The development of multi-manipulator systems 
creates an opportunity to replace humans in 
dangerous environments. However, control of multi-
manipulator systems is always a challenge due to the 
high nonlinearity and complication of their dynamics. 
A coordination scheme for cooperative manipulation 
with two-arm systems was introduced by Yun and 
Kumar and a nonlinear-feedback control algorithm 
has proposed [1]. A robust algorithm for cooperative 
control of closed-chain manipulators has been 
proposed with uncertain dynamics [2]. Adaptive 
control of multiple-robot manipulation in a dynamical 
environment has been proposed [3]. An adaptive 
controller combined with a sliding mode controller 
has been introduced [4]. A robust adaptive hybrid 
force/position control scheme for two planar-
manipulators coordinating to move an object without 
knowing its parameters, but knowning the parameters 
of the robots has been proposed [5]. A robust 
adaptive algorithm has been proposed for controlling 
dual planar-manipulators in cooperative manipulation 
of an object under uncertainty of dynamic parameters 
[6]. Almost the aforementioned controllers were 
based on inverse dynamics to create adaptive update 
algorithms, then they were complicated in 
mathematic formulae and the practical applicability 
was limited.  
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Nowadays neural networks (NNs) have created 
drastic changes in the development of controllers, 
especially in robotics. The ability of NNs to 
approximate nonlinear uncertainties leads to the idea 
of using a neural network directly in a model-based 
control strategy. The idea traced here is based on the 
possibility of training networks to compensate the 
dynamic parameters of multi-manipulators. A dual 
neural network has been used to control the 
coordination of two redundant robots in real-time [7]. 
An adaptive hybrid force/position has been developed 
for cooperative multiple-manipulators carrying and 
manipulating a common rigid object by Panwar et al 
[8]. A framework for NNs based consensus control 
has been proposed for multiple robotic manipulators 
under leader-follower communication topology. Two 
situations: fixed and switching communication 
topologies, were studied by using adaptive and robust 
control principles [9]. A synchronized NN approach 
has been proposed for controlling multiple robotic 
manipulators based on the leader-follower network 
communication topology [10]. An adaptive robust 
control (SOSMC) algorithm has been considered for 
dual-arm manipulators using the combination of 
second-order sliding mode control and neural 
networks. The SOSMC deals with the system 
robustness when faced with external disturbances and 
parametric uncertainties [11]. The problem of self-
tuning control with a two-manipulator system holding 
a rigid object in the presence of inaccurate 
translational base frame parameters is addressed. An 
adaptive robust neural controller is proposed to cope 
with inaccurate translational base frame parameters, 
internal force, modeling uncertainties, joint friction, 
and external disturbances. A radial basis function 
neural network is adopted for all kinds of dynamical 
estimation, including undesired internal force. 
Specialized robust compensation is established for 
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global stability [12]. NN-based adaptive controllers 
have proved the effectiveness in compensating 
dynamic uncertainties. However, they are based on 
inverse dynamics and complicated in mathematical 
formulae.  

 The aforementioned adaptive NN-based 
controllers are effective in compensation of 
uncertainties of dynamic parameters of systems. 
However, they are based on inverse dynamics of the 
systems, then the proposed controllers are 
complicated and do not ensure for keeping contact 
between end-effectors and the object.  

  In the paper, we propose Radial Basis Function 
Neural Network (RBFNN) in controlling a dual-arm 
robotic system manipulating a rectangle object. The 
rest of the paper is organized as follows: section 2 
addresses to formulating dynamics of dual-arm robot 
and object system, section 3 aims to build up adaptive 
RBFNN-based controller, section 4 introduces 
simulation results and section 5 is for conclusions.  

