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Abstract 

The Transmission Control Protocol (TCP) was intentionally designed for the sake of service reliability but with 
the cost of application performance on which TCP clients need to use multiple connections to achieve 
concurrency and to reduce latency. And more importantly, it was designed mostly for the fixed networks and 
to transport traffic of non-real-time applications and thus not suitable for the mobile networks with higher packet 
error rate and real-time traffic. For example, TCP is a connection-oriented protocol, so it has to guarantee 
delivery of information, in order to maintain that connection. The recipient has to acknowledge the data that 
was sent and that creates overhead. It means that it's going to take more packets transferred, and thus higher 
delay.  To address this weakness of TCP, and on this paper, we proposed a new application-level protocol 
that makes use of TCP as transportation, named as CoTCP (Concurrent request-response over TCP). The 
new proposed protocol allows sending and receiving multiple messages concurrently on one connection. We 
also evaluated and tested the performance of CoTCP in various application scenarios on the specific hardware 
platform. Numerical results show that CoTCP can lead to higher concurrency and lower latency. 
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1. Introduction1 

The mobile networks have gone through five 
generations from the first generation of analog 
technology to second generation of digital technology 
to 3rd, 4th and 5th generation of using IP technology. The 
transform in to IP-based network brings a lot of benefits 
to both network operators and service users in terms of 
multi-services, higher capacity, better (service) 
experience, etc. but it also comeses at a cost of 
performance degradation. That said, there are huge 
efforts from both academic and industrial sectors to 
bring in solutions to guarantee the carrier-grade 
performance and quality for the services of mobile 
users. One of the direction is to optimize the transport 
protocols and mechanisms in order to meet up with the 
real time traffic such as voice and video in 4th and 5th 
generation mobile networks. This paper is about to 
propose a new customized TCP-based protocol to 
accommodate this requirement in 4G/5G networks. But 
first let’s have some basic understanding of the 4th and 
5th generation networks. 

4G network or the Long Term Evolution (LTE) 
Network called Evolved Packed System (EPS) is an 
end-to-end (E2E) all IP network; EPS is divided into 
two parts: radio access network (E-UTRAN) and core 
network (EPC). An E2E all IP network means that all 
traffic flows - from a UE all the way to a Packet Data 
Network (PDN), which connects to a service entity - 
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are transferred based on IP protocol within EPS. EPC 
system includes Mobility Management Entity (MME), 
Serving Gateway (SGW) and PDN Gateway (PGW), 
more details are on [1, 2]. 

In EPC, MME is a logical entity responsible for 
authentication, session management and mobility 
management for the subscribers. It also connects E-
UTRANS (eNodeBs) to EPC using the S1AP interface, 
which makes use of SCTP at the transport layer. 

 
Fig. 1. S1: E-UTRAN-MME Interface 

 
Requirements of the interface between MME and 

EUTRAN are as follows: 
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- Single IP Service: MME have only one IP 
service for S1-MME Interface which is used to listen 
the connection from E-UTRAN. 

- Number of connections: up to thousands of 
connections; in Viettel networks, one MME can 
manage over 17,000 SCTP connections with 
EUTRAN, each of EnodeB in EUTRAN can support 
3000~5000 user subscribers. 

- Ensuring High Availability 

- Minimizing the impact when switching 
connections (crash system or support for maintenance). 

After the 4G, 5G systems [3, 4] support 
interworking with Intranet networks or the Internet 
based also on the IP. To communicate and receive 
service on an IP network, a host must have an IP 
Address. In the 5G network, the host in question is the 
User Equipment (UE), and the Session Management 
Function (SMF) is responsible for allocating IP 
Addresses to the UE [5]. This can be either a static IP 
address or a dynamic IP address.  