2. Formulation of  Dynamics of Overall Dual 
Robot-Object System 

2.1. System Description 

  The model under study consists of a dual-arm 
robotic system in grasping a rigid object and is 
depicted in Fig.1. The dual-arm robotic system has 
two 3-DOF planar robots in antagonistic 
arrangement. The left robot is numbered the first and 
the right one is the second. The object is rigid and 
rectangle, then its surfaces are flat. Coordinated 
frames, main parameters and variables of the 
objective system have been defined in detail in the 
previous work [13]. The dual-robot system is 
responsible for stable grasping the object and then 
manipulating it dexterously. It is assumed that the 
end-effectors and the object are rigid and point-
contacted. When the end-effector i contacts with the 
corresponding surface, there exists a force fi that 
occurs perpendicular and a force λi that occurs 
tangential to the contact surface.  The whole system 
works in the vertical plane, then it is affected by 
gravity. 
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Fig. 1. Description of the dual-arm robotic and object 
system 

2.2 Kinematic Relations 

Refer to the Fig.1, the position ( , )vo x y of the 
mass center of the object in the reference frame 
{OXY} can be calculated as: 

0
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where 0 0( , )i i iE x y  is the position of the end-effector i 
in the frame {OXY}. 
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where J0i is the Jacobian matrix. 
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It is possible to express (1a)  into  
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with  [ ]cos sin iD Yθ θ= −  and 1( . )T TD D D D+ −=  
is pseudo-inverse matrix of  D  matrix.  

Define vector [ ]Tz x y= θ  then 

. ; .i i i iz A q z A q A q= = +     , 

That means 

. ; .q A z q A z Bz= = +     ,   (2) 

where 
1 1

1 2[( ) , ( ) ] ,− −= T T TA A A  

1 1 1 1
1 1 1 2 2 2[(- ) , ( ) ] .T T TB A A A A A A− − − −= −   

2.3. Dynamics 

 The dynamics of the system has been formulated 
based on the Euler-Lagrange principle. The 
Lagrangian function is defined as: 

L K P= −  
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where K is the kinematic energy and P is the potential 
energy.  

The dynamic equation of the whole system can 
be expressed as: 

 a)  For the ith robot 

0 0

( ) ( , ) ( )

cos sin( 1) ,sin cos

i i i i i i i i i

i T T
i i i i

H q q C q q G q

J f J

τ

θ θ λθ θ

= + +

   − − + −      

 

            (3) 

where qi is joint angle vector, i iH ( q ) is inertia 
matrix, ( , )i i iC q q is Coriolis and centrifugal matrix, 
and Gi(qi) is gravity vector, for i=1,2.   

b) For the object: 

2 2

1 1

cos sin 0
( 1) sin cos . 0

0( 1) .
2

i
z i i

i
i i

i

H z f M g
Y L

θ θ
θ λ θ

= =

 
    
    + − − − + =    
    −    − − 
 

∑ ∑

, (4)  

 where Hz is the inertia matrix of the object. 

3. Design Control Law 

3.1. Controller Design 

 The dynamic equation of the dual-arm system 
can be rewritten in a general form as follows: 

( ) ( , ) ( ) .BH q q C q q q G q J F+ + + =τ   ,         (5) 

where 1 2,[ ]= TT Tq q q ;  

           1 2[ , ]τ τ τ= T ;  

           [ ]1 1 2 2 ;TF f fλ λ=  

1 1 2 2( ) [H ( ), ( )]H q blockdiag q H q= ;         

1 1 1 2 2 2( , ) [C ( , ), ( , )]C q q blockdiag q q C q q=   ;

1 1 2 2( ) [ ( ), ( )]TG q G q G q= . 
And the dynamic equation of the object also can be 
rewritten in the following form: 

( , )z z z zH z C z z z g F+ + =   .  (6)   

Forces and moments that apply to the object are: 

.zF E F= .                                     

So  .+= zF E F ,           (7)      

where 1( . )+ −= T TE E E E  is pseudo-inverse matrix of 
E. Combining (2), (5), (6), (7) leads to the dynamic 
equation of the whole system can be expressed as 
follows: 

p p pH z C z G+ + =τ  ,                    (8)  

in which  ( ) += +p B zH H q A J E H ; 

( ) ( , ). ( , );p B zC H q B C q q A J E C z z+= + +   

( )p B zG G q J E g+= + . 

It is clear that Hp is an inertia matrix, Cp is a 
centrifugal/Coriolis matrix, and Gp is a gravity force 
in the dynamic equation of the whole system (8). It is 
known that dynamic parameters of system dynamics 
such as mass and inertia term of links and the object, 
friction coefficients are uncertain. It is reasonable to 
consider  Hp, Cp, Gp including two terms: known   H0, 
C0, G0, and unknown p p pH , C , G∆ ∆ ∆ . That means:  

0 ;p pH H H= + ∆  

0 ;p pC C C= + ∆  

0 .p pG G G= + ∆  

Therefore the dynamic equation (8) can be 
expressed in the following form:         

0 0 0 ( , )H z C z G f z z+ + + ∆ =   τ ,                   (9)                      

where ( , )f z z∆   includes unknown terms  

( , ) p p pf z z H z C z G∆ = ∆ + ∆ + ∆   . 

The error between desired trajectory and the 
actual trajectory of the object can be defined as:  

= −dpe z z .                             (10) 

Define: 

.= + Λp ps e e ; ( ) .t A s=ξ .  (11)        

where Λ is  diagonal positive matrix.  If 0s →  then 
dz z→  when t →∞  

Substituting (10), (11) into (9) leads to 

0 ( , ) ( , ) .p p p p p pH s f e e f e e C s= + ∆ − −   τ ,  (12) 

where 
0 0 0 0( , ) (z . ) .(z . )p p d p d pf e e H e C e G= + Λ + + Λ +      

is a nonlinear and known function and  

   
( , ) (z . ) (z . )p p

p

p p d p d pf e e H e C e

G

∆ = ∆ + Λ + ∆ + Λ

+ ∆

   

   (13)  

is the unknown function.  

In the ideal case, ( , ) 0p pf e e∆ = , the control 
input is proposed as:  

0 ( ) sf x K= +τ ξ  ,                    (14) 

where Ks is positive matrix. 
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Fig. 2. Scheme of   overall dual-arm robot and object system under RBRNN-adaptive controller 

 
The closed dynamics work stably according to 

the Lyapunov principle. It is proved that 

d

d

z z

z z

→


→  

 when t →∞  

However, due to the uncertainties of dynamic 
parameters, the term ( , )p pf e e∆   always exists that 
breaks the stability of the whole system. In order to 
compensate for the uncertainties of the system 
dynamics, adaptive control based on Radial Basis 
Function Network is proposed. Fig.2 illustrates the 
control model using RBFNN to compensate for the 
uncertainties of the system 

The control algorithms are: 

0
ˆ( , ) ( , ) Kp p p p sf e e f e e= + ∆ + τ ξ ,         (15) 

where ˆ ( , )p pf e e∆   is an approximated function of  

( , )p pf e e∆  . 

3.2 Design of Radial Basis Function Neural 
Network 

The general RBF Neural Network has a 
structure as depicted in Fig.3 [15]. Its simplest form 
is a three-layer feedforward network. The first layer 
corresponds to the inputs of the network, the second 
one is a hidden layer consisting of nonlinear 
activation units and the last one is the output layer 
corresponding to the final output of the network. 
Each of n components of the input vector x feeds 
forward to m basis functions whose output are 
linearly combined with weighs into the network 
output. Neurons in the hidden layer have Gaussian 
transfer functions for which outputs are inversely 
proportional to the distance from the center of the 

neuron. The Gaussian-type function can be 
expressed as:  

...
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∑
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Fig. 3. Typical structure of RBF Neural Networks 

2

2exp 1,2....,
2

 − = − =
 
 

j
j

j

x c
h j m

b
,   (16) 

where x is the input signal of RBFNN, m is the 
number of nodes in the hidden layer, cj is the center 
and  bj is the variance of jth  basic Gaussian function. 

The output of the linear layer RBFNN is 

1
( ) W ( )

m

j j
j

f x h x
=

∆ = ∑ , 

where Wj is the gradient matrix associated with each 
node j of RBFNN. By selecting the appropriate 
weight vector, RBF network can approximate a 
continuous function with arbitrary precision. 