5G architecture is split into control and user plane 
to better manage networking and computing resources. 
The control plane (CP) includes network functions that 
manage signaling, subscription management, 
authentication and fees charging, and does not have 
high bandwidth, low latency requirements. The SMF is 
one such function and manages the establishment, 
modification and release of UE connectivity sessions, 
also called PDU (Protocol Data Unit) Sessions. The 
user plane (UP), on the other hand, handles user traffic 
which is deployed at the network edge to provide low 
latency, high bandwidth services. In traditional IP 
networks, the interworking with subnetworks or other 
IP networks is done with IP routers. From the 
perspective of the IP network interworking with the 5G 
network, the UP is seen as a normal IP router [2]. 
Therefore, the SMF must also allocate IP chunks - 
ranges of IP addresses - to the UP so that the UP may 
advertise and correctly route traffic from the network to 
the UE. The UE generally receives an IP Address that 
falls into the IP chunk of the serving User Plane 
Function (UPF). 

To adhere to the cloud native architecture of the 
5G Core, the SMF is made up of loosely coupled micro-
services that splits functionality between each service. 
The IP Allocation service is one such micro-service that 
provides the function of allocating and managing IP 
Addresses for UE. A high level decomposition of the 
SMF is as follows: Layer 1 - Ingresses and Egresses 
services which act as gateways for other Network 
Functions and manage high availability and Load 
Balancing traffic between computing units; Layer 2 - 
Application and Logic core, a number of stateless 
software cores which handle the internal business logic 
of the SMF; and Layer 3 - the Database which keeps 
track of system state. The IP Allocation service resides 

in the Application layer while using the Database layer 
to maintain consistency 

On IP networks, TCP is one of the most 
commonly used protocol that is designed to send 
packets across the Internet and ensures the integrity of 
data sent over the network [1, 2, 6]. In order to transmit 
data, TCP establishes a connection between a source 
and its destination. TCP can only transfer one message 
at a time per connection. A normal TCP transaction 
operated like this: client establishes a connection to 
server; client sends a request to server and wait for the 
response; server responses to client; the connection is 
closed or is reserved to be used for next transactions. A 
transaction needs to wait for other transaction to be 
completed before it can be started. A common strategy 
is to open multiple connections to serve multiple 
transactions at a time, which can help to improve 
concurrency and to reduce latency, but opening too 
many connections can be costly. 

TCP uses a three-way handshaking to establish a 
connection between the client and the server [3]. A 
three-way handshaking process is expensive because it 
requires three packets (SYNC, SYNC-ACK, and ACK) 
to be transferred. To avoid having to open the 
connection many times, a TCP connection can be made 
persistent to be reused. However, additional resources 
are required to maintain each persistent TCP 
connection. Multiple TCP clients where each one opens 
several connections to the server can cause the server 
to be overloaded. 

To address that weakness of TCP for the 
applications in 4G/5G mobile core networks, our R&D 
team has come up with a proposition of a new 
application protocol names as CoTCP. The CoTCP is 
designed to solve the concurrency problem of TCP and 
on our design, a CoTCP transaction is operated in 
asynchronous mode so that multiple ones can be 
executed concurrently over the same TCP connection 
thus makes CoTCP able to meet the requirement of 
high number of transactions per second (TPS) and low 
latency system while ensuring low number of (TCP) 
connections. 

The rest of the paper is organized as follows. The 
investigation result of similar works will be given on 
Section 2. Section 3 will present the details of our new 
proposed application protocol, named as CoTCP. 
Experimental setup and performance evaluation will 
be presented in Section 4. Finally, Section 5 concludes 
our paper. 

2. Related Works 

On this section, we will discuss about current 
researches on the problem of high-performance TCP 
client-server system and how to scale up TCP for 
handling of large number of concurrent clients. This 
problem remains always the hot (research) topic for 
decades. 
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The C10K problem [7] was coined in 1999 by 
software engineer Dan Kegel. It is the problem of 
optimizing network sockets to handle 10,000 
connections at the same time. C10K problem is 
currently solved by certain web servers such as Nginx 
[5] which applies event-driven architecture to disorder 
the execution flow of network programs and maximizes 
the utilization of CPU. By the early of 2020s, the 
problem is scaled up to C10M which means to 
concurrently handle 10,000,000 connections. Several 
solutions have been proposed to solve the C10M 
problem also, such as in [9, 10, 11]. Those solutions 
mainly focus on optimizing or bypassing the kernel and 
therefore utilize multi-core processors and reduce 
system calls and context switching overheads. 
Recently, there are high-speed packet I/O frameworks 
such as DPDK [12], netmap [13], and PF RING [14] 
that allow user-space applications to exchange packets 
with the kernel networking stack, providing 
unprecedented network performance for applications. 