( ) ( )Tf x W h x∆ = +ε ,                 (17) 

where W* is the optimal weight vector and  ε  is the 
error that arises from the approximation procedure of 
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RBF NN. Given an infinitely small constant  Nε  
there exists ε satisfies a condition ε ε< N . The 

optimal weights are bounded *
maxW W≤ , therefore, 

an estimate of ( )f x∆  can be written as follows: 

ˆ ˆ( ) Tf x W h∆ = ,           (18) 

where Ŵ  is the estimated weight of the optimal 
weight of the NN, which is generated by the online 
weight update algorithm. 

According to the theory of RBFN, component 
( , )p pf e e∆   of the dynamics of the system (12) is 

approximated by using RBFNN. Base on equation 
(17), ( , )p pf e e∆   is represented as follows: 

( , ) ( )T
p pf e e W h x∆ = + ε .   (19) 

ˆ ( , )p pf e e∆   is the estimation of the function 

( , )p pf e e∆  , base on (18) is determined: 

ˆ ˆ( , ) ( )T
p pf e e W h x∆ = .     (20)            

The weight estimation error as 
* ˆW W W= − . 

Then, the error of the function ( , )p pf e e∆   and 
ˆ ( , )p pf e e∆   ) is determined: 

  
ˆ( , ) ( , ) ( , )
ˆ( ) ( )= ( )

p p p p p p

T

f e e f e e f e e

W h x W h x W h x

∆ = ∆ −∆

= + − +



  

ε ε
    (21) 

The inputs of RBFNN are  [ ]T
p px e e=  . 

From (12), with the control in (15) and using 
(21), the closed dynamics becomes 

       

ˆ( , ) ( , ) . .
( , ) . .

. . .W ( )

p p p p p p s

p p p s

p s

H

h

s f e e f e e C s K A s
f e e C s K A s

C s K A sx

= ∆ −∆ − −
= ∆ − −
= − −

  





  (22) 

3.3 Update Law for NN Weighs 

 The candidate of Lyapunov function is chosen as:  

11 1. . . ( . )
2

T TV s H s tr W W
s

−= + Γ  ,             (23) 

where = T
pH A H . 

If define =T T
BA J E  then + =T T

BA J E I , and 

,= =T T
p pH A H N A C  then 2H N−  is skew-

symmetric matrix. 

Differentiation of (23) leads to 

11. . . . ( . )
2

T T TV s H s s H s tr W W−= + + Γ 

   

 . 

Due to 2− T
pH A C is skew-symmetric matrix then  

( 2 )s 0− =

T T
ps H A C .  

Combining with (22) leads to: 

1 )( . () sA WT T
s

T TT T hV s K As W xtr W A−= − + Γ + 



    

Due to . ( . )=T T Ts A A s  
1 W( . ) ( . ) ( . )(A.s) T TTT

s hV K A s tr W W A s−= − + Γ +   . 

According to the Lyapunov stability principle, 
the condition for stability of closed dynamics is  

0V ≤      then  
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1
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( .( ) ( . ) )
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−

−
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⇒ Γ + =
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T T

T T

T
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tr W W A s
tr W W h A s

A s

h

W h
 

So the updated law for the weights of the neural 
network may have the form: 

ˆ ( . )= Γ TW h A s .  (24) 

It is possible to prove that the dynamic system is 
stable under the control input (15) combining with the 
updated law (24). 

4. Simulation 

In order to confirm the effectiveness of the 
proposed RBFNN control, we carry out the 
simulation work in MatLab/Simulink. The desired 
position ( , )d dx y  and rotational angle dθ  of the 
grasping object are planned in 5 order-polynomial 
trajectories as follows:  

3 4 5

3 4 5

3 4 5

0,54   0,4845 0,2907 0,0465 ;

1,4  0,3841 0,2304  0,0369 ;

 0,513 0,1508 0,0241 .

d

d

d

x t t t

y t t t

t t t

= + − +

= + − +

= − +θ

 

- The control parameters are: 
Ks = diag(15,15,15,15,15,15);  

                  (350,350,350)diagΛ = . 