All of the above-mentioned solutions solve the 
concurrency problem of TCP by trying to increase the 
number of concurrent connections but none has been 
focused on utilizing a single connection to handle 
multiple (application) transactions concurrently. With 
the introduction of coroutine in modern programming 
languages such as Golang [15], Python, and Kotlin 
[17]; handling millions of transactions at the same time 
becomes significantly less expensive. Coroutine is a 

light-weight thread managed by user-space which 
allows execution to be suspended or resumed without 
context switching overheads [17]. Using coroutines, 
applications can easily handle millions of concurrent 
transactions but to open and to manage millions of 
concurrent connections is still a challenge to this day. 

3. The Proposed Solution 

3.1. Proposed Architecture 

As said above, on this work, we’ve proposed a 
new application-level protocol to solve the concurrency 
problem of TCP. The new protocol was named as 
CoTCP (Concurrent request-response over TCP) and 
this section will give a detailed presentation of its 
design and operation. 

The core part of new proposed protocol are its 
transactions. CoTCP transactions are designed 
asynchronously in which a request could be sent before 
the response of another request is received as depicted 
on Fig. 3. 

In this asynchronous transaction mode, responses 
could be received out of the order in which requests 
were sent. To make this possible, we assigned each 
request with a unique identifier (ID) and then the 
corresponding response must have the same ID so that 
it can be matched to its own request. As such, the 
proposed structure of a CoTCP message is depicted as 
on the Fig. 4. 

 

 
Fig. 2. Requests and responses 

are sent sequentially. 

 
Fig. 3. Requests and responses 

are sent concurrently. 

 
Fig. 4. Message's structure. 
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Fig. 5. Application architecture of CoTCP Client 

 
Fig. 6. Application architecture of CoTCP server 

The message is composed of three parts: 

- ID: A 4 bytes, unique integer that identifies a pair 
of request and response; 

- Body’s Length: A 2 bytes integer that indicates 
the size of message’s body; 

- Body: The actual content of the message that is 
stored in binary format. 

The working procedure of CoTCP on client side 
is illustrated as in Fig. 5. 

The procedure is a sequence of steps as follows: 

- Step 1: Establish a new connection to the server; 

- Step 2: Create an event loop to listen on the 
established connection; 

- Step 3: Generate a unique ID for each request 
message; 

- Step 4: Send request message and open a channel 
to wait for the response; 

- Step 5: When the event loop receives data, split 
the data stream into messages and send them to 
the corresponding channels; 

- Step 6: Read the response message from the 
channel and close the channel. 

 From the server side, the CoTCP working 
procedure is as depicted on the Fig. 6. 

It also goes through steps as following: 

- Step 1: Accept a new connection from the client; 

- Step 2: Create an event loop to listen on the 
established connection; 

- Step 3: When the event loop receives data, split 
the data stream into messages and handle them 
concurrently; 

- Step 4: Assign the request’s ID to the 
corresponding response and send response to the 
client. 
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3.2. Integration Works 

In this sub-section, we will explain how to 
implement CoTCP client and server applications that 
can provide high concurrency and low latency with 
small overheads. 

We choose Golang as the programming language 
to implement CoTCP because its built-in co-routines 
are suitable for building high concurrency applications. 

The core of the CoTCP application is its event 
loop. Each TCP connection is managed by one event 
loop running on an independent coroutine. The 
responsibility of the event loop is to listen on the 
connection for incoming messages and to handle them 
concurrently. Since TCP transmits data in stream and 
there is no boundary between TCP packets, it has the 
problem of packets sticking together. In order to solve 
this problem, each CoTCP message has a length field 
that can be used to split the data stream into messages. 
For CoTCP server, the event loop will scan on the input 
data stream for request messages and will spawn a 
coroutine to handle each one; the response message is 
then sent back to the client through the same connection 
of its request. For CoTCP client, the event loop will 
scan on the input data stream for response messages 
and will send them to the corresponding waiting 
channels. 

In order to match the response message to its 
request, each request is assigned to a channel that waits 
for response from the event loop. This mechanism 
makes a transaction look like a synchronous process. 
The list of waiting channels is stored in a hash table 
that can be used to lookup the channel by the ID of the 
response message. 

4. Testing Results and Performance Evaluation 

To evaluate the performance of the new protocol, 
we have setup the test-bed (Fig. 7) and conducted three 
performance benchmarks with different application 

configurations where each one was taken for both TCP 
and CoTCP.  

The benchmarks were performed as following 
procedure: 

- Step 1: Initiate the server with predefined 
configurations; 

- Step 2: The server waits for incoming requests 
and responses after a delay; 

- Step 3: Initiate the client with predefined 
configurations; 

- Step 4: The client establishes a fixed number of 
connections to the server; 

- Step 5: The client initiates a pool of worker 
coroutines to send request to the server and wait 
for the response; 

- Step 6: The average number of transactions per 
second (TPS) and average latency is calculated 
where a transaction is started from the time of 
sending request until receiving response; 

- Step 7: For TCP benchmark, transactions on the 
same connection are executed sequentially; 

- Step 8: For CoTCP benchmark, transactions on 
the same connection are executed concurrently. 

Each benchmark includes one server to handle 
requests and one benchmark tool acting as the client: 

- The server is configurable with the following 
parameters: number of CPUs used, delay duration 
before sending responses back to the client, and 
size of the response’s body; 

- The client is configurable with the following 
parameters: number of CPUs used, number of 
opened connections to the server, number of 
worker coroutines used to send requests to the 
server, and size of the request’s body. 

 

 
Fig. 7. Performance benchmark's setup. 
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4.1. First Benchmarking 

4.1.1 Testing Configurations 

This benchmarking test was designed to test the 
performance of CoTCP in comparison with TCP on the 
scenario that the number of connections from the client 
to server has increased from 1 to 500. 

Table 1. Server’s configurations 

Parameter Value 

Type of CPU Intel(R) Xeon(R) Gold 6242R CPU 
@ 3.10GHz 

Number of 
CPUs 8 

Reponse delay 0 ms 
Size of 
response’s body 10 bytes 

 
Table 2. Client's Configurations 

Parameter Value 

Type of CPU Intel(R) Xeon(R) Gold 6242R 
CPU @ 3.10GHz 

Number of 
CPUs 8 

Number of 
worker 
coroutines 

500 

Size of request’s 
body 10 bytes 

 
4.1.2 Testing Results 

According to Fig. 8 and Fig. 9, we can conclude 
that: 

- For small number of connections (10 connections 
and below), the performance of CoTCP is about 
two times better than the performance of TCP; 

- For big number of connections (100 connections 
and above), the performance of CoTCP is similar 
to the performance of TCP; 

- The optimal number of connections for TCP is 
500 which is equal to the number of worker 
coroutines; Increasing the number of connections 
beyond 500 will not improve the concurrency but 
produce idle connections; 

- The optimal number of connections for CoTCP is 
about 10 connections; As the number of 
connections grows, the performance of CoTCP 
slightly decreases due to the overheads for 
maintaining extra connections. 

 

 
Fig. 8. TPS vs. Number of Connections 

 
Fig. 9. Latency vs. Number of Connections 

4.2. Second Benchmarking 

4.2.1 Testing Configurations 

This benchmarking test was designed with the 
difference to the first benchmarking which has the 
response delay increased from 0 to 10. 