-  RBFNN has 6 inputs, 6 outputs, and 50 neural 
nodes in hidden layer. 
        Initiating value of weights   W0 = 6. 
        Center  cj= [-2, 2]50. 
         Width  bj =10; 2Γ = . 

The simulation is carried out under some cases 
as follows:  
4.1. Case 1: The differences between the estimated 
terms and the actual term are 10%  of the actual 
term as follows: 

0 0 010% ; 10% ; 10%p p pH H C C G G∆ = ∆ = ∆ = . 
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We investigated 2 cases:  

a) Without compensation ( , )p pf e e∆   

We apply the control input (14) to the dynamics 
of the dual arm robot – object (9).   

It is possible to see the errors between the real 
trajectories and the desired trajectories in x- (Fig.4a), 
y-axis (Fig.5a) and rotation around z-axis (Fig.6a) are 
bigger in time.  

b) With compensation ( , )p pf e e∆   

We apply the control input (15) to the dynamics 
of the dual arm robot – object (9).  It is possible to 
realize that the dual-arm robot can move the object to 

the desired position of the mass center ( , )d dx y  in 
(Fig.4b), (Fig.5b) and rotate it to the desired 
orientation in Fig.6b. The time needed for exact 
tracking to the trajectories are very short, only 0.5 
second for translational move in x- and y- directions, 
and 1 second for rotation about z- axis.  

The simulation results display the effectiveness 
of the RBFNN controller in tracking trajectories of 
the object and its rotational angle to the desired 
trajectories in the case of uncertain level of dynamic 
parameters is not so much, 10%. For the case, we 
increase the uncertain level to 20%. 
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(a) When ˆ ( , ) 0p pf e e∆ =  
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(b) When ˆ ( , ) 0p pf e e∆ ≠  

Fig. 4. Response of move in x-axis of the object 
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(b) When ˆ ( , ) 0p pf e e∆ ≠  

Fig. 5. Response of move in y-axis of the object 
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(b) When ˆ ( , ) 0p pf e e∆ ≠  

Fig. 6. Response of rotational angle of the object 
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(b) When ˆ ( , ) 0p pf e e∆ ≠  

Fig. 7. Response of move in x-axis of the object 
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(b) When ˆ ( , ) 0p pf e e∆ ≠  

Fig. 8. Response of move in y-axis of the object 
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(b) When ˆ ( , ) 0p pf e e∆ ≠  

Fig. 9. Response of rotational angle of the object 

4.2. Case 2: The differences between the estimated 
terms and the actual term are 20% of the actual 
term as follows: 

0 0 020% ; 20% ; 20%p p pH H C C G G∆ = ∆ = ∆ = . 

We also investigated 2 cases: 

a) Without compensation ( , )p pf e e∆  .  

It is easy to realize the divergence between the 
desired trajectories and actual trajectories of object 
movement in x- axis (Fig.7a), in y-axis (Fig.8a) and 
rotation around z-axis (Fig.9a). 

b) With compensation ( , )p pf e e∆  .  

The desired trajectories and actual trajectories of 
object in x- axis, y-axis  and rotation around z-axis 
respectively are shown in Fig.7b, Fig.8b and Fig.9b   

The simulation results show that the adaptive 
controller that based on RBFNN works effectively in 
compensation the dynamic uncertainties of the whole 
system. It is possible to conclude that when the 
uncertain level of dynamic parameters is in a small 
range, the responses of systems in tracking the 
desired trajectories are reasonable.  

5. Conclusion 

In this paper, the adaptive control using Radial 
Basis Function Neural Network for controlling dual-
arm robotic system in manipulating a rectangle object 
tracking to the desired trajectories has been applied. 
The overall dynamics of the manipulators-object 
system have been formulated based on the Euler-
Lagrangian principle.  Radial basis function neural 
network has been applied to compensate uncertainties 
of dynamic parameters. The adaptive algorithm has 
been derived owning to Lyapunov stability principle 
to guarantee asymptotical convergence of the closed 
dynamic system. Simulation work on MatLab has 

been carried out to reconfirm the accuracy and the 
effectiveness of the proposed controller. 
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