Table 1. Server’s configurations 

Parameter Value 

Type of CPU Intel(R) Xeon(R) Gold 
6242R CPU @ 3.10GHz 

Number of CPUs 8 
Reponse delay 10 ms 
Size of response’s 
body 10 bytes 

Table 2. Client's Configurations 

Parameter Value 

Type of CPU Intel(R) Xeon(R) Gold 
6242R CPU @ 3.10GHz 

Number of CPUs 8 
Number of worker 
coroutines 500 

Size of request’s 
body 10 bytes 
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4.2.2 Testing Results 

According to Fig. 10 and Fig. 11, we can conclude 
that: 

- The performance of TCP linearly increases as the 
number of connections increases from 1 to 500; 

- The performance of CoTCP is the same for any 
number of connections. 

At 500 connections, the performance of TCP is 
similar to the performance of CoTCP and is close to 
ideal which is 50,000 TPS and 10ms latency. 

 
Fig. 10. TPS vs. Number of Connections 

 
Fig. 11. Latency vs. Number of Connections 

4.3 Third Benchmarking 

4.3.1 Testing Configurations 

This benchmarking test was designed with the 
difference to the second benchmarking which has the 
response delay increased from 10 to 100. 
Table 1. Server’s configurations 

Parameter Value 

Type of CPU Intel(R) Xeon(R) Gold 
6242R CPU @ 3.10GHz 

Number of CPUs 8 

Reponse delay 100 ms 

Size of response’s body 10 bytes 
 

Table 2. Client's Configurations 

Parameter Value 

Type of CPU Intel(R) Xeon(R) Gold 
6242R CPU @ 3.10GHz 

Number of CPUs 8 
Number of worker 
coroutines 500 

Size of request’s body 10 bytes 
 

4.3.2 Testing Results 

 
Fig. 12. TPS vs. Number of Connections 

 
Fig. 13. Latency vs. Number of Connections 

According to Fig. 12 and Fig. 13, we can conclude 
that even though we have inscrease the response delay 
of server from 10ms to 100ms, the results are still the 
same as on the second benchmarking at item 4.2. that 
is: 

- The performance of TCP linearly increases as the 
number of connections increases from 1 to 500. 

- The performance of CoTCP is the same for any 
number of connections. 

At 500 connections, the performance of TCP is 
similar to the performance of CoTCP and is close to 
ideal which are 5000 TPS and 100ms latency. 
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5. Conclusion 

On this paper, we have presented our work on 
proposing a new a protocol based on TCP named as 
CoTCP, which allows sending and receiving multiple 
messages concurrently over a single TCP connection. 
Numerical results show several advancements from our 
work as below: 
- CoTCP allows to send requests and receive 

responses asynchronously over the same 
connection, therefore, it helps to improve 
concurrency and reduce latency without having to 
open many connections; 

- In case the server can handle requests and 
response to the client immediately, which rarely 
happens in real conditions, the performance of 
CoTCP is not better than sending requests and 
receiving responses sequentially using TCP; 

- In case the server needs a certain amount of time 
to handle requests and response to the client, the 
performance of CoTCP is much better than the 
performance of TCP for small number of 
connections; These become comparable as the 
number of connections grows. 
The performance of CoTCP is less dependent on 

number of connections than the performance of TCP. 
The benchmark results show significant improvements 
in concurrency of CoTCP compared to TCP. However, 
there is still some limitation on the proposed protocol, 
for example, it does not support multiplexing 
capability [18, 19] on a single connection. 
Furthermore, while a large message is being sent, other 
messages are blocked from being sent over the same 
connection. In the future work, we will add that 
multiplexing feature to the CoTCP. In principle, to 
achieve multiplexing on a single connection, a CoTCP 
message must be divided in multiple parts before being 
sent. Parts of multiple messages will be mixed together 
and will be sent over the same connection. The server 
will receive messages’ parts and combine them into 
complete messages. 
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